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SOLUTION TO A TRANSMISSION PROBLEM FOR

QUASILINEAR PSEUDOPARABOLIC EQUATIONS BY

THE ROTHE METHOD

ABDELFATAH BOUZIANI AND NABIL MERAZGA

Abstract. In this paper, we deal with a transmission problem
for a class of quasilinear pseudoparabolic equations. Existence,
uniqueness and continuous dependence of the solution upon the
data are obtained via the Rothe method. Moreover, the conver-
gence of the method and an error estimate of the approximations
are established.

1. Introduction

Let Ω be a bounded open domain in the space R
N of points x =

(x1, ..., xN ) with the Lipschitz boundary ∂Ω, such that ∂Ω = Γ
0 ∪ Γ

1
,

where Γ0 and Γ1 are open complementary parts, each consisting of an
integer number of parts. Assume that Ω consists of M subdomains Ωk,
1 ≤ k ≤ M, (see fig.1 ), with respective boundaries ∂Ωk.
We first introduce some notations. Let

N (Γµ) = {k, 1 ≤ k ≤ M/measN−1 (Γµ ∩ ∂Ωk) > 0} ,

Γµ
k =

{

Γµ ∩ ∂Ωk, k ∈ N (Γµ) ,
φ, k /∈ N (Γµ) ,

for µ = 0, 1. Moreover, let for k = 1, ..., M,

Nk = {`, 1 ≤ ` ≤ M/ measN−1 (∂Ωk ∩ ∂Ω`) > 0}

Γk,` =

{

∂Ωk ∩ ∂Ω`, ` ∈ Nk,
φ, ` /∈ Nk.
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fig. 1

For instance, in the situation illustrated by fig. 1, we have

N2 = {1, 2, 3}
and then:

Γ2,1 = ∂Ω2 ∩ ∂Ω1,

Γ2,2 = ∂Ω2,

Γ2,3 = ∂Ω2 ∩ ∂Ω3,

Γ2,` = φ, ∀` = 4, ..., M.

One should note that ` ∈ Nk iff k ∈ N` and hence
Γk,` = Γ`,k, 1 ≤ k, ` ≤ M.

Then we consider the following problem:
Determine uk = uk(x, t) (k = 1, ..., M) , x ∈ Ωk, t ∈ I = (0, T ] ,

which obey the respective quasilinear third order pseudoparabolic equa-
tions

∂uk

∂t
+ Auk + αA

∂uk

∂t
+ ak

0(x)uk + αak
0(x)

∂uk

∂t

= fk(x, t, uk,∇uk) , in Ωk × I, (k = 1, ..., M) ,

where

Auk = −
N

∑

p,q=1

∂

∂xp

(

ak
pq(x)

∂uk

∂xq

)

,

along with the initial conditions

uk(x, 0) = uk
0(x), x ∈ Ωk, (k = 1, ..., M) , (1.1)
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together with the Dirichlet and Neumann boundary conditions

uk = 0, on Γ0
k × I (k = 1, ..., M) ,

∂uk

∂ϑA

= 0, on Γ1
k × I (k = 1, ..., M) ,

(1.2)

as well as with transmission conditions

uk = u`, on Γk,` × I, ∀` ∈ Nk (k = 1, ..., M) ,
(

∂uk

∂ϑA

+ α
∂2uk

∂t∂ϑA

)

+

(

∂u`

∂ϑA

+ α
∂2u`

∂t∂ϑA

)

= 0,

on Γk,` × I, ∀` ∈ Nk (k = 1, ..., M) ,

(1.3)

where ∂uk

∂ϑA
is the conormal derivative defined by:

∂uk(x)

∂ϑA

=

N
∑

p,q=1

ak
pq(x)

∂uk

∂xq

cos
(

ϑk, xp

)

,

with cos
(

ϑk, xp

)

denotes the p − th component of the outward unit

normal vector ϑk to ∂Ωk, k stands for the superscript in uk, fk and ϑk,
not an exponent.

Equation (1.1) can be classified as a pseudoparabolic equation be-
cause of its close link with the corresponding parabolic equation. In
fact, in several cases, the solution of parabolic problem can be ob-
tained as a limit of solutions to the corresponding problem for (1.1)
when α → 0 [28]. It can be also classified as a hyperbolic equation
with a dominate derivative [4].

Particular cases of problem (1.1)-(1.4) arise in various physical phe-
nomena, for instance, in the theory of seepage of homogeneous liquids
in fissured rocks [2, 8, 9], in the nonsteady flows of second order flu-
ids [28], in the diffusion of imprisoned resonant radiation through a
gas [20, 21, 27] which has applications in the analysis of certain laser
systems [24] and in the modelling of the heat conduction involving a
thermodynamic temperature θ = u−α∆u along with a conductive tem-
perature u, see [7]. An important particular case of problem (1.1)-(1.4)
is which related to the Benjamin-Bona-Mahony equation

∂u

∂t
− η

∂3u

∂x2∂t
− ∂u

∂x
+ u

∂u

∂x
= 0 (1.4)

proposed in [3]. Taking into account dissipative phenomena, equa-
tion (1.5) is modified to the so-called Benjamin-Bona-Mahony-Burgers
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equation [1]

∂u

∂t
− η

∂3u

∂x2∂t
− α

∂2u

∂x2
− ∂u

∂x
+ u

∂u

∂x
= 0. (1.5)

Let us cite some interesting papers dealing with transmission problems.
The first of them is that of Gelfend [12], who attracted the attention on
these problems, by showing their motivation. In [23], von Petersdorff
used a boundary integral method to study a transmission problem for
the Helmholtz equation in a number of adjacent Lipschitz domains in
R

n, n ≥ 2, on the boundaries of which inhomogeneous Dirichlet, Neu-
mann or transition conditions are imposed. Gaiduk [10], considered
a linear problem about transverse vibrations of a uniform rectangular
viscoelastic plate with supported boundaries caused by an impact. By
means of the contour integral method, due to Rasulov [25], in com-
bination with the method of separation of variables, it is shown the
solvability and properties of the solution. In [15], Kačur-van Keer es-
tablished a numerical solution for a transmission of linear parabolic
problem, which is encountered in the context of transient temperature
distribution in composite media consisting of several regions in contact,
by applying a Rothe-Galerkin finite element method. Along a differ-
ent line, transmission problems for parabolic-hyperbolic equations were
considered by Ostrovsky [22], Ladyžhenskaya [18], Korzyuk [13], Lions
[17] and Bouziani [5].

