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Abstract. We consider the nonlinear distributed delay equation

x′(t) = f
[∫ t−d

t−1
g(x(s)) ds

]
, d ∈ [0, 1),

where g and f are smooth, bounded, and odd and satisfy a positive and a negative
feedback condition, respectively. Using elementary fixed point theory we prove the ex-
istence of a nontrivial periodic solution of period 2 + 2d satisfying certain symmetries,
given certain growth conditions on f and g near zero.
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1 Introduction

We consider the following autonomous nonlinear real-valued differential equation with dis-
tributed delay:

x′(t) = f
[∫ t−d

t−1
g(x(s)) ds

]
, d ∈ [0, 1). (1.1)

We shall impose the following hypotheses on f and g:

(H)



g(0) = f (0) = 0;

g and f are bounded and C1, with bounded derivative;

g and f are odd;

xg(x) > 0 for all x 6= 0 (positive feedback), and x f (x) < 0 for all x 6= 0 (negative
feedback).

In this paper we describe conditions on f and g that guarantee the existence of a certain
nontrivial periodic solution of (1.1). This solution has period 2 + 2d. Throughout this paper
we shall write m = (1 + d)/2, and accordingly shall frequently write 4m for the period of our
periodic solution.
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We define the following additional translation and symmetry conditions, where x is a func-
tion whose domain includes [0, 4m]:

(T1) x(0) = 0;

(T2) x is nondecreasing on [0, m];

(S1) x(2m + t) = −x(t) for all t ∈ [0, 2m];

(S2) x(2m + t) = −x(2m− t) for all t ∈ [0, 2m].

The symmetry conditions (S1), (S2) above are convenient for our purposes. As we show in
the next section, though (Lemma 2.3), any 4m-periodic function x : R→ R satisfying (S1) and
(S2) also satisfies the somewhat more conventional-looking symmetries

(S) x(t + 2m) = −x(t) and x(−t) = −x(t) for all t ∈ R.

We now state our main theorem.

Theorem 1.1. Let d ∈ [0, 1) be given, and assume that hypotheses (H) hold. Suppose that

2| f ′(0)||g′(0)|
(

2m
π

)2

cos
( π

2m
d
)
> 1.

Then (1.1) has a periodic solution of period 2 + 2d = 4m that satisfies (T1), (T2), (S1), and (S2).

In Section 2 we lay the groundwork for the proof of Theorem 1.1; we prove the theorem in
Section 3.

The lineariztion of (1.1) at 0 is

x′(t) = −γ
∫ t−d

t−1
x(s) ds,

where γ = | f ′(0)||g′(0)|. The corresponding characteristic equation is

λ = −γ
∫ −d

−1
eλs ds. (1.2)

In [6] it is proven that, when d ∈ [1/2, 1), Equation (1.2) has roots with positive real part if and
only if

2γ

(
2m
π

)2

cos
( π

2m
d
)
> 1.

(The proof given in [6] seems to extend to the d ∈ [0, 1) case; we do not supply the details
here, since we do not actually need this result in what follows.) Accordingly, the hypotheses
of Theorem 1.1 being satisfied suggests instability of the equilibrium solution of (1.1) at 0, and
makes it reasonable to suspect that there is a nontrivial periodic solution. Indeed, Theorem
2 of [6] proves the existence of a nontrival periodic solution of (1.1) when the hypotheses of
Theorem 1.1 are satisfied, in the case that f is linear and d ∈ [1/2, 1). (The map g is not
assumed odd in [6], and the period of the solution, while bounded below, is not given explictly.
In the current work, the assumption that f and g are both odd is crucial to our ability to obtain
an explicit expression for the period.)
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Also related to the current work is [1], where the authors study solutions of the system

x′1(t) =
∫ 0

−1
f1(x2(t + θ)) dθ

x′2(t) =
∫ 0

−1
f2(x1(t + θ)) dθ

that satisfy certain symmetries and obtain, as a special case, criteria on g for the existence of a
periodic solution of (1.1) in the case that f = −id and d = 0.

Beyond proving Theorem 1.1, a chief motivation for this work is to suggest the possibility
of strong parallels between the dynamics of (1.1) and those of the much better-known delay
equation

x′(t) = f (x(t− 1)). (1.3)

Numerical simulations of (1.1) suggest that, in several instances, periodic solutions of the type
described in Theorem 1.1 attract large sets of solutions, including solutions whose initial con-
ditions have several zeros per unit time; the analogous phenomenon for Equation (1.3) is well-
known. Accordingly, it seems that the periodic solution of Equation (1.1) that we investigate in
this paper should be regarded as “slowly oscillating”. We emphasize, though, that we have not
yet formulated a satisfactory non-increasing “oscillation speed” for (1.1); such a formulation
would be useful for developing connections between Equations (1.1) and (1.3).

When d ∈ [1/2, 1), it is possible to identify a particular subset X of initial conditions whose
continuations can reasonably be called “slowly oscillating”; Theorem 2 of [6], mentioned above,
employs the approach of finding a fixed point for an appropriately defined Poincaré map on X.
When d ∈ [0, 1/2), though, even the definition of a forward-invariant set of “slowly oscillating”
solutions for Equation (1.1) does not seem obvious. Accordingly, the approach we take to
proving Theorem 1.1 is somewhat different from the Poincaré map approach.

