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Abstract. Asymptotic properties of solutions of difference equations of the form

∆mxn = an f (n, xσ(n)) + bn

are studied. Using the iterated remainder operator and fixed point theorems we obtain
sufficient conditions under which for any solution y of the equation ∆my = b and for any
real s ≤ 0 there exists a solution x of the above equation such that ∆kx = ∆ky + o(ns−k)
for any nonnegative integer k ≤ m. Using a discrete variant of the Bihari lemma and
a certain new technique we give also sufficient conditions under which for a given real
s ≤ m − 1 all solutions x of the equation satisfy the condition x = y + o(ns) where y
is a solution of the equation ∆my = b. Moreover, we give sufficient conditions under
which for a given natural k < m all solutions x of the equation satisfy the condition
x = y + u for a certain solution y of the equation ∆my = b and a certain sequence u such
that ∆ku = o(1).
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lution, prescribed asymptotic behavior.
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1 Introduction

Let N, Z, R denote the set of positive integers, the set of all integers and the set of real numbers,
respectively. Let m ∈N. In this paper we consider the difference equation of the form

∆mxn = an f (n, xσ(n)) + bn (E)

n ∈N, an, bn ∈ R, f : N×R→ R, σ : N→N, lim σ(n) = ∞.

We assume there is a given function g : [0, ∞)→ [0, ∞) and a sequence w of real numbers such
that

| f (n, t)| ≤ g(|twn|) for (n, t) ∈N×R. (G)

By a solution of (E) we mean a sequence x : N → R satisfying (E) for all large n. If (E) is
satisfied for all n ∈N we say that x is a full solution of (E).
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The purpose of this paper is to study the asymptotic behavior of solutions of equation (E).
In the study of solutions with prescribed asymptotic behavior some fixed point theorems are
often used. Then there appear multiple sums of the form

∞

∑
i1=n

∞

∑
i2=i1

. . .
∞

∑
im=im−1

xim . (R)

The reason is shown below. Let Z denote the space of all convergent to zero sequences. Then
the operator

∆m|Z : Z → ∆m(Z)

is bijective (it is a consequence of the equality Z ∩ Ker∆m = 0). Moreover, if x ∈ ∆m(Z) then
the sum (R) is convergent and we may define a map

rm : ∆m(Z)→ Z, rm(x)(n) =
∞

∑
i1=n

∞

∑
i2=i1

. . .
∞

∑
im=im−1

xim .

Then rm (the iterated remainder operator) is a linear operator and (−1)mrm is inverse to ∆m|Z.
Hence for x ∈ ∆m(Z) we have

∆m((−1)mrm(x)) = x.

The last equality plays a crucial role in the application of fixed point theorems to the study of
solutions of difference equations. Hence the operator rm is very important. In Section 3, we
establish some basic properties of this operator. It is easy to see that rm is nondecreasing. This
allows us to use the Knaster–Tarski fixed point theorem (see Section 6). The continuity of rm is
more subtle. The operator rm is discontinuous (see Remark 4.6) but restrictions rm|S to some
important sets S are continuous (see Lemma 4.5). This allows us to use the Schauder fixed
point theorem (see Section 5). Multiple sums of the form (R) are used in many papers, see for
example [15, 20, 24, 25, 43]. If the series

∞

∑
n=0

nm−1|xn|

is convergent, then x ∈ ∆m(Z) and we may rewrite the sum (R) in the more comfortable form

∞

∑
k=0

(
m + k− 1

m− 1

)
xn+k

of a single sum (see Lemma 4.2). This is used to obtain fundamental properties of the operator
rm. The fact that rm(x) = o(1) is often used to obtain results of type ‘for a given sequence y
there exists a solution x such that x− y = o(1)’, see, for example, [10, Theorem 1], [11, Theorem
1], [28, Theorem 1] or [39, Theorem 2.1]. If s ∈ (−∞, 0] and

∞

∑
n=0

nm−1−s|xn| < ∞, (1.1)

then x ∈ ∆m(Z) and rm(x) = o(ns) (see Lemma 4.2). Using this fact one can obtain results of
type ‘for a given sequence y there exists a solution x such that x − y = o(ns)’, see theorems
in Section 3 of [29] and theorems in Sections 5 and 6 of this paper. Obviously, if s < t ≤ 0
then the condition x − y = o(ns) is more restrictive than x − y = o(nt). Hence we obtain an
approximative solution y and we may control the ‘degree’ of approximation.
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In the study of asymptotic behavior of solutions of difference equations, asymptotically
polynomial solutions play an important role. It is related to the fact that the solutions of the
‘simplest’ difference equation ∆mx = 0 are polynomial sequences. Analogously, if the differ-
ence ∆mx is ‘sufficiently small’, then x is asymptotically polynomial. This effect is used in many
papers, see for example Theorems 2 and 3 in [34] or Theorem 5 in [28]. The ‘method of small
difference’ has been developed in [29]. It is based on [29, Theorem 2.1] which states that if
s ∈ (−∞, m− 1], ∑∞

n=1 nm−1−s|an| < ∞ and ∆mxn = O(an), then

x ∈ Pol(m− 1) + o(ns) = {ϕ + u : ϕ ∈ Ker∆m, un = o(ns)}. (1.2)

In Lemma 3.11 we extend this result and, in Section 7, we use the ‘method of small difference’ to
establish sufficient conditions under which all solutions of (E) are asymptotically polynomial.

Asymptotically polynomial solutions appear in the theory of both differential and differ-
ence equations. In particular, in the theory of second order equations, so called asymptotically
linear solutions are considered. In the theory of differential equations, asymptotic linearity of
solution x, usually means one of the following two conditions

x(t) = at + b + o(1) or x(t) = at + o(t) as t→ ∞. (1.3)

In [32] the condition of the form x(t) = at + o(td) for certain d ∈ (0, 1) is also considered.
In some papers in addition to (1.3), some properties of derivative x′ are also considered. For
example, in [32] Mustafa and Rogovchenko consider solutions x such that

x(t) = at + o(t) and x′(t) = a + o(1) as t→ ∞.

Ehrnström in [13] considers solutions x such that

|x(t)− at− b|+ |x′(t)− a| → 0 as t→ ∞. (1.4)

A discrete analog of (1.4) may be written in the form

xn = an + b + o(1) and ∆xn = a + o(1). (1.5)

We generalize (1.5) as follows. We say that a sequence x is regularly asymptotically polynomial
if

x ∈ Pol(m) + ∆−ko(1) = {ϕ + u : ϕ ∈ Ker∆m+1, ∆ku = o(1)} (1.6)

for some integers m ≥ −1 and k ∈ [0, m + 1]. By Remark 3.3, the condition (1.6) is equivalent
to

∆px ∈ Pol(m− p) + o(nk−p) for any p ∈ {0, 1, . . . , k}.

When k = m we obtain a special case. By Lemma 3.8 the condition x ∈ Pol(m) + ∆−mo(1) is
equivalent to the convergence of the sequence ∆mxn and to the condition

lim
n→∞

p!∆m−pzn

np = λ (1.7)

for certain fixed real λ and any p ∈ {0, 1, . . . , m}. Convergence of the sequence ∆mxn is
comparatively easy to verify and condition (1.7) appears in many papers, see for example
[9, 14, 25, 30, 42] or the proof of Theorem 3.1 in [41]. Our ‘small difference method’ covers
both the case of usually asymptotically polynomial sequences (1.2) and the case of regularly
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asymptotically polynomial sequences (1.6). Moreover, we extend the method to the case of
‘forced’ equations (see Lemma 3.11).