In this paper, we present the Rothe time-discretisation method, as a
suitable method for both theoretical and numerical analysis of problem
(1.1)-(1.4). Actually, in addition to providing the first step towards a
fully discrete approximation scheme, it gives a constructive proof of the
existence, uniqueness and continuous dependence of the solution upon
the data.

Let us mention that the present work can be considered as a contin-
uation of the previous works of the authors [6, 19], where linear single
pseudoparabolic equations were studied. It can also be viewed as a
companion of paper [15] by Kačur and van Keer.

An outline of the paper is as follows. In Section 2, we give the basic
assumptions, notations and the appropriate function spaces. We also
recall some auxiliary results used in the rest of the paper. The varia-
tional formulation of problem (1.1)-(1.4) as well as the concept of the
solution we are considering and the solvability of the time discretized
problem corresponding to (1.1)-(1.4) are given in Section 3. In Section
4, we establish some a priori estimates for the discretized problem,

EJQTDE, 2007 No. 14, p. 4



while convergence results and error estimate are given in Section 5.
Section 6 is devoted to the existence, uniqueness and continuous de-
pendence of the solution upon the data of problem (1.1)-(1.4). Finally,
we establish in Section 7 the error estimate.

2. Preliminaries

Let H1(Ωk) be the first order Sobolev space on Ωk with scalar product
(·, ·)1,Ωk

and corresponding norm ‖·‖1,Ωk
, and let (·, ·)0,Ωk

and ‖·‖0,Ωk

be the scalar product and corresponding norm respectively in L2(Ωk).
Let the space of functions defined by:

V : =
{

v =
(

v1, ..., vM
)/

vk ∈ V k, vk
∣

∣

Γk,`
= v`

∣

∣

Γk,`
, (2.1)

∀` ∈ Nk (k = 1, ..., M)} ,

where

V k :=
{

vk ∈ H1 (Ωk)
/

vk = 0 on Γ0
k

}

. (2.2)

The space V is equipped with the norm ‖·‖1,Ω , namely

‖v‖2
1,Ω =

M
∑

k=1

∥

∥vk
∥

∥

2

1,Ωk
.

We identify v ∈ V with a function v : Ω → R, for which v|Ωk
=

vk, (k = 1, ..., M) . Similarly, we introduce the product space L
2 (Ω) =

L2 (Ω1) × · · · × L2 (ΩM ) equipped with the scalar product and the as-
sociated norm

(u, v)0,Ω =

M
∑

k=1

(

uk, vk
)

0,Ωk
and ‖u‖2

0,Ω =

M
∑

k=1

∥

∥uk
∥

∥

2

0,Ωk
,

respectively.
Now, we state the following hypotheses which are assumed to hold

for k = 1, ..., M :
A1. ak

pq ∈ L∞ (Ωk) ; ∃κ > 0, ∀ξ ∈ R
N :

∑N

p,q=1 ak
pq(x)ξpξq ≥ κ

∑N

p=1 ξ2
p

a.e. in Ωk,
A2. ak

pq(x) = ak
qp(x), a.e. in Ωk,

A3. ak
0 ∈ L∞ (Ωk) ; ∃β > 0 : ak

0(x) ≥ β, a.e. in Ωk,
EJQTDE, 2007 No. 14, p. 5



A4. fk
(

t, uk, vk
)

: I× (L2 (Ωk))
2 → L2 (Ωk) is bounded in L2 (Ωk) and

fulfills the Lipschitz condition:
∥

∥fk
(

t, uk, vk
)

− fk
(

t′, u′k, v′k)∥
∥

0,Ωk

≤ L
(

|t − t′| +
∥

∥uk − u′k∥
∥

0,Ωk
+

∥

∥vk − v′k∥
∥

0,Ωk

)

for all t, t′ ∈ I, and uk, u′k, vk, v′k ∈ L2 (Ωk) .
A5. uk

0 ∈ V k, k = 1, ..., M.
Let us define the symmetrical integro-differential form

a (u, v) =

M
∑

k=1

ak

(

uk, vk
)

,

where

ak

(

uk, vk
)

=
N

∑

p,q=1

∫

Ωk

(

ak
pq

∂uk

∂xq

∂vk

∂xp

+ ak
0u

kvk

)

dx

with ak
pq satisfy assumptions A1-A2, then the form a (u, v) fulfills the

following properties:
P1. ∀u, v ∈ V, |a (u, v)| ≤ κ0 ‖u‖1,Ω ‖v‖1,Ω , κ0 = cste,

P2. There exists a sufficiently large constant β0 (≥ 1) such that

a (v, v) ≥ β0 ‖v‖2
1,Ω , ∀u ∈ V.

Throughout, we will identify any function (x, t) ∈ Ω× I 7→ g(x, t) ∈
R with the associated abstract function t 7→ g(t) defined from I into
certain function space on Ω by setting g(t) : x ∈ Ω 7→ g(x, t). Moreover,
we will use the standard functional spaces L2(I, H), C(I, H), L∞(I, H)
and Lip(I, H), where H is a Banach space. For their properties, we
refer the reader, for instance, to [16].

In order to solve the stated problem by the Rothe method, we divide
the interval I into n subintervals by points tj = jhn, j = 0, ..., n, where
hn := T/n is a time-step. Set

uj =
(

u1
j , u

2
j , ..., u

M
j

)

, uk
j (x) :' uk (x, tj) ,

δuj =
(

δu1
j , δu

2
j , ..., δu

M
j

)

, δuk
j (x) :=

uk
j (x) − uk

j−1 (x)

hn

,

fj =
(

f 1
j , f 2

j , ..., fM
j

)

, fk
j (x) := fk

(

x, tj , u
k
j−1,∇uk

j−1

)

,

for k = 1, ..., M and j = 1, ..., n. Introduce now functions obtained from
the approximates uj by piecewise linear interpolation and piecewise
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constant with respect to the time, respectively:

u(n)(t) =
(

u1,n(t), u2,n(t), · · · , uM,n(t)
)

,

u(n)(t) =
(

u1,n(t), u2,n(t), · · · , uM,n(t)
)

,

where

uk(n)(t) := uk
j−1 + δuk

j (t − tj−1) , t ∈ [tj−1, tj] , (2.3)

and

uk(n)(t) :=

{

uk
j , for t ∈ (tj−1, tj ] ,

uk
0, for t ∈ [−hn, 0] ,

(2.4)

for j = 1, ..., n, and k = 1, ..., M . Moreover, we use the notation:

τhn
uk(n) (x, t) = uk(n) (x, t − hn) , k = 1, ..., M,

then for w =
(

w1, w2, · · · , wM
)