To see one connection between Equations (1.1) and (1.3) we recall the paper [5], where it is
proven that, for f smooth, bounded, and odd with negative feedback, if | f ′(0)| > π/2 then
Equation (1.3) has a nontrivial periodic solution p of period 4 satisfying p(0) = 0 and the
symmetries

p(t) = −p(t + 2) and p(−t) = −p(t),

which are just the symmetries (S) with d = 1. Furthermore, if we write

c =
π2

8m2 cos(πd/(2m))

for the threshold value of | f ′(0)||g′(0)| in Theorem 1.1, we have

lim
d→1

(1− d)c =
π

2

(this observation was also made in [6]). The above-mentioned result from [5] can therefore be
viewed, heuristically, as a limiting version of Theorem 1.1 as d→ 1.

To draw another connection between Equations (1.1) and (1.3), we can consider the follow-
ing “model” version of (1.1) with step feedback,

x′(t) = − sign
[∫ t−d

t−1
sign(x(s)) ds

]
, (1.4)
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and compare it to the equation

x′(t) = − sign(x(t− 1)), (1.5)

a model version of (1.3) that is essentially completely understood (see, e.g., [3]). In particular, it
is known that Equation (1.5) has a countable set of periodic solutions; that all of these solutions
are unstable except a single “slowly oscillating” one; and that this slowly oscillating periodic
solution attracts most other solutions in a suitable sense. It turns out that Equation (1.4) has
an analogous countable set of periodic solutions, all but one of which are unstable. We do not
provide the details here, but content ourselves with exhibiting, in Section 4, the single stable
periodic solution of Equation (1.4), and describing some of its domain of attraction. This stable
periodic solution is a counterpart of the solution of Equation (1.1) described in Theorem 1.1,
and our work in Section 4 will also yield some heuristic insight into this latter solution — in
particular, into its apparent stability.

2 The map F : Ω → Ω

Throughout this section, we shall assume that the hypotheses (H) hold, and we shall continue
to write m = (1 + d)/2. Note that d < m < 1.

We begin by collecting some simple consequences of the symmetries introduced before the
statement of Theorem 1.1.

Lemma 2.1. If x : [0, 4m]→ R satisfies (S1) and (S2), then x also satisfies

(S3) x(m + t) = x(m− t) for all t ∈ [0, m];

(S4) x(3m + t) = x(3m− t) for all t ∈ [0, m];

(S5) x(4m− t) = −x(t) for all t ∈ [0, 4m].

Proof. If x : [0, 4m]→ R satisfies (S1) and (S2), then for t ∈ [0, m] we have

x(m + t) = x(2m− (m− t))
(S2)
= −x(2m + m− t)

(S1)
= x(m− t).

The proof that x(3m + t) = x(3m− t) is similar.
If t ∈ [0, 2m] we have

x(4m− t) = x(2m + (2m− t))
(S2)
= −x(2m− (2m− t)) = −x(t);

if t ∈ [2m, 4m] we have

x(4m− t) = x(2m− (t− 2m))
(S2)
= −x(2m + (t− 2m)) = −x(t).

This completes the proof.

We define the following function τ : R→ [0, 4m):

τ(t) = t mod[4m] = t− 4m · floor(t/(4m)).

(In what follows, we are going to study a particular subset Ω of C([0, 4m], R) whose elements
extend to continuous 4m-periodic functions on R. The function τ is, loosely speaking, a device
to enable us to work in Ω while viewing its elements as 4m-periodic functions.) We shall need
the following observations about how the symmetries (S1) and (S2) interact with the function
τ.
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Lemma 2.2. Suppose that x : [0, 4m]→ R satisfies (S1) and (S2). Then given any t ∈ R we have

x(τ(t + 2m)) = −x(τ(t)).

If t ∈ R and k and j are integers such that 2k ≡ 2j modulo 4, then

x(τ(2km + t)) = −x(τ(2jm− t)).

Proof. If τ(t) < 2m then τ(t+ 2m) = τ(t) + 2m and the first equality follows immediately from
(S1).

If τ(t) ≥ 2m, then τ(t + 2m) = τ(t) + 2m− 4m = τ(t)− 2m, and the first equality follows
again from (S1).

Suppose that 2k and 2j are congruent modulo 4. Then, given any t, 2km− t and 2jm + t can
be written, respectively, as 2k′m− t′ and 2j′m + t′, where 2k′ and 2j′ are congruent modulo 4
and t′ ∈ [0, 2m]. If 2j′ is congruent to 0 modulo 4 we have

τ(2jm− t) = τ(2j′m− t′) = 4m− t′ = 4m− τ(2k′m + t′) = 4m− τ(2km + t);

and if 2j′ is congruent to 2 modulo 4 we have

τ(2jm− t) = τ(2j′m− t′) = 2m− t′ = 4m− (2m + t′) = 4m− τ(2k′m + t′) = 4m− τ(2km + t).

The second part of the lemma now follows from symmetry (S5) (recall Lemma 2.1).

The following very simple lemma shows that (S1) and (S2) imply the symmetries (S). A
typical 4m-periodic function satisfying (T1), (T2), (S1), and (S2) is pictured in Figure 2.1.

Figure 2.1: A typical 4m-periodic function satisfying (T1), (T2), (S1), and (S2).

Lemma 2.3. Suppose that x : R→ R is a 4m-periodic function satisfying (S1) and (S2). Then x also
satisfies

(S) x(t + 2m) = −x(t) for all t ∈ R and x(−t) = −x(t) for all t ∈ R.
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Proof. Since x is assumed to be periodic with period 4m,

x(s) = x(τ(s)) for all s ∈ R.

Therefore, applying Lemma 2.2, for all t ∈ R we have

x(t + 2m) = x(τ(t + 2m)) = −x(τ(t)) = −x(t).