This paper is a continuation of the papers [25, 28] and [29]. The origin of our studies goes
back to the results of Popenda and Werbowski [34], Hooker and Patula [19], Popenda [35],
Drozdowicz and Popenda [11], Cheng and Patula [6], Popenda and Schmeidel [36] and Li and
Cheng [22]. Our results show certain similarities to the results obtained in continuous case by
Philos, Purnaras and Tsamatos in [33]. See also [2, 8, 17, 18, 21, 40] and papers on asymptoti-
cally linear solutions of second order differential equations: [12, 23, 31, 37]. Our methods also
bear some similarities to the methods used in the studies of asymptotic behavior of solutions to
difference equations of neutral type, see, for example, [15, 20, 24, 26, 27, 41, 43]. Some closely re-
lated results on difference and dynamic equations, including ones on approximative solutions,
can be found in [4, 5], and [38].

The paper is organized as follows. In Section 2 we introduce notation and terminology. In
Sections 3 and 4 we present some preliminary results. Section 3 is devoted to asymptotically
polynomial sequences. We establish some fundamental properties of the spaces of asymptot-
ically polynomial sequences and regularly asymptotically polynomial sequences. At the end
of Section 3 we obtain Lemma 3.11 which is the base of our ‘small difference method’. This
method will be used in the proofs of Theorems 7.4 and 7.5.

In Section 4 we establish some properties of the iterated remainder operator. These results
will be used in the proofs of Theorems 5.1, 5.2, 6.1 and 6.2. Moreover, using the Schauder’s
fixed point theorem we obtain a certain fixed point lemma (Lemma 4.7) which will be used in
the proofs of Theorems 5.1 and 5.2. Using the Knaster–Tarski fixed point theorem we obtain
another fixed point lemma (Lemma 4.9) which will be used in the proofs of Theorems 6.1 and
6.2.

The main results appear in Sections 5, 6 and 7. In Section 5, assuming the function f is
continuous, we establish conditions under which for any y ∈ ∆−mb such that (y ◦ σ)w = O(1)
there exists a solution (or full solution) x of (E) such that x = y + o(ns). In Section 6 we obtain
analogous results under the assumption that the function f is monotonic with respect to the
second variable. In Section 7 we obtain the conditions under which all solutions of (E) are
asymptotically polynomial or ‘translated’ asymptotically polynomial.

2 Notation and terminology

If p, k ∈ Z, p ≤ k, then N(p), N(p, k) denote the sets defined by

N(p) = {p, p + 1, . . . }, N(p, k) = {p, p + 1, . . . , k}.

The space of all sequences x : N → R we denote by SQ. For any x ∈ SQ we denote by x̄ the
sequence defined by

x̄n = f (n, xσ(n)). (2.1)

The Banach space of all bounded sequences x ∈ SQ with the norm

‖x‖ = sup{|xn| : n ∈N}

we denote by BS. If x, y in SQ, then xy denotes the sequence defined by pointwise multiplica-
tion

xy(n) = xnyn.
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Moreover, |x| denotes the sequence defined by |x|(n) = |xn| for every n.

We use the symbols ‘big O’ and ‘small o’ in the usual sense but for a ∈ SQ we also regard o(a)
and O(a) as subspaces of SQ. More precisely, let

o(1) = {x ∈ SQ : x is convergent to zero}, O(1) = {x ∈ SQ : x is bounded}

and for a ∈ SQ let

o(a) = ao(1) = {ax : x ∈ o(1)}, O(a) = aO(1) = {ax : x ∈ O(1)}.

For m ∈N(0) we define

Pol(m− 1) = Ker∆m = {x ∈ SQ : ∆mx = 0}.

Then Pol(m− 1) is the space of all polynomial sequences of degree less than m. Note that

Pol(−1) = Ker∆0 = 0

is the zero space. For a subset X of SQ let

∆mX = {∆mx : x ∈ X}, ∆−mX = {z ∈ SQ : ∆mz ∈ X}

denote respectively the image and the inverse image of X under the map ∆m : SQ→ SQ. If b ∈
SQ, then ∆−m{b}we also denote simply by ∆−mb. Now, we can define spaces of asymptotically
polynomial sequences and regularly asymptotically polynomial sequences

Pol(m− 1) + o(ns), Pol(m− 1) + ∆−ko(1),

where s ∈ (−∞, m− 1] and k ∈N(0, m− 1). Moreover, we will also use the sets of ‘translated’
asymptotically polynomial sequences

∆−mb + o(ns), ∆−mb + ∆−ko(1).

Remark 2.1. Note that if y is an arbitrary element of ∆−mb, then ∆−mb = y + Pol(m− 1) and so

∆−mb + o(ns) = y + Pol(m− 1) + o(ns),

∆−mb + ∆−ko(1) = y + Pol(m− 1) + ∆−ko(1).

Hence ∆−mb + o(ns) and ∆−mb + ∆−ko(1) are affine subsets of the space SQ.

Now we define the spaces S(m) of m-times summable sequences and the remainder opera-
tor. Let

S(0) = o(1), S(1) =
{

x ∈ SQ : the series
∞

∑
n=1

xn is convergent
}

.

For x ∈ S(1), we define the sequence r(x) by the formula

r(x)(n) =
∞

∑
j=n

xj.

Then r(x) ∈ S(0) and we obtain the remainder operator

r : S(1)→ S(0).
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Obviously the operator r is linear. If m ∈ N then, by induction, we define the linear space
S(m + 1) and the operator

rm+1 : S(m + 1)→ S(0)

by
S(m + 1) = {x ∈ S(m) : rm(x) ∈ S(1)}, rm+1(x) = r(rm(x)).

The value rm(x)(n) we denote also by rm
n (x) or simply rm

n x. Note that

rm
n x =

∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

xim

for any x ∈ S(m) and any n ∈N.

A function h : X → Y of a topological space X to metric space Y is called locally bounded if for
any x ∈ X there exists a neighborhood U of x such that h|U is bounded.

Remark 2.2. If X ⊂ R, then every continuous, every monotonic and every bounded function
h : X → R is locally bounded. Moreover, if X is closed, then h is locally bounded if and only if
it is bounded on every bounded subset of X.

For k ∈N(1) we use the factorial notation

n(k) = n(n− 1) . . . (n− k + 1) with n(0) = 1.

We say that the equation (E) is of continuous type if the function f is continuous (we regard
N × R as a metric subspace of the plane R2). If f is monotonic with respect to the second
variable we say that (E) is of monotone type.

3 Asymptotically polynomial sequences

In this section we establish some basic properties of the spaces of asymptotically polynomial
sequences. The main result of this section is Lemma 3.11 which will be used in the proofs of
Theorems 7.4 and 7.5.

Lemma 3.1. Assume m ∈N(0), k ∈N(0, m) and x ∈ SQ. Then

(a) ∆mx ∈ ∆ko(1)⇐⇒ x ∈ Pol(m− 1) + ∆k−mo(1);

(b) x ∈ ∆−mo(1)⇐⇒ ∆px ∈ o(nm−p) for every p ∈N(0, m);

(c) Pol(m− 1) ⊂ ∆−mo(1) ⊂ o(nm).

Proof. (a) If ∆mx = ∆ku, u = o(1), then choosing a sequence w such that ∆m−kw = u we obtain

∆mx = ∆ku = ∆k∆m−kw = ∆mw.