∈ H
1 (Ω) , we write

f
(n)

(t, w,∇w) =
(

f
1(n) (

t, w1,∇w1
)

, · · · , f
M(n) (

t, wM ,∇wM
)

)

with

f
k(n)

(t, wk,∇wk) := fk(tj, w
k,∇wk), (2.5)

t ∈ (tj−1, tj ], k = 1, ..., M, thus

f
k(n)

(t, τhn
uk(n),∇τhn

uk(n)) := fk(tj , u
k
j−1,∇uk

j−1) = fk
j , (2.6)

for t ∈ (tj−1, tj ], j = 1, ..., n.
Finally, the following lemmas are used in this paper. We list them

for convenience:

Lemma 1 (An analogue of Gronwall’s Lemma in continuous

form [11]). Let fi(t) (i = 1, 2) be real continuous functions on the in-
terval (0, T ) , f3(t) ≥ 0 nondecreasing function on t, and C > 0. Then
the inequality

∫ t

0

f1(s)ds + f2(t) ≤ f3(t)e
Ct, ∀t ∈ (0, T ) ,

is a consequence of the inequality
∫ t

0

f1(s)ds + f2(t) ≤ f3(t) + C

∫ t

0

f2(s)ds.
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Lemma 2 (Gronwall’s Lemma in discret form [14]). Let {ai} be
a sequence of real, nonnegative numbers, and A, C and h be positive
constants. If the inequality

aj ≤ A + Ch

j−1
∑

i=1

ai,

takes place for all j = 1, 2, . . . , n, then the estimate

ai ≤ AeC(j−1)h,

holds for all j = 2, ... n.

3. Variational formulation

First, we take the scalar product in L2 (Ωk) of equation (1.1) with
vk ∈ V k, we have

(

∂uk (t)

∂t
, vk

)

0,Ωk

+

(

Auk(t) + αA
∂uk(t)

∂t
, vk

)

0,Ωk

(3.1)

+

(

ak
0

(

uk (t) + α
∂uk (t)

∂t

)

, vk

)

0,Ωk

=
(

fk(t, uk (t) ,∇uk (t)), vk
)

0,Ωk
.

Applying the Green formula to the second term of the above identity,
by taking into account condition (1.3b) and (2.6), we get

(

Auk(t) + αA
∂uk(t)

∂t
, vk

)

0,Ωk

(3.2)

= −
∑

`∈Nk

∫

Γk,`

(

∂uk (t)

∂ϑA

+ α
∂2uk (t)

∂t∂ϑA

)

vkdx

+ak

(

uk(t), vk
)

+ αak

(

duk(t)

dt
, vk

)

.

Substituting (3.2) into (3.1), it yields
(

duk(t)

dt
, vk

)

0,Ωk

+ ak

(

uk(t), vk
)

+ αak

(

duk(t)

dt
, vk

)

(3.3)

=
(

fk(t, uk (t) ,∇uk (t)), vk
)

0,Ωk
.
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Thus, summing up (3.3) for k = 1, ..., M and invoking (2.5) and (1.4),
we obtain the desired variational formulation of problem (1.1)-(1.4)

(

du(t)

dt
, v

)

0,Ω

+ a (u(t), v) + αa

(

du(t)

dt
, v

)

(3.4)

= (f(t, u (t) ,∇u (t)), v)0,Ω , ∀v ∈ V, a.e.t ∈ I, u(t) ∈ V, t ∈ I.

Now, we are able to make precise the concept of the solution of problem
(1.1)-(1.4) we are considering:

Definition 1. A function u : I → L
2 (Ω) is called a weak solution of

problem (1.1)-(1.4), if
(i) u ∈ Lip

(

I, V
)

;

(ii) u has a strong derivative (a.e. in I) du
dt

∈ L∞ (I, V ) ;

(iii) u(0) =
(

u1
0, u

2
0, ..., u

M
0

)

= u0 in V ;
(iv) the identity (3.4) holds for all v ∈ V and a.e. t ∈ I.

Consider now the following linearized problem, obtained by dis-
cretization with respect to the time of (3.4)







uj ∈ V,
(δuj, v)0,Ω + a (uj , v) + αa (δuj, v)

= (f(tj , uj−1,∇uj−1), v)0,Ω , ∀v ∈ V, (j = 1, · · · , n),
(3.5)

and consider the auxiliary functions

yj = uj + αδuj (j = 1, ..., n) , (3.6)

then, we can easily get

uj =
hn

α + hn

yj +
α

α + hn

uj−1 (j = 1, ..., n) ,

from which, it follows

δuj =
1

α + hn

(yj − uj−1) (j = 1, ..., n) . (3.7)

Therefore to prove the solvability of problem (3.5) it suffices to establish
the proof for the following problem:

Find, successively for j = 1, ..., n, the functions yj ∈ V verifying:

a (yj, v) +
1

α + hn

(yj, v)0,Ω (3.8)

=

(

fj +
1

α + hn

uj−1, v

)

0,Ω

, ∀v ∈ V,
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with

uj =
hn

α + hn

yj +
α

α + hn

uj−1. (3.9)

In light of properties P1-P2, a successive application of the Lax-
Milgram Theorem to the coupled problem (3.8)-(3.9) leads to:

Lemma 3. Under properties P1-P2, problem (3.8)-(3.9) admits for
all j = 1, ..., n, a unique solution yj ∈ H2 (Ω) ∩ V.

As a consequence, we have

Corollary 4. Problem (3.5) admits for all j = 1, ..., n, a unique solu-
tion uj ∈ H2 (Ω) ∩ V.

4. A priori estimates for the discretized problem

Let us now derive some a priori estimates:

Lemma 5. Let assumption A4 and properties P1-P2 be fulfilled.
Then, for n ∈ N

∗, the solutions uj of the semi-discretized problem
(3.5), satisfy:

‖uj‖1,Ω ≤ C1, (4.1)

for all j = 1, . . . , n, where C1 is a positive constant independent of hn

and j.

Proof. Take v = yj in the integral identity (3.9), it yields

a (yj, yj) +
1

α + hn

‖yj‖2
0,Ω =

(

fj +
1

α + hn

uj−1, yj

)

0,Ω

.

Thanks to the Schwarz inequality, we obtain

a (yj, yj) +
1

α + hn

‖yj‖2
0,Ω (4.2)

≤
(

‖fj‖0,Ω +
1

α + hn

‖uj−1‖0,Ω

)

‖yj‖0,Ω .