Any s ≥ 0 can be written in the form s = 2km + t, where k ∈ Z+ and t ∈ [0, 2m). In this
case −s = −2km− t. Since 2k is congruent to −2k modulo 4, Lemma 2.2 implies

x(−s) = x(τ(−2km− t)) = −x(τ(2km + t)) = −x(s).

We write C = C([−1, 0], R) for the space of continuous real-valued functions on [−1, 0],
equipped with the sup norm. Under hypotheses (H), the functions f and g have bounded
derivatives and hence are both Lipschitz; we write ` f and `g for their respective Lipshitz con-
stants. The map

C 3 x 7→ f
[∫ −d

−1
g(x(s)) ds

]
has Lipshitz constant ` f `g(1− d). The existence and uniqueness of solutions of (1.1) therefore
follows from standard theory for delay equations (see, for example, [4]). In particular, given
any x0 ∈ C([−1, 0], R), x0 has a unique continuation x : [−1, ∞) → R that satisfies (1.1) for all
t > 0.

Let us suppose that a solution x : J → R of (1.1) is given, where J = [−1, ∞) or J = R. For
any t− 1 ∈ J, define

y(t) =
∫ t−d

t−1
g(x(s)) ds.

The basic observation is that x and y together solve the system

x′(t) = f (y(t)); y′(t) = g(x(t− d))− g(x(t− 1)), t− 1 ∈ J.

Now suppose that x : R→ R is in fact a 4m-periodic solution of (1.1) satisfying the symmetries
(S). Then y is defined for all time, and since (using (S) and the oddness of g)

−g(x(t− 1)) = g(−x(t− 1)) = g(x(t− 1 + 2m)) = g(x([t− 1] + [1 + d])) = g(x(t + d)),

we actually have that x and y solve the system

x′(t) = f (y(t)), y′(t) = g(x(t− d)) + g(x(t + d)). (2.1)

This observation motivates the construction that we now undertake.
Let us write C[0, 4m] for the Banach space of continuous real-valued functions on [0, 4m],

equipped with the sup norm, and Ck[0, 4m] for the subset of C[0, 4m] consisting of functions
with Lipschitz constant at most k. We now define the following subset of C‖ f ‖[0, 4m], where
‖ f ‖ = sups∈R | f (s)|:

Ω =

 x ∈ C‖ f ‖[0, 4m] :


(T1) x(0) = 0;
(T2) x is nondecreasing on [0, m];
(S1) x(2m + t) = −x(t) for all t ∈ [0, 2m];
(S2) x(2m + t) = −x(2m− t) for all t ∈ [0, 2m].


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Observe that Ω is closed and convex and, by the Ascoli–Arzelà theorem, compact. Since (T1)
and (S1) together imply that x(0) = x(4m), the functions x(τ(t − d)) and x(τ(t + d)) are
continuous on [0, 4m]. Thus if x ∈ Ω, then ξ(t) = x(τ(t)) is a continuous 4m-periodic function;
by Lemma 2.3, ξ satisfies the symmetries (S).

We now define the map G : Ω→ C[0, 4m] as follows: y = G(x) satisfies y(m) = 0 and

y′(t) = g(x(τ(t− d))) + g(x(τ(t + d)))

for all t ∈ (0, 4m). (Since x(τ(t− d)) and x(τ(t+ d)) are continuous on [0, 4m], y is continuously
differentiable on (0, 4m) and continuous on [0, 4m].) We also define the map H : C[0, 4m] →
C[0, 4m] as follows: u = H(y) satisfies u(0) = 0 and u′(t) = f (y(t)) for all t ∈ (0, 4m). Finally,
we define the map F : Ω→ C[0, 4m] by F = H ◦ G.

We spend the rest of this section establishing some facts about the map F: in particular, that
F is a continuous self-mapping of Ω and that nonzero fixed points of F correspond to nontrivial
4m-periodic solutions of (1.1) that satisfy conditions (T1), (T2), (S1), and (S2).

Lemma 2.4. The functions G, H, and F are all Lipschitz continuous.

Proof. Given x1 and x2 in Ω, let us write y1 = G(x1), y2 = G(x2), u1 = H(y1), and u2 = H(y2).
As above we take ` f and `g to be Lipschitz constants for f and g, respectively. Then (crudely)
for any t ∈ [0, 4m] we have

|y1(t)− y2(t)| ≤ 2`g(4m)‖x1 − x2‖

and
|u1(t)− u2(t)| ≤ ` f (4m)‖y1 − y2‖ ≤ ` f `g32m2‖x1 − x2‖.

Thus we see that G, H, and F are all Lipschitz continuous.

Proposition 2.5. F maps Ω to itself.

Proof. Let x ∈ Ω be given, and write y = G(x) and u = H(y) = F(x). u(0) = 0 by assumption,
and u clearly has Lipschitz constant ‖ f ‖. It remains to show that u satisfies (T2), (S1), and
(S2). We proceed in several steps.

Step 1: y′ satisfies the symmetries (S1) and (S2) (in what follows, we take the derivatives
of y at 0 and 4m to be appropriately one-sided). Using that g is odd and applying the first part
of Lemma 2.2, for all t ∈ [0, 2m] we have

y′(2m + t) = g(x(τ(2m + t− d))) + g(x(τ(2m + t + d)))

= g(−x(τ(t− d))) + g(−x(τ(t + d)))

= − [g(x(τ(t− d))) + g(x(τ(t + d)))] = −y′(t).

Similarly, for all t ∈ [0, 2m] we have (applying the second part of Lemma 2.2) that

y′(2m + t) = g(x(τ(2m + t− d))) + g(x(τ(2m + t + d)))

= g(−x(τ(2m− t + d))) + g(−x(τ(2m− t− d)))

= − [g(x(τ(2m− t + d))) + g(x(τ(2m− t− d)))] = −y′(2m− t).