Hence
x− w ∈ Ker∆m = Pol(m− 1) and w ∈ ∆k−mo(1).

Therefore
x = (x− w) + w ∈ Pol(m− 1) + ∆k−mo(1).
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Assume x = u + w, u ∈ Pol(m− 1) and w ∈ ∆k−mo(1). Then

∆mx = ∆mu + ∆mw = ∆mw = ∆k∆m−kw ∈ ∆ko(1).

(b) If x ∈ ∆−mo(1), then ∆mx = o(1) and

∆∆m−1xn

∆n
= ∆mxn = o(1).

By the Stolz–Cesàro theorem ∆m−1xn = o(n). Hence

∆∆m−2xn

∆n2 =
n∆∆m−2xn

n∆n2 =
∆m−1xn

n
n

∆n2 −→ 0.

Again by the Stolz–Cesàro theorem ∆m−2xn = o(n2). Analogously ∆m−3xn = o(n3) and so on.
Inverse implication is obvious.
(c) Obviously Pol(m− 1) ⊂ ∆−mo(1). Taking p = 0 in (b) we obtain ∆−mo(1) ⊂ o(nm).

Remark 3.2. The inclusion
∆−mo(1) ⊂ o(nm)

is proper for any m ∈N(1). For example, if an = (−1)n, then

a ∈ o(nm), ∆man = 2m(−1)m+n /∈ o(1)

and so a /∈ ∆−mo(1).

Remark 3.3. If m ∈N(0) and k ∈N(0, m), then by Lemma 3.1 we have

x ∈ Pol(m) + ∆−ko(1)⇐⇒ ∆px ∈ Pol(m− p) + o(nk−p) for any p ∈N(0, k).

In the next two lemmas we describe elements of the spaces of asymptotically polynomial
sequences and elements of the spaces of regularly asymptotically polynomial sequences.

Lemma 3.4. Assume m ∈N(0), k ∈N(0, m) and x ∈ SQ. Then

x ∈ Pol(m) + o(nk)

if and only if there exist constants cm, . . . , ck and a sequence w ∈ o(nk) such that

xn = cmnm + cm−1nm−1 + · · ·+ cknk + wn.

Moreover, the constants cm, . . . , ck and the sequence w are unique.

Proof. If Pol(m, k) denotes the subspace of Pol(m) generated by sequences

(nm), (nm−1), . . . , (nk),

then
Pol(m) + o(nk) = Pol(m, k) + o(nk) and Pol(m, k) ∩ o(nk) = 0.

Hence
Pol(m) + o(nk) = Pol(m, k)⊕ o(nk)

and we obtain the result.
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Lemma 3.5. Assume m ∈N(0), k ∈N(0, m) and x ∈ SQ. Then

x ∈ Pol(m) + ∆−ko(1)

if and only if there exist constants cm, . . . , ck and a sequence w ∈ o(nk) such that

xn = cmnm + cm−1nm−1 + · · ·+ cknk + wn

and ∆pwn = o(nk−p) for any p ∈N(0, k).

Proof. The result is a consequence of Lemma 3.4 and Lemma 3.1 (b).

Remark 3.6. We can compare the spaces of asymptotically polynomial sequences. Let

P(m, k) = Pol(m) + o(nk) and D(m, k) = Pol(m) + ∆−ko(1).

Then, using Lemma 3.1 and the fact that if s, t ∈ R, then the condition

o(ns) ⊂ o(nt)

is equivalent to the condition s ≤ t, we obtain a diagram

P(m, 0) −−−−→ P(m, 1) −−−−→ P(m, 2) −−−−→ . . . −−−−→ P(m, m) −−−−→ P(m, m + 1)x x x x x
D(m, 0) −−−−→ D(m, 1) −−−−→ D(m, 2) −−−−→ . . . −−−−→ D(m, m) −−−−→ D(m, m + 1)

where arrows denote inclusions. Note that D(m, 0) = Pol(m) + o(1) = P(m, 0),

P(m, k) = o(nk) and D(m, k) = ∆−ko(1) for k > m.

Now, we describe the elements of the space

D(m− 1, k) = Pol(m− 1) + ∆−ko(1)

in a different way than in Lemma 3.5.

Lemma 3.7. Let m ∈N(0), k ∈N(0, m) and z ∈ SQ. The following conditions are equivalent:

(1) z ∈ Pol(m− 1) + ∆−ko(1).

(2) ∆mz ∈ ∆m−ko(1).

(3) ∆kz ∈ Pol(m− k− 1) + o(1).

(4) ∆pz ∈ Pol(m− p− 1) + ∆p−ko(1) for certain p ∈N(0, k).

(5) ∆pz ∈ Pol(m− p− 1) + ∆p−ko(1) for every p ∈N(0, k).

Proof. Implications (1) ⇒ (4), (3) ⇒ (4), (5) ⇒ (1), (5) ⇒ (3) and (5) ⇒ (4) are obvious.
Assume (2) and let p ∈N(0, k). Then

∆m−p∆pz = ∆mz ∈ ∆m−ko(1) and (m− k)− (m− p) = p− k.

Hence, by Lemma 3.1, we have

∆pz ∈ Pol(m− p− 1) + ∆p−ko(1).
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Therefore (2)⇒ (5). Assume

∆pz ∈ Pol(m− p− 1) + ∆p−ko(1) = Pol(m− p− 1) + ∆(m−k)−(m−p)o(1).

Then, by Lemma 3.1, we have
∆m−p∆pz ∈ ∆m−ko(1).

Hence ∆mz ∈ ∆m−ko(1). Therefore (4)⇒ (2) The proof is complete.

In the next lemma we describe the elements of the space

D(m, m) = Pol(m) + ∆−mo(1).

Lemma 3.8. Assume z ∈ SQ and m ∈N(0). The following conditions are equivalent.

(a) ∆m+1z ∈ ∆o(1).

(b) The sequence ∆mz is convergent.

(c) z ∈ Pol(m) + ∆−mo(1).

(d) There exists a constant λ ∈ R such that for any p ∈N(0, m) we have

lim
n→∞

p!∆m−pzn

np = lim
n→∞

p!∆m−pzn

n(p)
= λ.

Proof. Equivalences (a) ⇔ (b) ⇔ (c) easily follow from Lemma 3.7. Taking p = 0 in (d) we
obtain (d)⇒ (b). Note that

lim
n→∞

∆m−pzn

np = lim
n→∞

∆m−pzn

n(p)
lim
n→∞

n(p)

np = lim
n→∞

∆m−pzn

n(p)
.

Assume lim ∆mzn = λ. Then
∆∆m−1zn

∆n
= ∆mzn → λ.

By the Stolz–Cesàro theorem lim n−1∆m−1zn = λ. Hence

∆∆m−2zn

∆n2 =
n∆∆m−2zn

n∆n2 =
∆m−1zn

n
n

∆n2 −→
λ

2
.

By the Stolz–Cesàro theorem lim n−2∆m−2zn = λ/2 = λ/2!. Similarly from the equality

lim
n2

∆n3 =
1
3

we obtain lim n−3∆m−3zn = (λ/2)(1/3) = λ/3! and so on. We obtain the implication (b) ⇒
(d). The proof is complete.

The next two lemmas are used in the proof of Lemma 3.11.

Lemma 3.9. Assume s ∈ (−1, ∞), m ∈N(1) and ∆mxn = o(ns). Then xn = o(ns+m).