Invoking (P2) and omitting the second term on the left-hand side of
(4.2), it comes

αβ0 ‖yj‖1,Ω ≤ (α + hn)β0 ‖yj‖1,Ω ≤ (α + hn) ‖fj‖0,Ω + ‖uj−1‖0,Ω ,

therefore

‖yj‖1,Ω ≤ (α + hn) ‖fj‖0,Ω + ‖uj−1‖1,Ω . (4.3)
EJQTDE, 2007 No. 14, p. 10



According to (3.9), we have

‖uj‖1,Ω ≤ hn

α + hn

‖yj‖1,Ω +
α

α + hn

‖uj−1‖1,Ω (j = 1, ..., n) . (4.4)

Substituting (4.3) into (4.4), yields

‖uj‖1,Ω ≤ hn ‖fj‖0,Ω + ‖uj−1‖1,Ω . (4.5)

Iterating, we get

‖uj‖1,Ω ≤ hn

j
∑

i=1

‖fi‖0,Ω + ‖u0‖1,Ω , ∀j = 1, ..., n. (4.6)

According to assumption A4, the following inequality holds

‖fi‖0,Ω ≤ ‖f(ti, ui−1,∇ui−1) − f(ti, 0, 0)‖0,Ω + ‖f(ti, 0, 0)‖0,Ω

≤
√

2L ‖ui−1‖1,Ω + M ′, (4.7)

where M ′ := max
t∈I

‖f(t, 0, 0)‖0,Ω < ∞.

Inserting (4.7) into (4.6), it comes

‖uj‖1,Ω ≤ hn

j
∑

i=1

(√
2L ‖ui−1‖1,Ω + M ′

)

+ ‖u0‖1,Ω

= M ′jhn + ‖u0‖1,Ω +
√

2hnL

j−1
∑

i=0

‖ui‖1,Ω

≤ M ′T +
(

1 +
√

2LT
)

‖u0‖1,Ω +
√

2hnL

j−1
∑

i=1

‖ui‖1,Ω .

Therefore, owing to Lemma 2.2, we obtain

‖uj‖1,Ω ≤
(

M ′T +
(

1 +
√

2LT
)

‖u0‖1,Ω

)

e
√

2L(j−1)hn ≤ C1,

where C1 :=
(

M ′T +
(

1 +
√

2LT
)

‖u0‖1,Ω

)

e
√

2LT , which concludes the

proof.

Lemma 6. Under assumptions of Lemma 4.1, the following estimates

‖δuj‖1,Ω ≤ C2, (4.8)

‖δuj‖0,Ω ≤ C3, (4.9)

hold for j = 1, . . . , n, where C2 and C3 are positive constants indepen-
dent of hn and j.
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Proof. According to (4.1) and (4.7), inequality (4.3) becomes

‖yj‖1,Ω ≤ (α + hn)
(√

2L ‖uj−1‖1,Ω + M ′
)

+ ‖uj−1‖1,Ω ≤ C4,

where

C4 :=
(

(α + T )
√

2L + 1
)

C1 + (α + T )M ′.

Therefore by virtue of (3.6), we have

‖δuj‖1,Ω ≤ 1

α

(

‖yj‖1,Ω + ‖uj−1‖1,Ω

)

,

from where, due to (4.1) and (4.10), we deduce

‖δuj‖1,Ω ≤ C2, ∀j = 1, ..., n, (4.10)

where

C2 :=
1

α
(C1 + C4) .

On the other hand, invoking (4.2) we get, in consequence of the posi-
tivity of the first term

‖yj‖1,Ω ≤ (α + hn) ‖fj‖0,Ω + ‖uj−1‖0,Ω (4.11)

and due to (3.9), it comes

‖uj‖0,Ω ≤ hn

α + hn

‖uj‖0,Ω +
hn

α + hn

‖uj−1‖0,Ω (j = 1, ..., n) , (4.12)

then, combining (4.12) and (4.13), and summing up the resulting in-
quality for i = 1, ..., j, to obtain

‖uj‖0,Ω ≤ hn

j
∑

i=1

‖fι‖0,Ω + ‖u0‖0,Ω

consequently, by (4.1) and (4.7), we conclude

‖uj‖0,Ω ≤ C5, ∀j = 1, .., n, (4.13)

with

C5 :=
√

2LC1T + M ′T + ‖u0‖0,Ω .

However, from (4.1), (4.7) and (4.12), it follows that

‖yj‖0,Ω ≤ (α + hn)
(√

2L ‖uj−1‖1,Ω + M ′
)

+ ‖uj−1‖0,Ω ,

from which, we have

‖yj‖0,Ω ≤ C6, ∀j = 1, .., n, (4.14)
EJQTDE, 2007 No. 14, p. 12



with

C6 := (α + T )
(√

2LC1 + M ′
)

+ C5.

Finally, it follows from (3.6) that

‖δuj‖0,Ω ≤ 1

α

(

‖yj‖0,Ω + ‖uj‖0,Ω

)

from which, due to (4.14) and (4.15), we find

‖δuj‖0,Ω ≤ C3, ∀j = 1, .., n,

where

C3 :=
1

α
(C5 + C6) .

This achieves the proof.

5. Convergence results

The variational equation (3.5) may be written in terms of u(n) and
u(n) :

(

du(n)(t)

dt
, v

)

0,Ω

+ a
(

u(n)(t), v
)

+ αa

(

du(n)(t)

dt
, v

)

(5.1)

=
(

f
(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

, v
)

0,Ω
, ∀v ∈ V, ∀t ∈ I.

For the functions u(n) and u(n), we derive from results of Section 4 the
following obvious properties:

Corollary 7. For all n ∈ N
∗, the functions u(n) and u(n) satisfy the

following estimates:
∥

∥u(n)(t)
∥

∥

1,Ω
≤ C1,

∥

∥u(n)(t)
∥

∥

1,Ω
≤ C1, ∀t ∈ I, (5.2)

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

1,Ω

≤ C2,

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

0,Ω

≤ C3, a.e. in I, (5.3)

∥

∥u(n)(t) − u(n)(t)
∥

∥

1,Ω
≤ C2hn, ∀t ∈ I, (5.4)

∥

∥u(n)(t) − τhn
u(n)(t)

∥

∥

1,Ω
≤ C2hn, ∀t ∈ I, (5.5)

where C1, C2 and C3 are the same constants given in Lemmas 4.1 and
4.2.
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Proof. Estimates (5.2) follow directly from (4.1). To establish estimates
(5.3), we differentiate identity (2.1) with respect to t and take into
account (4.8) and (4.9), it yields