Thus y′(t) satisfies (S1) and (S2). Lemma 2.1 now shows that, for t ∈ [0, m],

y′(m + t) = y′(m− t) and y′(3m + t) = y′(3m− t).

Observe that, since x satisfies (S2), d < m, and g is odd, we have y′(2m) = 0. Since y′ satisfies
(S1), we in fact have y′(0) = y′(2m) = y′(4m) = 0.

Step 2: y satisfies the following symmetries:



8 B. Kennedy

i) y(2m + t) = y(2m− t) for all t ∈ [0, 2m];

ii) y(m + t) = −y(m− t) and y(3m + t) = −y(3m− t) for all t ∈ [0, m].

For t ∈ [0, 2m] we have (applying the symmetries of y′(t) and the assumption that y(m) = 0)

y(2m + t) =
∫ 2m+t

m
y′(s) ds

=
∫ 2m−t

m
y′(s) ds +

∫ 2m

2m−t
y′(s) ds +

∫ 2m+t

2m
y′(s) ds

=
∫ 2m−t

m
y′(s) ds = y(2m− t).

This proves i). In particular, we see that y(0) = y(4m) and that y(m) = y(3m) = 0.
To prove the first part of ii) see that, for t ∈ [0, m],

y(m + t) =
∫ m+t

m
y′(s) ds =

∫ t

0
y′(m + s) ds

=
∫ t

0
y′(m− s) ds = −

∫ m−t

m
y′(s) ds = −y(m− t).

The proof that y(3m + t) = −y(3m− t) for all t ∈ [0, m] is similar.
Step 3: y(m + t) ≥ 0 for all t ∈ (0, m]. To see this, we write

y(m + t) =
∫ t

0
y′(m + s) ds

=
∫ t

0
g(x(τ(m + s + d))) ds +

∫ t

0
g(x(τ(m + s− d))) ds.

We break the left-hand integral just above into three pieces and the right-hand integral into two
pieces to get the following expression:

y(m + t) =∫ m−d

0
g(x(τ(m + s + d))) ds +

∫ 2m−2d

m−d
g(x(τ(m + s + d))) ds +

∫ t

2m−2d
g(x(τ(m + s + d))) ds

+
∫ 2d−2m+t

0
g(x(τ(m + s− d))) ds +

∫ t

2d−2m+t
g(x(τ(m + s− d))) ds.

Regrouping (the first two integrals on the first line together, the last integral on the first line
and the first integral on the second line together, and the second integral on the second line by
itself) and rewriting the limits of integration we get

y(m + t) =
∫ 2m

m+d
g(x(τ(s))) ds +

∫ 3m−d

2m
g(x(τ(s))) ds

+
∫ t+d+m

3m−d
g(x(τ(s))) ds +

∫ t+d−m

m−d
g(x(τ(s))) ds

+
∫ t+m−d

t+d−m
g(x(τ(s))) ds.

The two integrals in the first line above sum to zero since x satisfies (S2) (note that 2m− (m +

d) = m− d = (3m− d)− 2m), and the two integrals in the second line sum to zero as well by
the first part of Lemma 2.2. The last integral is nonnegative: if t + d−m ≥ 0 this is immediate
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(since (t + d− m, t + m− d) ⊂ (0, 2m), and x is nonnegative on the latter interval — keep in
mind that we are assuming that t ∈ (0, m]); if t + d−m < 0 we have∫ t+m−d

t+d−m
g(x(τ(s))) ds =

∫ m−t−d

t+d−m
g(x(τ(s))) ds +

∫ m+t−d

m−t−d
g(x(τ(s))) ds,

and the first integral on the right is zero by the symmetry of x and the oddness of g, while the
second integral on the right is nonnegative since x is nonnegative on [0, 2m]. This completes
Step 3.

Step 4: The sign of u′. Applying the already-established symmetries of y, from Step 3 we
now obtain that y is nonpositive [0, m], nonnegative on [m, 3m], and nonpositive on [3m, 4m].
Since y f (y) < 0 for all nonzero y, we see that u is

• nondecreasing on [0, m];

• nonincreasing on [m, 3m];

• nondecreasing on [3m, 4m].

In particular, we see that u satisfies (T2).
Step 5: u satisfies (S1) and (S2). For t ∈ [0, 2m] we have (using the symmetries of y and the

oddness of f ):

u(2m + t) =
∫ 2m+t

0
f (y(s)) ds

=
∫ m

0
f (y(s)) ds +

∫ 2m

m
f (y(s)) ds +

∫ 2m+t

2m
f (y(s)) ds

=
∫ 2m+t

2m
f (y(s)) ds =

∫ 2m

2m−t
f (y(s)) ds =

∫ m

m−t
f (y(m + s)) ds

= −
∫ m

m−t
f (y(m− s)) ds =

∫ 0

t
f (y(s)) ds = −

∫ t

0
f (y(s)) ds = −u(t).

Similarly, for t ∈ [0, 2m] (using that u(2m) = 0, which follows from the just-established (S1))
we have

u(2m + t) =
∫ 2m+t

0
f (y(s)) ds

=
∫ 2m

0
f (y(s)) ds +

∫ 2m+t

2m
f (y(s)) ds

=
∫ 2m

0
f (y(s)) ds +

∫ 2m

2m−t
f (y(s)) ds

= u(2m) + (u(2m)− u(2m− t)) = −u(2m− t).

This shows that u has the desired symmetries, and completes the proof of the proposition.