Proof. See Lemma 2.1 in [29].
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Lemma 3.10. Assume u is a positive and nondecreasing sequence, m ∈N(1) and

∞

∑
n=1

nm−1un|an| < ∞.

Then there exists a sequence w ∈ o(u−1) such that ∆mw = a.

Proof. See Lemma 2.3 in [29].

The following lemma is a base of our ‘small difference method’ which we use in Section 7.
This lemma extends Theorem 2.1 of [29].

Lemma 3.11. Assume a, b, x ∈ SQ, m ∈ N(1), s ∈ (−∞, m− 1], k ∈ N(0, m− 1), c = |a|+ |b|
and

∆mx ∈ O(a) + b.

Then

(a) if ∑∞
n=1 nm−1−s|an| < ∞, then x ∈ ∆−mb + o(ns),

(b) if ∑∞
n=1 nm−1−s|cn| < ∞, then x ∈ Pol(m− 1) + o(ns),

(c) if ∑∞
n=1 nm−1−k|an| < ∞, then x ∈ ∆−mb + ∆−ko(1),

(d) if ∑∞
n=1 nm−1−k|cn| < ∞, then x ∈ Pol(m− 1) + ∆−ko(1).

Proof. (a) Assume ∑∞
n=1 nm−1−s|an| < ∞. Let s ≤ 0. The condition ∆mx− b ∈ O(a) implies

∞

∑
n=1

nm−1−s|∆mxn − b| < ∞.

Let un = n−s. By Lemma 3.10, there exists a sequence w = o(ns) such that ∆mw = ∆mx − b.
Then ∆m(x− w) = b. Hence x− w ∈ ∆−mb and

x = x− w + w ∈ ∆−mb + o(ns).

Let s ∈ (0, m− 1]. Choose k ∈N(1, m− 1) such that k− 1 < s ≤ k. Then

∞

∑
n=1

nm−k−1nk−s|∆mx− b| < ∞

and by Lemma 3.10 there exists w = o(ns−k) such that ∆m−kw = ∆mx− b. Choose z ∈ SQ such
that ∆kz = w. Since s− k > −1, so by Lemma 3.9 we obtain z = o(ns). Moreover

∆mz = ∆m−k∆kz = ∆m−kw = ∆mx− b and x = x− z + z ∈ ∆−mb + o(ns).

(b) If ∑∞
n=1 nm−1−s(|an|+ |bn|) < ∞, then ∆mx ∈ 0 + O(|a|+ |b|) and by (a) we obtain

x ∈ ∆−m0 + o(ns) = Pol(m− 1) + o(ns).

(c) Assume ∑∞
n=1 nm−1−k|an| < ∞. The condition ∆mx− b ∈ O(a) implies

∞

∑
n=1

nm−k−1|∆mxn − b| < ∞.
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By Lemma 3.10, there exists a sequence w = o(1) such that ∆m−kw = ∆mx− b. Choose z ∈ SQ
such that ∆kz = w. Then z ∈ ∆−ko(1) and

∆mz = ∆m−k∆kz = ∆m−kw = ∆mx− b. So x = x− z + z ∈ ∆−mb + ∆−ko(1).

(d) If ∑∞
n=1 nm−1−k(|an|+ |bn|) < ∞, then ∆mx ∈ 0 + O(|a|+ |b|) and by (c) we obtain

x ∈ ∆−m0 + ∆−ko(1) = Pol(m− 1) + ∆−ko(1).

The proof is complete.

4 The iterated remainder operator and fixed point lemmas

In the first three lemmas we present some basic properties of the iterated remainder operator.
Next we obtain some fixed point lemmas (Lemma 4.7 and Lemma 4.9). These lemmas will be
used in Sections 5 and 6.

Lemma 4.1. Assume x, y ∈ SQ, m ∈N(1) and p ∈N(0). Then

(a) if |x| ∈ S(m), then x ∈ S(m) and |rmx| ≤ rm|x|,

(b) |x| ∈ S(m) if and only if ∑∞
n=1 nm−1|xn| < ∞,

(c) if |x| ∈ S(m), then rm
k |x| ≤ ∑∞

n=k nm−1|xn| for any k ∈N(1),

(d) if x ∈ S(m), then ∆mrmx = (−1)mx,

(e) if x = o(1), then ∆mx ∈ S(m) and rm∆mx = (−1)mx,

( f ) ∆m(S(0)) = S(m), rm(S(m)) = S(0),

(g) ∆p(S(m)) = S(m + p), rp(S(m + p)) = S(m),

(h) if x, y ∈ S(m) and xn ≤ yn for n ≥ p, then rm
n x ≤ rm

n y for n ≥ p,

(i) if x ∈ S(m) and yn = xn for n ≥ p, then y ∈ S(m) and rm
n y = rm

n x for n ≥ p.

Proof. The assertion (a) is proved in Lemma 1 of [28] and (b) is proved in Lemma 3 of [28]. The
assertion (c) follows from Lemma 2 of [28] and from the proof of Lemma 3 in [28], while (d) is
proved in Lemma 5 of [28]. The assertion (e) follows from Lemma 6 of [28], while (f) is an easy
consequence of (e) and (d). The assertion (g) is a consequence of (f) and (e). The assertion (h) is
obvious for m = 1. For m > 1 it can be easily proved by induction. The assertion (i) is an easy
consequence of (h).

Lemma 4.2. Assume x ∈ SQ, m ∈N(1), s ∈ (−∞, 0] and

∞

∑
n=1

nm−1−s|xn| < ∞. (4.1)

Then x ∈ S(m), rmx = o(ns) and

rm
n x =

∞

∑
i1=n

∞

∑
i2=i1

. . .
∞

∑
im=im−1

xim =
∞

∑
k=0

(
m + k− 1

m− 1

)
xn+k. (4.2)

Moreover, if k ∈N(0, m), then ∆krmx = o(ns−k).
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Proof. Let un = n−s. Then by Lemma 3.10 there exists a sequence w = o(ns) such that ∆mw = x.
By Lemma 4.1 (f) we obtain

x = ∆mw ∈ ∆mo(ns) ⊂ ∆mo(1) = S(m).

By Lemma 4.1 (e) we obtain rmx = rm∆mw = (−1)mw ∈ o(ns). The assertion (4.2) follows from
Lemma 2 of [28]. Let k ∈N(0, m). Then m− 1− s = m− k− 1− (s− k) and

∞

∑
n=1

n(m−k)−1−(s−k)|xn| < ∞.

Hence, by the first part of the proof we obtain rm−kx = o(ns−k). On the other hand

∆krmx = ∆krkrm−kx = (−1)krm−kx.

Hence ∆krmx = o(ns−k).

Remark 4.3. In general the condition z ∈ o(ns) does not imply the condition ∆mz ∈ o(ns−m).

Example 4.4. Let t, s ∈ R, t < s, m ∈N, m > s− t and zn = (−1)nnt. Then

|∆mzn| =
∣∣∣∣∣ m

∑
k=0

(−1)m+k
(

m
k

)
zn+k

∣∣∣∣∣ =
∣∣∣∣∣ m

∑
k=0

(−1)m+k
(

m
k

)
(−1)n+k(n + k)t

∣∣∣∣∣
=

∣∣∣∣∣(−1)m+n
m

∑
k=0

(
m
k

)
(n + k)t

∣∣∣∣∣ ≥ nt

and we obtain
|∆mzn|
ns−m =

|∆mzn|
nt+s−t−m = nm−s+t |∆mzn|

nt ≥ nm−s+t → ∞.