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

1,Ω

≤ C2,

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

0,Ω

≤ C3, for a.e. t ∈ I,

from where we get
∫

I

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

2

1,Ω

dt ≤ C8,

∫

I

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

2

0,Ω

dt ≤ C7, (5.6)

where C7 = C2
3T and C8 = C2

2T. As for estimate (5.4), it suffices to
observe that

u(n)(t) − u(n)(t) = (tj − t)δuj, ∀t ∈ (tj−1, tj] (j = 1, ..., n) ,

so that
∥

∥u(n)(t) − u(n)(t)
∥

∥ ≤ hn max
1≤j≤n

‖δuj‖1,Ω ∀ t ∈ I (j = 1, ..., n) ,

therefore, due to (4.8), we obtain (5.4). Finally, it follows from

u(n)(t) − τhn
u(n) (t) = uj − uj−1, ∀t ∈ (tj−1, tj ] (j = 1, ..., n) ,

that
∥

∥u(n)(t) − τhn
u(n) (t)

∥

∥

1,Ω
≤ hn max

1≤j≤n
‖δuj‖1,Ω , ∀ t ∈ I.

Consequently, owing to (4.8), we get estimate (5.4).

To continue, we have need to establish the following lemma:

Lemma 8. Let assumption A4 and property P1 be fulfilled. Then the
following estimate

∣

∣a
(

u(n)(t), v
)
∣

∣ ≤ C9 ‖v‖1,Ω , (5.7)

holds for all v ∈ V and a.e. t ∈ I.

Proof. Identity (5.1) can be written

a
(

u(n)(t), v
)

=

(

f
(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

− du(n)(t)

dt
, v

)

0,Ω

−αa

(

du(n)(t)

dt
, v

)

, ∀t ∈ I, ∀v ∈ V. (5.8)

EJQTDE, 2007 No. 14, p. 14



In light of P1 and the Schwarz inequality, the right-hand side of (5.8)
is then dominated as follows

∣

∣a
(

u(n)(t), v
)
∣

∣ ≤
(

∥

∥

∥
f

(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

∥

∥

∥

0,Ω
(5.9)

+

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

0,Ω

+ ακ0

∥

∥

∥

∥

du(n)(t)

dt

∥

∥

∥

∥

1,Ω

)

‖v‖1,Ω .

However due to (2.4) and (4.7), it yields for all j = 1, ..., n :

∥

∥

∥
f

(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

∥

∥

∥

0,Ω
= ‖fj‖0,Ω

≤
√

2L ‖uj−1‖1,Ω + M ′, ∀t ∈ (tj−1, tj] ;

therefore, owing to (4.1)

∥

∥

∥
f

(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

∥

∥

∥

0,Ω
≤

√
2LC1 +M ′, ∀t ∈ I. (5.10)

Inserting (5.3) and (5.10) into (5.9), we obtain (5.7), with

C9 :=
(√

2LC1 + M ′ + C3 + ακ0C2

)

.

Let us subtract from identity (5.1) the similar identity for m, and
set v = u(n)(t) − u(m)(t) (∈ V ) , we have for all t ∈ I

(

d

dt

(

u(n)(t) − u(m)(t)
)

, u(n)(t) − u(m)(t)

)

0,Ω

+a
(

u(n)(t) − u(m)(t), u(n)(t) − u(m)(t)
)

+αa

(

d

dt

(

u(n)(t) − u(m)(t)
)

, u(n)(t) − u(m)(t)

)

=
(

f
(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

− f
(m) (

t, τhm
u(m)(t),∇τhm

u(m)(t)
)

, u(n)(t) − u(m)(t)
)

0,Ω
.

Observing that

u(n) − u(m) =
(

u(n) − u(m)
)

−
(

u(n) − u(n)
)

−
(

u(m) − u(m)
)

,
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the last equality can be written

d

dt

∥

∥u(n)(t) − u(m)(t)
∥

∥

2

0,Ω
(5.11)

+2a
(

u(n)(t) − u(m)(t), u(n)(t) − u(m)(t)
)

+α
d

dt
a

(

u(n)(t) − u(m)(t), u(n)(t) − u(m)(t)
)

= 2
(

f
(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

− f
(m) (

t, τhm
u(m) (t) ,∇τhm

u(m) (t)
)

, u(n)(t) − u(m)(t)
)

0,Ω

+2a
(

u(n)(t) − u(m)(t),
(

u(n) (t) − u(n) (t)
)

+
(

u(m) (t) − u(m) (t)
))

,

for a.e. t ∈ I.
We now estimate the terms on the right-hand side of (5.11). In light

of Lemma 5.2 with v =
(

u(n) (t) − u(n) (t)
)

+
(

u(m) (t) − u(m) (t)
)

, it
comes by taking into account (5.5):

∣

∣a
(

u(n)(t) − u(m) (t) ,
(

u(n) (t) − u(n) (t)
)

+
(

u(m) (t) − u(m) (t)
))

∣

∣

≤ 2C9

(

∥

∥u(n)(t) − u(n)(t)
∥

∥

1,Ω
+

∥

∥u(m) (t) − u(m) (t)
∥

∥

1,Ω

)

(5.12)

≤ C10 (hn + hm) ,

where C10 := 2C2C9.
The first term on the right-hand side of (5.11) can be estimated as
follows:

2
(

f
(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

(5.13)

−f
(m) (

t, τhm
u(m) (t) ,∇τhm

u(m) (t)
)

, u(n)(t) − u(m)(t)
)

0,Ω

≤
∥

∥

∥
f

(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

−f
(m) (

t, τhm
u(m) (t) ,∇τhm

u(m) (t)
)

∥

∥

∥

2

0,Ω

+
∥

∥u(n)(t) − u(m)(t)
∥

∥

2

1,Ω
.
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But for all t ∈ I, there exist two integers j and i such that t ∈ (tj−1, tj]∩
(ti+1, ti]

∥

∥

∥
f

(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

− f
(m) (

t, τhm
u(m) (t) ,∇τhm

u(m) (t)
)

∥

∥

∥

0,Ω

=
∥

∥f
(

tj , τhn
u(n) (t) ,∇τhn

u(n) (t)
)

− f
(

tk, τhm
u(m) (t) ,∇τhm

u(m) (t)
)
∥

∥

0,Ω

≤
√

3L
(√

M ′ (hn + hm) +
∥

∥τhn
u(n) (t) − τhm

u(m) (t)
∥

∥

1,Ω

)

≤
√

3L
(√

M ′ (hn + hm) +
∥

∥τhn
u(n) (t) − u(n) (t)

∥

∥

1,Ω

+
∥

∥u(n) (t) − u(n) (t)
∥

∥

1,Ω
+

∥

∥u(n) (t) − u(m) (t)
∥

∥

1,Ω

+
∥

∥u(m) (t) − u(m) (t)
∥

∥

1,Ω
+

∥

∥u(m) (t) − τhm
u(m) (t)

∥

∥

1,Ω

)

≤
√

3L
((√

M ′ + 2C2

)

(hn + hm) +
∥

∥u(n) (t) − u(m) (t)
∥

∥

1,Ω

)

.