It is clear that F(0) = 0. Our computations in Step 3 of the above proof showed that

y(2m) = y(m + m) =
∫ 2m−d

d
g(x(τ(s))) ds.

If x ∈ Ω \ {0}, then the integral above is strictly positive and so y(2m) > 0; it follows that
y(0) < 0 and that u′(t) > 0 for t near 0. We conclude the following.
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Corollary 2.6. Given x ∈ Ω \ {0}, F(x) is strictly positive on (0, m] (and so in particular is nonzero).

In what follows we shall need the following more detailed information on the shape of F(x)
when ‖x‖ is small.

Lemma 2.7. Suppose that there is a number c > 0 such that both f and g are monotonic on the interval
[−c, c]. Then there is a constant κ > 0, depending on f , g, and d, such that if x ∈ Ω and ‖x‖ ≤ κ, then
u = F(x) is concave down on [0, m] — that is, u′(t) is nonincreasing on (0, m).

Note that, since f and g are assumed to be C1 with negative and positive feedback, respec-
tively, the conditions of the above lemma are satisfied if f ′(0) and g′(0) are both nonzero (and
so in particular if the hypotheses of Theorem 1.1 are satisfied).

Proof. Given x ∈ Ω, write y = G(x) and u = F(x). Since G is Lipschitz, there is a κ > 0 such
that ‖x‖ ≤ κ implies both ‖x‖ ≤ c and ‖y‖ ≤ c. When considering the action of F on such x,
we may assume that f and g are monotonic.

Suppose, then, that g is nondecreasing and f is nonincreasing. Recall that

y′(t) = g(x(τ(t− d))) + g(x(τ(t + d))).

We claim that y′(t) ≥ 0 for all t ∈ (0, m). Assuming the claim, we have that y is nondecreasing
on (0, m). Since u′(t) = f (y(t)) and f is nonincreasing, we then see that u′ is nonincreasing on
(0, m), as desired.

We now prove the claim. Since x(τ(−d)) = −x(τ(d)) by Lemma 2.2 and g is odd, we have
y′(0) = 0. As t moves from 0 to m− d, x(τ(t− d)) and x(τ(t + d)) are nondecreasing and so,
since g is nondecreasing, y′(t) is nondecreasing too — and so in particular is nonnegative.

We now consider two cases.
If d ≤ 1/3, then d ≤ m− d and so, for t ∈ [m− d, m), we have 0 ≤ t− d < t + d < 2m and

x(τ(t− d)) = x(t− d) ≥ 0, x(τ(t + d)) = x(t + d) ≥ 0.

In this case y′(t) ≥ 0.
If d > 1/3, then m− d < d and for t ∈ [m− d, d] we have

m ≤ t + d < t + d + (m− d) ≤ t− d + 2m ≤ 2m,

and so (since x is nonincreasing on [m, 2m]) we have x(t + d) ≥ x(t− d + 2m). But Lemma 2.2
now yields

−x(τ(t− d)) = x(τ(t− d + 2m)) = x(t− d + 2m) ≤ x(t + d) = x(τ(t + d)),

and since g is nondecreasing and odd we see that y′(t) ≥ 0 for all t ∈ [m− d, d]. For t ∈ [d, m),
we have 0 ≤ t− d < t + d < 2m and

x(τ(t− d)) = x(t− d) ≥ 0, x(τ(t + d)) = x(t + d) ≥ 0;

in this case y′(t) ≥ 0. This proves the claim.

We have established that F is a continuous self-mapping of the compact convex set Ω, and
so are in a good position to apply standard fixed point theorems. The following proposition
establishes the connection between nontrivial fixed points of F and solutions of Equation (1.1).
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Proposition 2.8. If x is any nonzero fixed point of F, and ξ is the 4m-periodic extension of x to all of
R, then ξ is a nontrivial solution of (1.1) satisfying (T1), (T2), (S1), (S2).

Proof. That ξ satisfies (T1), (T2), (S1), (S2) is obvious since these are properties of the restric-
tion of ξ to [0, 4m], which is just x ∈ Ω.

Write y = G(x). From the proof of Proposition 2.5 we know that y(0) = y(4m). Thus the
right-hand derivative of x = H(y) at 0 is equal to the left-hand derivative of x = H(y) at 4m,
and we conclude that ξ is continuously differentiable everywhere.

For all t ∈ R we define

w(t) =
∫ t−d

t−1
g(ξ(s)) ds.

Observe that w is 4m-periodic.
We wish to show that w(t) = y(t) for all t ∈ [0, 4m]. For this will establish that w(t) is the

4m-periodic extension of y(t), and it follows that

ξ ′(t) = ξ ′(τ(t)) = x′(τ(t)) = f (y(τ(t))) = f (w(τ(t))) = f (w(t))

for all t — that is, that ξ solves Equation (1.1).
First observe that w(m) = 0: for since d = 2m− 1,

w(m) =
∫ m−d

m−1
g(ξ(s)) ds =

∫ m−2m+1

m−1
g(ξ(s)) ds =

∫ 1−m

m−1
g(ξ(s)) ds = 0

(since ξ satisfies −ξ(t) = ξ(−t) for all t — recall Lemma 2.3). Lemma 2.3 also yields that

w′(t) = g(ξ(t− d))− g(ξ(t− 1)) = g(ξ(t− d)) + g(ξ(t− 1+ 2m)) = g(ξ(t− d)) + g(ξ(t + d))

for all t (recall our derivation of the system (2.1)). Thus for t ∈ (0, 4m) we have

y′(t) = g(x(τ(t− d))) + g(x(τ(t + d)))

= g(ξ(τ(t− d))) + g(ξ(τ(t + d)))

= g(ξ(t− d)) + g(ξ(t + d)) = w′(t).