Hence
z ∈ o(ns) and ∆mz /∈ o(ns−m).

Lemma 4.5. Assume m ∈N(1), ρ ∈ SQ, |ρ| ∈ S(m) and

S = {x ∈ SQ : |x| ≤ |ρ|}.

Then S ⊂ S(m) and the map rm|S is continuous.

Proof. By Lemma 4.1 (b) we have ∑∞
n=1 nm−1|ρn| < ∞ and S ⊂ S(m). Let ε > 0. Choose p ∈ N

and δ > 0 such that
∞

∑
n=p

nm−1|ρn| < ε and δ
p

∑
n=1

nm−1 < ε.

Let x, y ∈ S, ‖x− y‖ < δ. Then

‖rmx− rmy‖ = ‖rm(x− y)‖ = sup
n
|rm

n (x− y)| ≤ sup
n

rm
n |x− y|

= rm
1 |x− y| ≤

∞

∑
n=1

nm−1|xn − yn| ≤
p

∑
n=1

nm−1|xn − yn|+
∞

∑
n=p

nm−1|xn − yn|

≤ δ
p

∑
n=1

nm−1 +
∞

∑
n=p

nm−1(|ρn|+ |ρn|) < 3ε.
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Remark 4.6. The operator rm : S(m)→ S(0) is discontinuous for any m ∈N(1). For example if

uk ∈ SQ, uk(n) =

{
1 for n ≤ k

0 for n > k,

then uk ∈ S(m), ‖uk‖ = 1 and ‖rm(uk)‖ ≥ ‖r(uk)‖ = k. Hence rm is a linear unbounded
operator. Therefore it is discontinuous.

Lemma 4.7 (Schauder’s fixed point lemma). Assume y, ρ ∈ SQ, ρ ≥ 0, and lim ρn = 0. In the set

S = {x ∈ SQ : |x− y| ≤ ρ}

we define the metric by the formula d(x, z) = supn∈N |xn − zn|. Then every continuous map

H : S→ S

has a fixed point.

Proof. Assume H : S → S is continuous and let T = {x ∈ BS : |x| ≤ ρ}. Obviously T is a
convex and closed subset of BS. Choose an ε > 0. Then there exists p ∈ N(1) such that ρn ≤ ε

for any n ≥ p. For n = 1, . . . , p let Gn denote a finite ε-net for the interval [−ρn, ρn] and let

G = {x ∈ T : xn ∈ Gn for n ≤ p and xn = 0 for n > p}.

Then G is a finite ε-net for T. Hence T is a complete and totally bounded metric space and so,
T is compact. Hence T is a convex and compact subset of the Banach space BS. Let F : T → S
be a map given by F(x)(n) = xn + yn. Then F is an isometry of T onto S. Let B : T → T,
B = F−1 ◦ H ◦ F. Then B is continuous. By Schauder’s fixed point theorem there exists u ∈ T
such that B(u) = u. Let x = F(u). Then

x = F(u) = F(B(u)) = F(F−1HF(u)) = HF(u) = H(x).

The proof is complete.

The following lemma is a version of the Knaster–Tarski fixed point theorem. This theorem
may be found in [1] or in [16] but we use a simpler version. For the convenience of the reader
we cite the proof from [3].

Lemma 4.8 (Knaster–Tarski). If X is a complete partially ordered set and a map T : X → X is nonde-
creasing then there exists x0 ∈ X such that T(x0) = x0.

Proof. Let Z = {z ∈ X : z ≤ T(z)}, x0 = sup Z. If z ∈ Z then

z ≤ x0 =⇒ T(z) ≤ T(x0) =⇒ z ≤ T(z) ≤ T(x0).

Hence z ≤ T(x0) for every z ∈ Z. Therefore x0 = sup Z ≤ T(x0). Thus x0 ∈ Z. Moreover
x0 ≤ T(x0) implies T(x0) ≤ T(T(x0)). Hence T(x0) ∈ Z. Therefore T(x0) ≤ sup Z = x0. It
follows that T(x0) = x0.

Lemma 4.9 (Knaster–Tarski fixed point lemma). Let y, ρ ∈ SQ and let S denote the set {x ∈ SQ :
|x − y| ≤ ρ} with natural order defined by: x ≤ z if xn ≤ zn for any n ∈ N(1). Then every
nondecreasing map T : S→ S has a fixed point.

Proof. By Lemma 4.8 it follows that it is sufficient to show that the set S is complete; i.e. for
every B ⊂ S there exists a sup B ∈ S. Let B ⊂ S. For n ∈ N let Bn = {xn : x ∈ B}. Then Bn is a
subset of the complete partially ordered set

Yn = [yn − ρn, yn + ρn] ⊂ R.

Let sn = sup Bn in Yn. We obtain a sequence s ∈ S. Obviously s = sup B.



14 J. Migda

5 Approximative solutions of continuous type equations

In this section, in Theorem 5.1, assuming the function f is continuous, we establish conditions
under which for any y ∈ ∆−mb such that (y ◦ σ)w = O(1) there exists a solution x of (E) such
that x = y + o(ns). In Theorem 5.2 we obtain an analogous result with a full solution x.

In this section we will use the following condition

(A) f is continuous, g is locally bounded,

s ∈ (−∞, 0],
∞

∑
n=1

nm−1−s|an| < ∞ and w = O(1).

Theorem 5.1. Assume (A), y ∈ SQ, ∆my = b and

(y ◦ σ)w = O(1). (5.1)

Then there exists a solution x of (E) such that x = y + o(ns) and moreover,

∆kx = ∆ky + o(ns−k)

for any k ∈N(0, m).

Proof. Recall that for x ∈ SQ we denote by x̄ the sequence defined by

x̄n = f (n, xσ(n)).

Let
T = {x ∈ SQ : |x− y| ≤ 1}.

By (A) and (5.1), there exists a constant K such that if x ∈ T and n ∈N, then

|wnxσ(n)| = |wnxσ(n) − wnyσ(n) + wnyσ(n)|
≤ |wn||xσ(n) − yσ(n)|+ |wnyσ(n)| ≤ K.

By (A) there exists M > 0 such that g([0, K]) ⊂ [0, M]. Therefore, using (G) we have

g(|wnxσ(n)|) ≤ M and |x̄n| ≤ g(|xσ(n)wn|) ≤ M (5.2)

for x ∈ T and n ∈N. There exists p ≥ 1 such that Mrm
n |a| ≤ 1 for n ≥ p. Let

µ(n) = 0 for n < p, µ(n) = 1 for n ≥ p, ρ = µMrm|a|.

Let S ⊂ SQ and A : S→ SQ be defined by

S = {x ∈ SQ : |x− y| ≤ ρ}, A(x) = y + (−1)mµrm(ax̄).

Then S ⊂ T. If x ∈ S, then, using Lemma 4.1 (a) and (h), we get

|Ax− y| = |µrm(ax̄)| ≤ µrm|ax̄| ≤ ρ.

Hence A(S) ⊂ S. Choose ε > 0. There exist q ≥ p and α > 0 such that

2M
∞

∑
n=q

nm−1|an| < ε and αqm−1
q

∑
n=1
|an| < ε. (5.3)
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Let

L = max{|yσ(n) − yn| : n ∈N(1, q)}, W = {(n, t) ∈ R2 : n ∈N(1, q), |t− yn| ≤ L + 1}.