Consequently, inequality (5.13) becomes

2
(

f
(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

(5.14)

−f
(m) (

t, τhm
u(m) (t) ,∇τhm

u(m) (t)
)

, u(n)(t) − u(m)(t)
)

0,Ω

≤ 6L2
(√

M ′ + 2C2

)2

(hn + hm)2

+
(

6L2 + 1
)
∥

∥u(n) (t) − u(m) (t)
∥

∥

2

1,Ω
.

Substituting (5.12) and (5.14) into (5.11), integrating the result over
(0, t) by taking into account the fact that u(n)(0) = u(0) = u0, and
applying property P2, we obtain, by omitting the first term on the left
hand-side and

∫ t

0

∥

∥u(n)(s) − u(m)(s)
∥

∥

2

1,Ω
ds +

∥

∥u(n)(t) − u(m)(t)
∥

∥

2

1,Ω

≤ 2T

β0 min (2, α)

(

C10 (hn + hm) + 3L2
(√

M ′ + 2C2

)2

(hn + hm)2

)

+
(6L2 + 1)

β0 min (2, α)

∫ t

0

∥

∥u(n)(s) − u(s)
∥

∥

2

1,Ω
ds,
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for all t ∈ I. Hence, by virtue of Lemma 2.1, we get
∫ t

0

∥

∥u(n)(s) − u(m)(s)
∥

∥

2

1,Ω
ds +

∥

∥u(n)(t) − u(m)(t)
∥

∥

2

1,Ω

≤ 2T

β0 min (2, α)
(C10 (hn + hm)

+3L2
(√

M ′ + 2C2

)2

(hn + hm)2

)

exp

(

(6L2 + 1) t

β0 min (2, α)

)

,

for all t ∈ I. Consequently,
∫ t

0

∥

∥u(n)(s) − u(m)(s)
∥

∥

2

1,Ω
ds +

∥

∥u(n)(t) − u(m)(t)
∥

∥

2

1,Ω

≤ 2T

β0 min (2, α)
(C10 (hn + hm)

+3L2
(√

M ′ + 2C2

)2

(hn + hm)2

)

exp

(

(2L2 + 1)

β0 min (2, α)
T

)

.

Since the right-hand side of the above inequality is independent of t;
hence, replacing the left-hand side by its upper bound with respect to
t from 0 to T, we obtain

∥

∥u(n) − u(m)
∥

∥

2

L2(I,V )
+

∥

∥u(n) − u(m)
∥

∥

2

C(I,V )

≤ 2T

β0 min (2, α)
(C10 (hn + hm)

+3L2
(√

M ′ + 2C2

)2

(hn + hm)2

)

exp

(

(2L2 + 1) T

αβ0

)

,

which implies that
{

u(n)
}

and
{

u(n)
}

are Cauchy sequences in the Ba-

nach spaces L2 (I, V ) and C
(

I, V
)

, respectively. Consequently, having

in mind (5.5), there exists some function u ∈ C
(

I, V
)

such that:

u(n) → u in C
(

I, V
)

(5.15)

u(n) → u in L2 (I, V ) (5.16)

as n tends to infinity.

According to (5.2b), (5.3) and (5.15), we get, by taking into account
[14, Lemma 1.3.15], the following results formulated in:
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Theorem 9. Let the assumption A4 et properties P1-P2 be hold.
Then, the function u possesses the following properties:

u ∈ Lip
(

I, V
)

, (5.17)

u is strongly differentiable a.e. in I and
du

dt
∈ L∞ (I, V ) , (5.18)

u(n)(t) → u(t), in V, ∀t ∈ I, (5.19)

du(n)

dt
⇀

du

dt
, in L2 (I, V ) . (5.20)

6. Existence, uniqueness and continuous dependence

Theorem 10. Under assumptions of Theorem 5.3, the limit function
u is the weak solution of problem (1.1)-(1.4) in the sense of Definition
3.1.

Proof. In light of (5.17) and (5.18) the points (i)-(ii) of Definition 3.1
are verified. Furthermore, since by definition u(n)(0) = u0, it then
follows from (5.15) that the point (iii) of Definition 3.1 is fulfilled. It
remains to prove that the limit function u = u(x, t) satisfies the integral
identity (3.4). To this end, integrate identity (5.1) over (0, t) ⊂ I

(

u(n)(t), v
)

0,Ω
+

∫ t

0

a
(

u(n)(s), v
)

ds + αa
(

u(n)(t), v
)

(6.1)

=

∫ t

0

(

f
(n) (

s, τhn
u(n) (s) ,∇τhn

u(n) (s)
)

, v
)

0,Ω
ds

+ (u0, v)0,Ω + αa (u0, v) ,

which can be written
(

u(n)(t) − u(t), v
)

0,Ω
+ (u(t), v)0,Ω (6.2)

+

∫ t

0

a
(

u(n)(s) − u(s), v
)

ds +

∫ t

0

a (u(s), v) ds

+αa
(

u(n)(t) − u(t), v
)

+ αa (u(t), v)

=

∫ t

0

(

f
(n) (

s, τhn
u(n) (s) ,∇τhn

u(n) (s)
)

− f (s, u (s) ,∇u (s)) , v)0,Ω ds

+

∫ t

0

(f (s, u (s) ,∇u (s)) , v)0,Ω ds + (u0, v)0,Ω + αa (u0, v) .
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We must show that

lim
n→∞

(

(

u(n)(t) − u(t), v
)

0,Ω
+

∫ t

0

a
(

u(n)(s) − u(s), v
)

ds (6.3)

+ αa
(

u(n)(t) − u(t), v
)

= 0

and

lim
n→∞

∫ t

0

(

f
(n) (

s, τhn
u(n) (s) ,∇τhn

u(n) (s)
)

(6.4)

− f (t, u (s) ,∇u (s)) , v)0,Ω ds = 0.

It is easy to check

(

u(n)(t) − u(t), v
)

0,Ω
+ αa

(

u(n)(t) − u(t), v
)

(6.5)

≤ (1 + ακ0)
∥

∥u(n) (t) − u(t)
∥

∥

1,Ω
‖v‖1,Ω , ∀t ∈ I.