Since w(m) = 0 = y(m) and w′(t) = y′(t) for all t ∈ (0, 4m), we see that w(t) = y(t) for all
t ∈ [0, 4m]. This completes the proof.

Remark 2.9. By Proposition 2.8, the proof of Theorem 1.1 will be complete if we show that,
under the hypotheses of the theorem, F : Ω→ Ω has a nonzero fixed point x. We do this in the
next section by applying Browder’s ejective fixed point principle. There are, of course, many
other hypotheses that one can formulate for f and g that allow one to prove the existence of
a nontrivial fixed point of F : Ω → Ω. For example, if one imposes a condition (admittedly
stringent) that f and g are close enough to step functions away from 0, it is not hard to exhibit a
closed, convex subset of Ω that does not include 0 and that is mapped to itself by F; the desired
result then follows from Schauder’s theorem.

3 Proof of Theorem 1.1

0 is a fixed point of F; we wish to show that F has another fixed point in Ω. To do this we
make use of Browder’s ejective fixed point principle, which we now recall. Suppose that K is
a compact, convex, infinite-dimensional subset of some Banach space and that φ : K → K is
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continuous. A fixed point z0 of φ in K is called ejective if there is an open subset U ⊂ K about
z0 such that, for any z ∈ U \ {z0}, there is a positive integer n(z) for which φn(z)(z) /∈ U. The
ejective fixed point principle (Theorem 1 in [2]) states:

With notation as above, φ : K → K has at least one fixed point that is not ejective.

If, therefore, we show that 0 is an ejective fixed point of F : Ω→ Ω under the hypotheses of
Theorem 1.1, the theorem will be proven.

To mitigate the notational complexity of what follows, for this section we shall, slightly
abusively, identify any point x ∈ Ω with its 4m-periodic extension — so we write x(τ(t)) =

x(t) for all t. In this section we shall also employ some standard facts about real trigonometric
Fourier series; these can be found, for example, in [7].

Let us now choose x ∈ Ω, and let us assume moreover that x is C1-smooth (this will be
the case, for example, if x ∈ F(Ω)). Since x is odd, the Fourier series of x consists only of sine
terms; since x is smooth, the Fourier series for x converges uniformly to x on [0, 4m]. Therefore
we can write

x(t) =
∞

∑
n=1

an sin
(πn

2m
t
)

, (3.1)

where the nth Fourier coefficient an is given by the formula

an =
1

2m

∫ 4m

0
x(t) sin

(πn
2m

t
)

dt.

Lemma 3.1. In the above series, an = 0 for all even n.

Proof. If n is even, then for any t ∈ [0, 2m] we have

sin
(πn

2m
(t + 2m)

)
= sin

(πn
2m

t
)

.

Since x(2m + t) = −x(t) for all such t, we see that the integral defining an will equal 0.

For the rest of the paper we shall write a(x) for the first Fourier coefficient a1 defined above.
Note that, for x ∈ Ω, the symmetries shared by x(·) and sin( π

2m ·) yield that

a(x) = 4
[

1
2m

∫ m

0
x(t) sin

( π

2m
t
)

dt
]

. (3.2)

Formula (3.2) and Corollary 2.6 now yield

Lemma 3.2. If x ∈ Ω \ {0}, a(F(x)) > 0.

The following lemma relates the size of a(x) to the size of ‖x‖. The rough idea is that,
because x ∈ Ω has the same general shape as sin( π

2m ·), a(x) cannot be too different from ‖x‖.

Lemma 3.3. Suppose that x ∈ C[0, 4m]. Then

a(x) =
1

2m

∫ 4m

0
x(t) sin

( π

2m
t
)

dt ≤ 4
π
‖x‖.

Furthermore, if x ∈ Ω and x is concave down on (0, m) (that is, if x′ is nonincreasing on (0, m)), then

8
π2 ‖x‖ ≤ a(x).
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Proof. Since x(t) ≤ ‖x‖ for all t ∈ [0, m], we have

a(x) ≤ 2
m

∫ m

0
‖x‖ sin

( π

2m
t
)

dt =
2‖x‖

m
2m
π

=
4
π
‖x‖.

On the other hand, if x ∈ Ω is concave down on (0, m) then x(t) ≥ t
m‖x‖ for all t ∈ [0, m] and

so applying (3.2) we have

a(x) ≥ 2‖x‖
m2

∫ m

0
t sin

( π

2m
t
)

dt

=
2‖x‖
m2

[
−t cos

(
π

2m t
)

π/(2m)
+

sin
(

π
2m t
)

(π/(2m))2

]t=m

t=0

=
2‖x‖
m2

4m2

π2 =
8

π2 ‖x‖.

This completes the proof.

The above lemma allows us to conclude the following.

Lemma 3.4. Given δ > 0, write

U (δ) = { x ∈ Ω \ {0} : ‖x‖ < δ }.

Suppose that there are numbers δ > 0 and γ > 1 such that x ∈ F(U (δ)) ∩ U (δ) implies that

a(F(x)) ≥ γa(x).

Then 0 is an ejective fixed point of F — in particular, given any x ∈ U (δ), ‖Fn(x)‖ ≥ δ for some
positive integer n.

Proof. Suppose that x ∈ U (δ) and imagine that Fn(x) ∈ U (δ) for all n ∈ N. Then, since Fn(x)
is smooth for all n ∈N, applying Lemma 3.3 we have

‖Fn(x)‖ ≥ π

4
a(Fn(x)) ≥ π

4
γn−1a(F(x)).