By compactness of W, the function f is uniformly continuous on W. Hence, there exists δ > 0
such that if (n, s), (n, t) ∈ W and |s − t| < δ, then | f (n, s) − f (n, t)| < α. Assume x, z ∈ S,
|x− z| < δ, and u = x̄− z̄. Then |Ax− Az| = |µrm(au)|. Using Lemma 4.1 (a) and (c) we get

d(Ax, Az) = sup
n∈N

|Axn − Azn| = sup
n∈N

|rm
n (au)| ≤ sup

n∈N

rm
n |au| ≤

∞

∑
n=1

nm−1|anun|.

Hence

d(Ax, Az) ≤
q

∑
n=1

nm−1|anun|+
∞

∑
n=q

nm−1|anun|. (5.4)

By (5.2), |u| ≤ 2M. If n ∈N(1, q), then

|xσ(n) − yn| ≤ |xσ(n) − yσ(n)|+ |yσ(n) − yn| ≤ ρ(n) + L ≤ L + 1.

Hence (n, xσ(n)) ∈ W. Analogously (n, zσ(n)) ∈ W and |un| ≤ α for n ≤ q. By (5.3) and (5.4) we
get

d(Ax, Az) ≤ αqm−1
q

∑
n=1
|an|+ 2M

∞

∑
n=q

nm−1|an| < ε + ε.

Thus the map A is continuous and, by Lemma 4.7, there exists a sequence x ∈ S such that
Ax = x. Then

xn = yn + (−1)mrm
n (an f (n, xσ(n))) for n ≥ p

and, by Lemma 4.1 (d), ∆mxn = an f (n, xσ(n)) + bn for n ≥ p. Now, the assertion follows from
Lemma 4.2.

Theorem 5.2. Assume (A), the function g is bounded, y ∈ SQ, ∆my = b and

w(y ◦ σ) = O(1).

Then there exists a full solution x of (E) such that

∆kx = ∆ky + o(ns−k)

for any k ∈N(0, m).

Proof. By (2.1) and (G), there exists a constant M such that |x̄| ≤ M for every x ∈ SQ. Let
ρ = rm(|a|M + |b|),

S = {x ∈ SQ : |x− y| ≤ ρ}, A(x) = y + (−1)mrm(ax̄ + b).

Similarly as in the proof of Theorem 5.1 it can be shown that there exists a sequence x ∈ S such
that Ax = x. Then

x = y + (−1)mrm(ax̄).

Hence
∆mxn = an f (n, xσ(n)) + bn for any n.

This means that x is a full solution of (E). Moreover, by Lemma 4.2, we have ∆kx = ∆ky +

o(ns−k) for any k ∈N(0, m).
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Corollary 5.3. Assume (A), ϕ ∈ Pol(m− 1), w(ϕ ◦ σ) = O(1) and

∞

∑
n=1

nm−1−s|bn| < ∞.

Then there exists a solution x of (E) such that

∆kx = ∆k ϕ + o(ns−k) for k ∈N(0, m).

Moreover, if g is bounded, then we may assume x is full.

Proof. By Lemma 4.2, b ∈ S(m) and rmb = o(ns). Let u = (−1)mrmb and y = ϕ + u. Then

∆my = ∆m ϕ + ∆mu = ∆mu = b.

Let k ∈ N(0, m). By Lemma 4.2 we have ∆ku = o(ns−k) and by Theorem 5.1 there exists a
solution x of (E) such that

∆kx = ∆ky + o(ns−k) = ∆k ϕ + ∆ku + o(ns−k)

= ∆k ϕ + o(ns−k) + o(ns−k) = ∆k ϕ + o(ns−k).

If g is bounded, then by Theorem 5.2, we can assume x is full.

Remark 5.4. Note that if wn = n−k for certain k ∈ N(0), then the condition w(y ◦ σ) = O(1)
takes the form y ◦ σ = O(nk). Corollary 5.3, in the case wn = n−k generalizes Theorem 3.1 of
[29].

Example 5.5. Let f (n, t) = t2/n2, g(t) = t2, wn = 1/n, an = 1/n3, bn = 0, α > 0, ϕ(n) = αn
and σ(n) = n. Consider the equation

∆2xn = an f (n, xn) + bn =
x2

n
n5 (E1)

Then | f (n, t)| = (t/n)2 = g(|twn|) and by Corollary 5.3, the sequence ϕ is asymptotically
equivalent to a certain solution x of the equation (E1) (i.e., x− ϕ = o(1)).
Suppose now that p ∈ N, ∆2xn = x2

n/n5 for n ≥ p and there exists a sequence u = o(1) such
that x = ϕ + u. Then

∆2u = ∆2u + ∆2ϕ = ∆2(u + ϕ) = ∆2x ≥ 0 for n ≥ p.

Hence ∆un is convergent to zero and nondecreasing for n ≥ p. Therefore ∆un ≤ 0 for n ≥ p.
Hence the sequence un is convergent to zero and nonincreasing for n ≥ p. Therefore un ≥ 0 for
n ≥ p. Moreover,

un+2 − 2un+1 + un = ∆2un = ∆2xn =
x2

n
n5 =

α2n2 + 2αnun + u2
n

n5

for n ≥ p. Hence for n ≥ p we obtain

un+2 − un+1 = un+1 − un +
α2

n3 +
2αun

n4 +
u2

n
n5 ≥

(
1
n5 u2

n − un

)
+

α2

n3 .

Since λt2 − t ≥ −1/4λ for every t ∈ R, we obtain

0 ≥ ∆un+1 = un+2 − un+1 ≥
α2

n3 −
n5

4
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for n ≥ p. If 2α > p4 then 4α2 > p8. Hence α2/p3 − p5/4 > 0 and we obtain 0 ≥ ∆up+1 > 0
which is impossible. Hence if 2α > p4 then the sequence ϕ(n) = αn is not asymptotically
equivalent to any sequence (xn) fulfilling the equation (E1) for every n ≥ p. In particular if
α > 1/2 then the sequence ϕ(n) = αn is not asymptotically equivalent to any full solution of
(E1).

6 Approximative solutions of monotone type equations

In this section we obtain results analogous to that obtained in Section 5. We replace the conti-
nuity of f by monotonicity of f with respect to second variable.

We will use the following conditions

(B) g is locally bounded,

w = O(1), s ∈ (−∞, 0],
∞

∑
n=1

nm−1−s|an| < ∞

and one of the following conditions is satisfied:

(a) f is nondecreasing with respect to the second variable and (−1)man ≥ 0
for all large n,

(b) f is nonincreasing with respect to the second variable and (−1)man ≤ 0
for all large n.

(C) one of the following conditions is satisfied:

(c) f is nondecreasing with respect to the second variable and (−1)man ≥ 0
for all n,

(d) f is nonincreasing with respect to the second variable and (−1)man ≤ 0
for all n.

Theorem 6.1. Assume (B), y ∈ SQ, ∆my = b and

w(y ◦ σ) = O(1).

Then there exists a solution x of (E) such that

∆kx = ∆ky + o(ns−k)

for any k ∈N(0, m).