Therefore invoking (5.15) and passing to the limit in (6.5), when n
tends to infinity, we get

lim
n→∞

(

(

u(n)(t) − u(t), v
)

0,Ω
+ αa

(

u(n)(t) − u(t), v
)

)

= 0. (6.6)

However, owing to (5.16), property P1 and Lemma 5.2 we have

∣

∣

∣

∣

∫ t

0

a
(

u(n)(s) − u(s), v
)

ds

∣

∣

∣

∣

≤ κ0

√
T ‖v‖1,Ω

∥

∥u(n) − u
∥

∥

L2(I,V )
,

hence

lim
n→∞

∫ t

0

a
(

u(n)(s) − u(s), v
)

ds = 0, ∀v ∈ V, ∀t ∈ I. (6.7)

Consequently, by combining (6.6) and (6.7), we obtain (6.3).
On the other hand, owing to assumption A4, it comes

∥

∥

∥
f

(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

− f (t, u (t) ,∇u (t))
∥

∥

∥

0,Ω

=
∥

∥f
(

tj , τhn
u(n) (t) ,∇τhn

u(n) (t)
)

− f (t, u (t) ,∇u (t))
∥

∥

0,Ω

≤
√

3L
(√

M ′ |tj − t| +
∥

∥τhn
u(n) (t) − u(t)

∥

∥

1,Ω

)

,
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for all t ∈ (tj−1, tj] (j = 1, ..., n) . Consequently, according to (5.5)
∥

∥

∥
f

(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

− f (t, u (t) ,∇u (t))
∥

∥

∥

0,Ω

≤
√

3L
(√

M ′hn +
∥

∥τhn
u(n) (t) − u(n)(t)

∥

∥

1,Ω
+

∥

∥u(n) (t) − u(t)
∥

∥

1,Ω

)

≤
√

3Lhn

(√
M ′ + C2

)

+
√

3L
∥

∥u(n) (t) − u(t)
∥

∥

1,Ω
,

from which, we conclude, in view of (5.20), that

f
(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

−→
n→∞

f (t, u (t) ,∇u (t)) , (6.8)

in V, ∀t ∈ I. Moreover, by virtue of the Schwarz inequality and (5.10),
we have

(

f
(n) (

t, τhn
u(n) (t) ,∇τhn

u(n) (t)
)

, v
)

0,Ω

≤
(√

2LC1 + M ′
)

‖v‖0,Ω , ∀t ∈ I, ∀n.

Therefore the application of the Lebesgue Theorem of dominate con-
vergence leads to (6.4). Hence, by passing to the limit in (6.2) when n
tends to infinity, we get

(u(t), v)0,Ω +

∫ t

0

a (u(s), v)ds + αa (u(t), v)

=

∫ t

0

(f (s, u (s) ,∇u (s)) , v)0,Ω ds + (u0, v)0,Ω + αa (u0, v) .

Differentiating the above identity with respect to t we obtain the inte-
gral identity (3.4), thanks to the identities

d

dt
(u(t), v)0,Ω =

(

du(t)

dt
, v

)

0,Ω

, ∀v ∈ V, a.e. t ∈ I,

and
d

dt
a (u(t), v) = a

(

du(t)

dt
, v

)

, ∀v ∈ V, a.e. t ∈ I.

This completes the proof of Theorem 6.1.

Theorem 11. Under assumptions of Theorem 5.3, the weak solution
of problem (1.1)-(1.4) is unique.
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Proof. Assume that (1.1)-(1.4) possesses two weak solutions u1 and u2.
Taking the difference of identities (3.4) corresponding to u1 and u2, and
v = u, where u = u1 − u2, it yields

d

dt
‖u(t)‖2

0,Ω + 2a (u(t), u(t)) + α
d

dt
a (u(t), u(t))

= 2
(

f
(

t, u1 (t) ,∇u1 (t)
)

− f
(

t, u2 (t) ,∇u2 (t)
)

, u (t)
)

0,Ω
,

a.e. t ∈ I. Integrating over (0, t) ⊂ I, we get by taking into account
that u(0) = 0

‖u(t)‖2
0,Ω + 2

∫ t

0

a (u(s), u(s))ds + αa (u(t), u(t))

= 2

∫ t

0

(

f
(

s, u1 (s) ,∇u1 (s)
)

− f
(

s, u2 (s) ,∇u2 (s)
)

, u (s)
)

0,Ω
ds,

so that, owing to the Schwarz inequality and assumption A4

‖u(t)‖2
0,Ω + 2

∫ t

0

a (u(s), u(s))ds + αa (u(t), u(t))

≤ 2

∫ t

0

∥

∥f
(

s, u1 (s) ,∇u1 (s)
)

− f
(

s, u2 (s) ,∇u2 (s)
)
∥

∥

0,Ω
‖u (s)‖0,Ω ds

≤ 2
√

2L

∫ t

0

‖u(s)‖2
1,Ω ds, ∀t ∈ I.

Omitting the first two terms on the left-hand side of the last inequality
and using P2, we find

‖u(t)‖2
1,Ω ≤ 2

√
2L

αβ0

∫ t

0

‖u(s)‖2
1,Ω ds, ∀t ∈ I.

Thanks to Lemma 2.1, we conclude that

‖u(t)‖1,Ω = 0, ∀t ∈ I,

which implies the uniqueness of the solution.

Theorem 12. Let properties P1-P2 be fulfilled. Moreover, let u(x, t)
and u∗(x, t) be two solutions of problem (1.1)-(1.4) corresponding to
(u0, f) and (u∗

0, f
∗), respectively. If there exists a continuous nonneg-

ative function K(t) and a positive constant L′ such that the following
estimate

‖f (t, u, p) − f ∗ (t, u∗, p∗)‖0,Ω (6.9)

≤ K(t) + L′
(

‖u − u∗‖0,Ω + ‖p − p∗‖0,Ω

)
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for all t ∈ I and takes pace for all u, u∗, p and p∗ ∈ L
2 (Ω) , then

‖u − u∗‖2
C(I,V ) ≤ C11

(
∫ t

0

K2(s)ds + ‖u0 − u∗
0‖2

1,Ω

)

, (6.10)

where C11 is a positive constant independent on u and u∗.