Since x 6= 0, F(x) 6= 0 (Corollary 2.6), and so by Lemma 3.2 we have a(F(x)) > 0. We now see
that the expression on the right above goes to ∞ as n→ ∞ — a contradiction.

We spend the rest of the section showing that, under the hypotheses of Theorem 1.1, the
conditions of Lemma 3.4 hold. Our approach is essentially to linearize F about 0.

Let us write β = g′(0) > 0 and −α = f ′(0) < 0, and let us further write

g(v) = βv + ge(v) and f (v) = −αv + fe(v).

Since g and f are assumed differentiable, given any ε > 0 there is some δ > 0 such that |v| ≤ δ

implies both that |ge(v)| ≤ ε|v| and that | fe(v)| ≤ ε|v|.
Now, given x ∈ Ω, we have

G(x)(t) =
∫ t

m
g(x(s− d)) + g(x(s + d)) ds

= β
∫ t

m
x(s− d) + x(s + d) ds +

∫ t

m
ge(x(s− d)) + ge(x(s + d)) ds.
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Let us write

GL(x)(t) = β
∫ t

m
x(s− d) + x(s + d) ds;

Ge(x)(t) =
∫ t

m
ge(x(s− d)) + ge(x(s + d)) ds.

Similarly, we can write

F(x(t)) = H(G(x(t))) =
∫ t

0
f (GL(x)(s) + Ge(x(s))) ds

= −α
∫ t

0
GL(x)(s) ds− α

∫ t

0
Ge(x)(s) ds +

∫ t

0
fe(G(x)(s)) ds.

Finally, we write

FL(x)(t) = −α
∫ t

0
GL(x)(s) ds; Fe(x)(t) = −α

∫ t

0
Ge(x)(s) ds +

∫ t

0
fe(G(x)(s)) ds.

Elementary estimates now yield the following lemma.

Lemma 3.5. Given any ε > 0, there is some δ > 0 such that ‖x‖ < δ implies that

‖Fe(x)‖ < ε‖x‖.

We now compute FL(x) for x ∈ F(Ω) (in particular, for x smooth). Writing

x(t) = ∑
n odd

an sin
(πn

2m
t
)

,

we have

GL(x)(t) = β
∫ t

m

[
∑

n odd
an sin

(πn
2m

(s− d)
)
+ ∑

n odd
an sin

(πn
2m

(s + d)
)]

ds.

Since the convergence of the sums is uniform we may first combine the sums term-by-term and
then integrate term-by-term to obtain

GL(x)(t) = ∑
n odd

βan

∫ t

m
sin
(πn

2m
(s− d)

)
+ sin

(πn
2m

(s + d)
)

ds

= − ∑
n odd

2β cos
(πn

2m
d
) 2m

πn
an cos

(πn
2m

t
)

.

Now computing

FL(x)(t) = −α
∫ t

0
GL(x)(s) ds

we obtain

FL(x)(t) = ∑
n odd

2αβ cos
(πn

2m
d
)(2m

πn

)2

an sin
(πn

2m
t
)

.

Notice that the Fourier coefficient of the first term is

a(x)× 2αβ

(
2m
π

)2

cos
( π

2m
d
)
=: a(x)× η.

If the hypotheses of Theorem 1.1 are satisfied, then η > 1.
We now prove Theorem 1.1 by showing that, when η > 1, the hypothesis of Lemma 3.4

holds. Applying Lemmas 3.5 and 2.7, given any ε > 0, we can choose δ > 0 such that x ∈
F(U (δ)) ∩ U (δ) implies that
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• ‖Fe(x)‖ ≤ ε‖x‖; and

• x is concave down on (0, m) (and so the second estimate in Lemma 3.3 applies to x).

Applying Lemma 3.3 and the fact that a(·) is linear, we now have, for x ∈ F(U (δ)) ∩ U (δ),

a(F(x)) = a(FL(x) + Fe(x)) = a(FL(x)) + a(Fe(x)) ≥ ηa(x)− 4
π
‖Fe(x)‖

≥ ηa(x)− 4
π

ε‖x‖ ≥ ηa(x)− 4
π

ε
π2

8
a(x) =

(
η − ε

π

2

)
a(x).

Now choose δ (and hence ε) ε small enough so that

γ :=
(

η − ε
π

2

)
> 1;

we have established that x ∈ F(U (δ)) ∩ U (δ) implies that a(F(x)) ≥ γa(x). Lemma 3.4 now
implies that 0 is an ejective fixed point of 0 ∈ Ω; the proof of Theorem 1.1 is complete.

Remark 3.6. In the d = 0 case, periodic solutions of (1.1) satisfying the symmetries (S) corre-
spond to solutions of the system

x′(t) = f (y(t)), y′(t) = g(x(t))− g(x(t− 1)) = 2g(x(t)).

We suspect that in this d = 0 case, under hypotheses (H), the basic approach in [5] to establish-
ing existence of nontrivial periodic solutions can be imitated much more closely. We have not
carried through the details.

4 The “slowly oscillating” solution of Equation (1.4)

Numerical simulations suggest that the periodic solution proven to exist in Theorem 1.1 is
frequently stable. The proof we have given, however, offers little indication of the reason for
this stability. By way of providing some heuristic insight into the dynamics of Equation (1.1),
in this brief concluding section we prove an analog of Theorem 1.1 for Equation (1.4) in the
case that d ∈ (0, 1). (Most of what we will say here applies to the d = 0 case as well, but some
technical difficulties arise in the d = 0 case — for example, not all continuous initial conditions
are continuable as solutions — that we wish to avoid for the sake of brevity.)