Proof. Assume that the condition (a) is fulfilled. The proof in the case (b) is analogous. We
define the sets T, S, the index p and the operator A as in the proof of Theorem 5.1. We may
assume (−1)man ≥ 0 for n ≥ p. Similarly as in the proof of Theorem 5.1 it can be shown that
A(S) ⊂ S. Assume x, z ∈ S and x ≤ z. Then

(−1)man f (n, xσ(n)) + bn ≤ (−1)man f (n, zσ(n)) + bn

for n ≥ p. Since the operator rm is nondecreasing, A(x) ≤ A(z). By Lemma 4.9, there exists
x ∈ S such that A(x) = x. The rest of the proof is analogous to the proof of the Theorem 5.1.
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Theorem 6.2. Assume (B), (C), the function g is bounded, y ∈ SQ, ∆my = b and

w(y ◦ σ) = O(1).

Then there exists a full solution x of (E) such that

∆kx = ∆ky + o(ns−k)

for any k ∈N(0, m).

Proof. There exists a constant M such that |x̄| ≤ M for any x ∈ SQ. Let

ρ = rm(|a|M + |b|), S = {x ∈ SQ : |x− y| ≤ ρ}, A(x) = y + (−1)mrm(ax̄).

Similarly as in the proof of Theorem 5.2 it can be shown that there exists a sequence x ∈ S such
that A(x) = x. Then

x = y + (−1)mrm(ax̄).

Hence
∆mxn = an f (n, xσ(n)) + bn for any n.

Now, the assertion follows from Lemma 4.2.

Corollary 6.3. Assume (B), ϕ ∈ Pol(m− 1), w(ϕ ◦ σ) = O(1) and
∞

∑
n=1

nm−1−s|bn| < ∞.

Then there exists a solution x of (E) such that

∆kx = ∆k ϕ + o(ns−k) for k ∈N(0, m).

Moreover, if g is bounded and condition (C) is satisfied, then we may assume x is full.

Proof. See the proof of Corollary 5.3.

7 Approximations of solutions

In this section we obtain the conditions under which all solutions of (E) are asymptotically
polynomial or ‘translated’ asymptotically polynomial. In Theorem 7.4 we use a certain discrete
version of the Bihari lemma and the ‘small difference method’ (Lemma 3.11). In Theorem 7.5
we use the ‘small difference method’ directly. Next, as a consequence of Theorem 7.5, we
establish conditions under which all bounded solutions of (E) are convergent (or asymptotically
periodic). We obtain also conditions under which all solutions of (E) are unbounded.

The first three lemmas are used in the proof of Theorem 7.4. In Lemma 7.1 we extend the
discrete version of the Bihari lemma obtained by Demidovič in Theorem 1 of [7]. Note that we
do not assume continuity of g. Lemma 7.2 is a consequence of Lemma 7.1.

Lemma 7.1. Assume a, u are nonnegative sequences, b, c ∈ R, p, m ∈ N, 0 ≤ b < c, p ≤ m,
g : [0, ∞)→ [0, ∞) is nondecreasing, g(b) > 0,

m−1

∑
k=p

ak ≤
c∫

b

dt
g(t)

and un ≤ b +
n−1

∑
k=p

akg(uk) for n = p, . . . , m.

Then un ≤ c for n = p, . . . , m.
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Proof. For n ∈N(p, m) let

sn = b +
n−1

∑
k=p

akg(uk).

Then

∆sn = sn+1 − sn = ang(un) ≤ ang(sn),
∆sn

g(sn)
≤ an for n ∈N(p, m− 1).

Since

g(sk) ≤ g(s),
1

g(t)
≤ 1

g(sk)
for t ∈ [sk, sk+1],

we obtain
sk+1∫
sk

dt
g(t)

≤
sk+1∫
sk

dt
g(sk)

=
∆sk

g(sk)
≤ ak.

Hence
sn∫

b

dt
g(t)

=
n−1

∑
k=p

sk+1∫
sk

dt
g(t)

≤
m−1

∑
k=p

ak ≤
c∫

b

dt
g(t)

.

Since the function g is strictly positive on [b, ∞), we obtain sn ≤ c. Hence un ≤ sn ≤ c.

Lemma 7.2. Assume a, u are nonnegative sequences, p ∈ N, λ, µ > 0, and b ≥ 0. Let g : [0, ∞) →
[0, ∞) be nondecreasing, g(b) > 0,

∞

∑
k=0

ak < ∞,
∞∫

b

dt
g(t)

= ∞, and un ≤ b + λ
n−1

∑
k=p

akg(µuk) for n ≥ p.

Then the sequence u is bounded.

Proof. For n ≥ p we have

µun ≤ µb +
n−1

∑
k=p

λµakg(µuk).

Obviously

g(µb) > 0,
∞

∑
k=0

λµak < ∞ and
∫ ∞

µb
dt/g(t) = ∞.

There exists c > µb such that
∞

∑
k=p

λµak <

c∫
µb

dt
g(t)

.

Hence, by Lemma 7.1, we obtain µun ≤ c for n ≥ p.

Lemma 7.3. If x is a sequence of real numbers, m ∈ N(1) and p ∈ N(m) then there exists a positive
constant L = L(x, p, m) such that

|xn| ≤ n(m−1)

(
L +

n−1

∑
i=p
|∆mxi|

)
for n ≥ p.
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Proof. Induction over m. If m = 1, then

xn = xp +
n−1

∑
i=p

∆xi, |xn| ≤ |xp|+
n−1

∑
i=p
|∆xi|.

Assume the assertion is true for certain m ≥ 1. Then

|∆xn| ≤ n(m−1)

(
L +

n−1

∑
i=p
|∆m+1xi|

)
for n ≥ p.

Hence for n ≥ p we obtain

|xn| ≤ |xp|+
n−1

∑
i=p
|∆xi| ≤ |xp|+

n−1

∑
i=p

i(m−1)

(
L +

i−1

∑
j=p
|∆m+1xj|

)

≤ |xp|+ (n− 1)(m−1)
n−1

∑
i=p

(
L +

n−1

∑
j=p
|∆m+1xj|

)

≤ n(m)|xp|+ (n− 1)(m−1)n

(
L +

n−1

∑
j=p
|∆m+1xj|

)
= n(m)

(
|xp|+ L +

n−1

∑
j=p
|∆m+1xj|

)
.

Theorem 7.4. Assume s ∈ (−∞, m − 1], w = O(n1−m), g is nondecreasing, g(t) > 0 for t > 1,
σ(n) ≤ n,

∞

∑
n=0

nm−1−s|an| < ∞,
∞

∑
n=0

nm−1−s|bn| < ∞,
∫ ∞

1

dt
g(t)

= ∞

and x is a solution of (E). Then

∆mx = O(|a|+ |b|) and x ∈ Pol(m− 1) + o(ns).

Moreover, if s = k ∈N(0, m− 1), then

x ∈ Pol(m− 1) + ∆−ko(1).

Proof. Choose M > 0 such that |wn|nm−1 ≤ M. Then |wn|n(m−1) ≤ M. By assumption

|∆mxn| = |an f (n, xσ(n)) + bn| ≤ |an|| f (n, xσ(n))|+ |bn| ≤ |an||g(|wnxσ(n)|)|+ |bn|.

By Lemma 7.3, there exists a positive constant L such that

|xσ(n)| ≤ σ(n)(m−1)

(
L +

σ(n)−1

∑
i=p
|∆mxi|

)
≤ n(m−1)

(
L +

n−1

∑
i=p
|∆mxi|

)
.

Hence

|wnxσ(n)| ≤ ML + M
n−1

∑
j=1
|∆mxj|.