Proof. Considering the variational formulation of problem (1.1)-(1.4)
written for u, subtracting from it the same integral identity written for
u∗and setting v = u(t)−u∗(t), we obtain after integrating the obtained
identity over (0, t) ⊂ I

‖u(t) − u∗ (t)‖2
0,Ω + 2

∫ t

0

a (u(s) − u∗ (s) , u(s) − u∗ (s)) ds

+αa (u(t) − u∗ (t) , u(t) − u∗ (t)) (6.11)

= 2

∫ t

0

(f (s, u (s) ,∇u (s))

−f ∗ (s, u∗ (s) ,∇u∗ (s)) , u (s) − u∗ (s))0,Ω ds

+ ‖u0 − u∗
0‖2

0,Ω + αa (u0 − u∗
0, u0 − u∗

0) .

Invoking properties P1-P2 and (6.9), we get, in consequence of the
positivity of the first two terms on the left-hand side of (6.10) and
of the application of the elementary inequalities 2ab ≤ a2 + b2 and
(a + b + b)2 ≤ 3 (a2 + b2 + c2) to the right-hand side, after some re-
arrangement

‖u(t) − u∗(t)‖2
1,Ω

≤ max

(

3

αβ0
,
1 + ακ0

αβ0

) (
∫ t

0

K2(s)ds + ‖u0 − u∗
0‖2

1,Ω

)

+
3L′2 + 1

αβ0

∫ t

0

‖u(s) − u∗(s)‖2
1,Ω ds.

Thanks to Lemma 2.1 we get inequality (6.10), with

C11 := max

(

3

αβ0

,
1 + ακ0

αβ0

)

exp

(

(3L′2 + 1)T

αβ0

)

.
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7. Error estimate

Theorem 13. Under the assumption A4 and properties P1-P2, the
error of the approximation

∥

∥u(n) − u
∥

∥

C(I,V ) ≤ C12hn (7.1)

is valid for all n ∈ N
∗.

Proof. Considering the difference between (5.1) and (3.4), and putting
v = u(n)(t) − u(t) (∈ V ) , we have

(

d

dt

(

u(n)(t) − u(t)
)

, u(n)(t) − u(t)

)

0,Ω

+a
(

u(n)(t) − u(t), u(n)(t) − u(t)
)

+αa

(

d

dt

(

u(n)(t) − u(t)
)

, u(n)(t) − u(t)

)

=
(

f
(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

− f (t, u (t) ,∇u (t)) , u(n)(t) − u(t)
)

0,Ω
,

from which we obtain

1

2

d

dt

∥

∥u(n)(t) − u(t)
∥

∥

2

0,Ω
+ a

(

u(n)(t) − u(t), u(n)(t) − u(t)
)

+αa

(

d

dt

(

u(n)(t) − u(t)
)

, u(n)(t) − u(t)

)

=
(

f
(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

− f (t, u (t) ,∇u (t)) , u(n)(t) − u(t)
)

0,Ω

+a
(

u(n)(t) − u(n)(t), u(n)(t) − u(t)
)

, a.e. t ∈ I.

Owing to properties P1-P2 and the Schwarz and Cauchy inequalities,
it yields

1

2

d

dt

∥

∥u(n)(t) − u(t)
∥

∥

2

0,Ω
+ β0

∥

∥u(n)(t) − u(t)
∥

∥

2

1,Ω
(7.2)

+
1

2
αβ0

d

dt

∥

∥u(n)(t) − u(t)
∥

∥

2

1,Ω

≤ 1

2

∥

∥

∥
f

(n) (

t, τhn
u(n)(t),∇τhn

u(n)(t)
)

− f (t, u (t) ,∇u (t))
∥

∥

∥

2

0,Ω

+
1

2

∥

∥u(n)(t) − u(t)
∥

∥

2

0,Ω

+κ0

∥

∥u(n)(t) − u(n)(t)
∥

∥

1,Ω

∥

∥u(n)(t) − u(t)
∥

∥

1,Ω
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Therefore, performing similar calculations as in Section 6, it comes
∥

∥

∥
f

(n) (

t, τhn
u(n),∇τhn

u(n)
)

− f (t, u (t) ,∇u (t))
∥

∥

∥

2

0,Ω
(7.3)

≤ 3L2
(

(

M ′ + 6C2
2

)

h2
n +

∥

∥u(n) (t) − u (t)
∥

∥

2

1,Ω

)

.

Inserting (7.3) into (7.2), applying the Cauchy inequality and using
(5.5)-(5.6), we get

1

2

d

dt

∥

∥u(n)(t) − u(t)
∥

∥

2

0,Ω
+ β0

∥

∥u(n)(t) − u(t)
∥

∥

2

1,Ω
(7.4)

+
1

2
αβ0

d

dt

∥

∥u(n)(t) − u(t)
∥

∥

2

1,Ω

≤ 1

2

(

3L2
(

M ′ + 6C2
2

)

+ κ2
0C

2
2

)

h2
n

+

(

3L2

2
+ 1

)

∥

∥u(n) (t) − u (t)
∥

∥

2

1,Ω
.

Integrating (7.4) over (0, t) by taking into account the fact that u(n)(0)
= u(0) = u0, and neglecting the first term on the left hand-side, we
find

∫ t

0

∥

∥u(n)(s) − u(s)
∥

∥

2

1,Ω
ds +

∥

∥u(n)(t) − u(t)
∥

∥

2

1,Ω

≤ T

β0 min (2, α)

(

3L2
(

M ′ + 6C2
2

)

+ κ2
0C

2
2

)

h2
n

+
(3L2 + 2)

β0 min (2, α)

∫ t

0

∥

∥u(n)(s) − u(s)
∥

∥

2

1,Ω
ds, ∀t ∈ I.

It then follows, by means of Lemma 2.2
∫ t

0

∥

∥u(n)(s) − u(s)
∥

∥

2

1,Ω
ds +

∥

∥u(n)(t) − u(t)
∥

∥

2

1,Ω
(7.5)

≤ T

β0 min (2, α)

(

3L2
(

M ′ + 6C2
2

)

+ κ2
0C

2
2

)

h2
n exp

(

(3L2 + 2)

β0 min (2, α)
T

)

,

for all t ∈ I. Hence, in the left hand-side of (7.5), taking the upper
bound with respect to t, we obtain

∥

∥u(n) − u
∥

∥

2

L2(I,V )
+

∥

∥u(n) − u
∥

∥

2

C(I,V )

≤ T

β0 min (2, α)

(

3L2
(

M ′ + 6C2
2

)

+ κ2
0C

2
2

)

h2
n exp

(

(3L2 + 2)

β0 min (2, α)
T

)

,
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from which we get estimate (7.1), with

C12 =

√

T (3L2 (M ′ + 6C2
2) + κ2

0C
2
2)

β0 min (2, α)
h2

n exp

(

(3L2 + 2)

β0 min (2, α)
T

)

.
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