As in Section 2 we write C = C([−1, 0], R) for the set of real-valued continuous functions
on [−1, 0], equipped with the sup norm. If x is a continuous function whose domain includes
[t− 1, t], we write xt for the member of C given by

xt(s) = x(t + s), s ∈ [−1, 0].

By a solution of (1.4) we mean a solution of the corresponding integral equation

x(t) = x(0) +
∫ t

0
− sign

[∫ s−d

s−1
sign(x(u)) du

]
ds, t > 0.

For d ∈ (0, 1), existence and uniqueness of solutions of Equation (1.4) is straightforward: given
x0 ∈ C, the function

t 7→ − sign
[∫ t−d

t−1
sign(x0(s)) ds

]
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is defined and Lebesgue measurable for all t ∈ [0, d], and so the continuation x of x0 as a
solution of the above integral equation — and hence of Equation (1.4) — is uniquely defined
on [0, d]. The solution can then be continued by steps on [0, ∞). The solution is differentiable
almost everywhere, and where it is differentiable it satisfies Equation (1.4) as usually written.

(It is useful to formulate a verbal description of the feedback mechanism embodied in (1.4):
x′(t) = 1 if the restriction of x to [t− 1, t− d] is negative most of the time, and x′(t) = −1 if the
restriction of x to [t− 1, t− d] is positive most of the time.)

We now state and prove the main result of the section. This result can be viewed as the
counterpart to Theorem 1.1 for Equation (1.4); but the simplicity of the equation allows us to
explicitly describe a portion of the domain of attraction of the periodic solution.

Proposition 4.1. Let d ∈ (0, 1), and write m = (1 + d)/2. Suppose that x0 ∈ C with x0(0) = 0 and
x0(s) < 0 for all s ∈ [−m, 0). Write x for the continuation of x0 as a solution of Equation (1.4).

Then, for all t ≥ 0, x coincides with a periodic solution of Equation (1.4) that has period 4m and
satisfies the symmetries (T1), (T2), (S1), and (S2).

Figure 4.1 illustrates the solution discussed in Proposition 4.1.

Figure 4.1: The solution discussed in Proposition 4.1.

Proof. With x as in the statement of the proposition, throughout the proof we write

y(t) =
∫ −d

−1
sign(x(t + s)) ds, t ≥ 0.

y(t) is defined for all t ≥ 0, whether or not x is differentiable at t. If t is positive and y(t) 6= 0,
then x is differentiable at t and we have x′(t) = − sign(y(t)).

Observe that 1−m = m− d = (1− d)/2. Thus

length([−1,−d] ∩ [−m, 0]) = (1− d)/2,

and x is negative on strictly more than half of the interval [−1,−d]. Thus y(0) < 0.



Delay equations with distributed delay 17

Claim: y(t) < 0 for all t ∈ (0, m). Assume this claim for the moment. Then x′(t) = 1 for all
t ∈ (0, m) and x(t) = t for all t ∈ [0, m]. Observe that

m− 1 =
d− 1

2
> −m.

Therefore the portion of [m− 1, m− d] for which x(t) is negative is exactly [m− 1, 0) and the
portion of [m− 1, m− d] for which x(t) is positive is exactly (0, m− d]; each of these two inter-
vals has length (1− d)/2. Thus y(m) = 0. Now write z = inf{ t ≥ m : x(t) = 0 }. Since

length([t− 1, t− d] ∩ [−m, 0]) <
1− d

2

for all t ∈ (m, z] and x(t) > 0 for all t ∈ (0, z), we have that x′(t) = −1 for all t ∈ (m, z).
We conclude that z = 2m. The proposition now follows by symmetry, since −xz satisfies the
hypotheses of the proposition, and the odd feedback for Equation (1.4) yields that x(2m + t) =
−x(t) for all t ≥ 0.

It remains to prove the claim. The main observation, which we shall use repeatedly, is that
if

length([t− 1, t− d] ∩ [−m, 0]) >
1− d

2
then it is guaranteed that x is negative on more than half of the interval [t − 1, t − d], and so
y(t) < 0.

As t moves from 0 to m, t− d crosses the point 0 (and so leaves the interval [−m, 0]) at time
d, while t − 1 crosses then point −m (and so enters the interval [−m, 0]) at time 1− m. It is
convenient to consider separately the two cases where these two crossings occur in opposite
orders.

Case 1: d ∈ (0, 1/3]. In this case we have d ≤ 1−m.
For t ∈ (0, d] we have

length([t− 1, t− d] ∩ [−m, 0]) =
1− d

2
+ t >

1− d
2

and so y(t) < 0; for t ∈ [d, 1−m] we have

length([t− 1, t− d] ∩ [−m, 0]) =
1− d

2
+ d = m >

1− d
2

and so y(t) < 0; for t ∈ [1−m, m) we have

length([t− 1, t− d] ∩ [−m, 0]) = m− (t− (1−m)) = 1− t > 1−m =
1− d

2

and so y(t) < 0.
Case 2: d ∈ (1/3, 1). In this case we have d > 1−m.
For t ∈ (0, 1−m] we have

length([t− 1, t− d] ∩ [−m, 0]) =
1− d

2
+ t >

1− d
2

and so y(t) < 0; for t ∈ [1−m, d] we have

length([t− 1, t− d] ∩ [−m, 0]) =
1− d

2
+ (1−m) = 1− d >

1− d
2
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and so y(t) < 0; for t ∈ [d, m) we have

length([t− 1, t− d] ∩ [−m, 0]) = 1− d− (t− d) = 1− t > 1−m =
1− d

2

and so y(t) < 0.
This completes the proof.
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