Then

|wnxσ(n)| ≤ ML + M
n−1

∑
j=1
|aj|g(|wjxσ(j)|) + M

n−1

∑
j=1
|bj| ≤ K + M

n−1

∑
j=1
|aj|g(|wjxσ(j)|).
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Obviously
∫ ∞

K g(t)−1 dt = ∞. By Lemma 7.2, the sequence (wnxσ(n)) is bounded. Choose Q > 0

such that |wnxσ(n)| ≤ Q for every n. Choose P ≥ 1 such that g(Q) ≤ P. Then g(|wnxσ(n)|) ≤ P

for every n. Hence

|∆mxn| ≤ |an|g(|wnxσ(n)|) + |bn| ≤ P|an|+ |bn| ≤ P(|an|+ |bn|).

Therefore ∆mx = O(|a|+ |b|). Now the conclusion follows from Lemma 3.11.

Theorem 7.4 extends Theorem 4.1 of [29].

Theorem 7.5. Assume x is a solution of (E),

s ∈ (−∞, m− 1], k ∈N(0, m− 1), c = |a|+ |b|, p ∈N(1), X ⊂ R

and one of the following conditions is satisfied:

(1) the sequence x̄n = f (n, xσ(n)) is bounded,

(2) f is bounded on N(p)× X and xσ(n) ∈ X for large n,

(3) f is bounded on N(p)× X and xn ∈ X for large n,

(4) f is bounded,

(5) g is locally bounded and the sequence (x ◦ σ)w is bounded.

Then

(a) if ∑∞
n=1 nm−1−s|an| < ∞, then x ∈ ∆−mb + o(ns),

(b) if ∑∞
n=1 nm−1−s|cn| < ∞, then x ∈ Pol(m− 1) + o(ns),

(c) if ∑∞
n=1 nm−1−k|an| < ∞, then x ∈ ∆−mb + ∆−ko(1),

(d) if ∑∞
n=1 nm−1−k|cn| < ∞, then x ∈ Pol(m− 1) + ∆−ko(1).

Proof. Obviously (4) ⇒ (3) ⇒ (2) ⇒ (1). Assume (5). Then the sequence zn = g(|wnxσ(n)|) is
bounded and

|x̄n| = | f (n, xσ(n))| ≤ g(|wnxσ(n)|).

Hence (5)⇒ (1). If the sequence x̄ is bounded, then by the equality ∆mxn = an x̄n + bn for large
n we obtain ∆mx = O(a) + b. Hence the assertion follows from Lemma 3.11.

Corollary 7.6. Assume w = O(1), s ∈ (−∞, 0],

∞

∑
n=1

nm−1−s|an| < ∞,
∞

∑
n=1

nm−1−s|bn| < ∞

and g is locally bounded. Then every bounded solution of (E) is convergent. More precisely, for every
bounded solution x of (E) there exists a constant λ such that x = λ + o(ns).

Proof. Let x be a bounded solution of (E). By Theorem 7.5, x ∈ Pol(m − 1) + o(ns). Hence
x = ϕ + o(ns) for certain ϕ ∈ Pol(m − 1). Moreover, ϕ = x − o(ns) is bounded. Therefore
ϕ = λ for certain λ ∈ R.
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Lemma 7.7. Assume m, q ∈N(1), b ∈ SQ is q-periodic and

b1 + b2 + · · ·+ bq = 0.

Then there exists a q-periodic sequence y ∈ SQ such that ∆my = b.

Proof. If c ∈ SQ is defined by

c1 = 0 and cn = b1 + · · ·+ bn−1 for n > 1,

then c is q-periodic and ∆c = b. Let

α =
c1 + · · ·+ cq

q

and let d ∈ SQ be defined by dn = cn − α. Then d is q-periodic, ∆d = b and moreover

d1 + d2 + · · ·+ dq = c1 − α + c2 − α + · · ·+ cq − α = c1 + · · ·+ cq − qα = 0.

Analogously there exists a q-periodic sequence h such that

∆h = d and h1 + · · ·+ hq = 0.

Then ∆2h = ∆∆h = ∆d = b and so on. After m steps we obtain the required sequence y.

Corollary 7.8. Assume w = O(1), s ∈ (−∞, 0], q ∈N(1), b is q-periodic,

∞

∑
n=1

nm−1−s|an| < ∞, b1 + · · ·+ bq = 0

and g is locally bounded. Then every bounded solution of (E) is asymptotically q-periodic. More pre-
cisely, for every bounded solution x of (E) there exists a q-periodic sequence u such that

x = u + o(ns).

Proof. Assume x is a bounded solution of (E). By Theorem 7.5, x ∈ ∆−mb+o(ns). By Lemma 7.7
there exists a q-periodic sequence y such that ∆my = b. By Remark 2.1 there exists a polynomial
ϕ ∈ Pol(m− 1) such that x = y + ϕ + o(ns). Since ϕ = x− y− o(ns) is bounded, there exists a
constant λ such that ϕ = λ. Let u = y + λ. Then u is q-periodic and x = u + o(ns).

Corollary 7.9. Assume w = O(1), s ∈ (−∞, m− 1], q ∈N(1), b is q-periodic,

∞

∑
n=1

nm−1−s|an| < ∞, b1 + · · ·+ bq 6= 0

and g is locally bounded. Then every solution of (E) is unbounded. More precisely, if x is a solution of
(E) and

λ =
b1 + · · ·+ bq

qm!
,

then xn = λnm + O(nm−1).
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Proof. Let µ = m!λ and d = b − µ. Then d is q-periodic and d1 + · · · + dq = 0. Hence, by
Lemma 7.7, there exists a q-periodic sequence u such that ∆mu = d. Moreover, ∆m(λnm) = µ.
Let yn = λnm + un. Then ∆my = b. Hence, by Theorem 7.5 and Remark 2.1, we have

x ∈ ∆−mb + o(ns) = y + Pol(m− 1) + o(ns).

Therefore xn = λnm + O(nm−1).

Corollary 7.10. Assume w = O(1), s ∈ (−∞, 0], u, z ∈ SQ, u = O(1), z = o(ns),

b = ∆m(u + z),
∞

∑
n=1

nm−1−s|an| < ∞

and g is locally bounded. Then for every bounded solution x of (E) there exists a constant λ ∈ R such
that x = λ + u + o(ns).

Proof. Assume x is a bounded solution of (E). By Theorem 7.5, x ∈ ∆−mb + o(ns). By Remark
2.1 there exists a polynomial ϕ ∈ Pol(m− 1) such that x = u + z + ϕ + o(ns). Hence

x = u + ϕ + o(ns) + o(ns) = u + ϕ + o(ns).

Since ϕ = x− u− o(ns) is bounded, there exists a constant λ such that ϕ = λ.

Corollary 7.11. Assume w = O(1), s ∈ (−∞, m− 1], d ∈ ∆mo(nm), µ ∈ R, µ 6= 0,

∞

∑
n=1

nm−1−s|an| < ∞, b = d− µ

and g is locally bounded. Then every solution of (E) is unbounded. More precisely, if x is a solution of
(E) and λ = µ/m! then xn = λnm + o(nm).

Proof. Choose u = o(nm) such that ∆mu = d. Let y = λnm + u. Then ∆my = µ + b− µ = b.
Hence by Theorem 7.5 and Remark 2.1 we have

x ∈ ∆−mb + o(ns) = y + Pol(m− 1) + o(ns) = λnm + o(nm).
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