
Electronic Journal of Qualitative Theory of Differential Equations
2014, No. 1, 1–7; http://www.math.u-szeged.hu/ejqtde/

Universal centers in the cubic trigonometric Abel
equation

Jaume GinéB , Maite Grau and Xavier Santallusia

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Spain

Received 30 October 2013, appeared 28 February 2014

Communicated by Gabriele Villari

Abstract. We study the center problem for the trigonometric Abel equation dρ/dθ =
a1(θ)ρ

2 + a2(θ)ρ
3, where a1(θ) and a2(θ) are cubic trigonometric polynomials in θ. This

problem is closely connected with the classical Poincaré center problem for planar poly-
nomial vector fields. A particular class of centers, the so-called universal centers or
composition centers, is taken into account. An example of non-universal center and a
characterization of all the universal centers for such equation are provided.
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1 Introduction and statement of the main results

In this note we consider the Abel trigonometric differential equation

dρ

dθ
= a1(θ) ρ2 + a2(θ) ρ3, (1.1)

defined on the cylinder (ρ, θ) ∈ R× S1 and where a1(θ) and a2(θ) are real trigonometric poly-
nomials in θ of degree max{deg a1, deg a2} = d.

Equation (1.1) is a particular case of the analytic ordinary differential equation

dρ

dθ
= F (ρ, θ) = ∑

i≥1
ai(θ) ρi+1, (1.2)

defined on the cylinder (ρ, θ) ∈ R× S1 and where ai(θ) are real trigonometric polynomials in
θ. We denote by ρ = ρ(θ; ρ0) the general solution of (1.2) with initial condition ρ(0; ρ0) = ρ0.
We remark that ρ = 0 is a particular solution and that, as a consequence, we have that ρ(θ; ρ0)

is defined for all θ ∈ S1 for |ρ0| small enough.
We say that equation (1.2) has a center when ρ(2π; ρ0) = ρ0 for |ρ0| small enough, that is,

when all the orbits in a neighborhood of the particular solution ρ = 0 are 2π-periodic. The

BCorresponding author. Email: gine@matematica.udl.cat



2 J. Giné, M. Grau and X. Santallusia

center problem for equation (1.2) is to find conditions on the coefficients ai(θ) under which this
equation determines a center. The original center problem arises from the study of the planar
analytic differential systems, see for instance [15] and references therein.

Classically, there exist two ways to characterize centers in equation (1.2). The first one is to
prove the existence of a first integral H(ρ, θ) which is 2π-periodic in θ. A function H(ρ, θ) de-
fined in a neighborhood of ρ = 0, of class C1 and non locally constant, is a first integral of equa-
tion (1.2) if H(ρ(θ; ρ0), θ) does not depend on θ. Equivalently, (∂H/∂ρ)F (ρ, θ) + ∂H/∂θ ≡ 0.

The second way is to consider the first return map P(a) associated to equation (1.2)
P(a)(ρ0) := ρ(2π; ρ0) and to verify that it is the identity map for |ρ0| small enough. In [6]
(see also [7]), an explicit expression for the first return map P(a)(ρ0) was given. We remark
that P(a)(ρ0) is an absolute convergent power series for sufficiently small initial values |ρ0|
whose development takes the form

P(a)(ρ0) = ρ0 + ∑
n≥1

cn(a)ρn+1
0 . (1.3)

Theorem 1.1. [7] For sufficiently small initial values |ρ0| the first return map P(a) is an absolute
convergent power series (1.3), where

cn(a) = ∑
i1+···+ik=n

ci1,...,ik Ii1,...,ik(a), and

ci1,...,ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1,

and where Ii1 ...ik(a) is the following iterated integral of order k

Ii1 ...ik(a) :=
∫
· · ·

∫
0≤s1≤···≤sk≤2π

aik(sk) · · · ai1(s1) dsk · · · ds1.

Of course, equation (1.2) has a center if and only if cn(a) = 0, for all n ≥ 1. From the form
of the first return map P(a), the following definition, given in [7], follows in a natural way.

Definition 1.2. [7] The differential equation (1.2) has a universal center if for all positive integers
i1, . . . , ik with k ≥ 1 the iterated integral Ii1 ...ik(a) = 0.

The expression of the coefficients of the first return map P(a)(ρ0) := ρ(2π; ρ0) for the Abel
differential equation dρ/dθ = a0(θ)ρ + a1(θ)ρ

2 + a2(θ)ρ3, and thus for equation (1.1), was
given by [2, 10, 11].

We say that differential equation (1.2) satisfies the composition conditions if there is a noncon-
stant trigonometric polynomial q and there are polynomials pi ∈ R[z], for i ≥ 1 such that

ãi = pi ◦ q, i ≥ 1, where ãi(θ) =
∫ θ

0
ai(s)ds.

The first time that this definition appears was in the work Alwash and Lloyd [4]. The com-
position conditions have been studied by several authors in different contexts, see for instance
[3, 4, 15] and references therein.

Universal centers of equation (1.2) were characterized in [14] through the following result.

Theorem 1.3. [14] Any center of the differential equation (1.2) is universal if and only if equation (1.2)
satisfies the composition conditions.
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In [7] the same result was proved when equation (1.2) has a finite number of terms.

The aim of this work is to study universal and non-universal centers of an Abel differential
equation (1.1) in relation with the degree of the trigonometric polynomials a1(θ) and a2(θ).
Recall that equation (1.1) has a universal center when all the iterated integrals Ii1...ik(a) = 0,
for all i1, . . . , ik. Now, each of the indexes i1, . . . , ik can only take the values 1 or 2. Besides the
characterization of universal centers as composition centers for the Abel trigonometric equation
(1.1) proved in [7, 14], in [9] another characterization is provided in terms of the vanishing of a
finite set of double moments. We assume that the minimal common period of a1 and a2 is 2π/k,
with k ∈N+.

Theorem 1.4. [9] Equation (1.1) has a universal center if and only if for all i, j ∈N satisfying i + j ≤
4d/k− 3, ∫ 2π

0
ãi

1(s)ãj
2(s)a2(s) ds =

∫ 2π

0
a1(s) ds = 0.

These type of integrals are known as the double moments.

It is well-known that not all the centers of equation (1.1), and thus of equation (1.2), are uni-
versal, see [1]. Any quadratic system in the plane can be transformed to an Abel equation of the
form (1.1) where a1(θ) and a2(θ) are trigonometric polynomials of degree 3 and 6 respectively.
Moreover in [14] it is proved that there are centers of a quadratic system which are not uni-
versal (for instance the Darboux component except its intersection with the symmetric one).
Indeed, in [14] it is proved that these non-universal centers of some quadratic systems give
non-universal centers of their associated Abel equation. A previous and different example of a
center of an Abel equation which is not universal and where a1(θ) and a2(θ) are also trigono-
metric polynomials of degree 3 and 6 respectively, is provided in [8]. Hence, the following open
problem is established in [15].

Open problem: To determine the lowest degree of the trigonometric polynomials a1(θ) and
a2(θ) such that the Abel equation (1.1) has a center which is not universal.

In this paper we solve this open problem, see Theorem 1.6. Blinov in [5] proved the follow-
ing result which shows that the lowest possible degree such that an Abel equation can have a
non-universal center is at least 3.

Proposition 1.5. [5] All the centers of equation (1.1) when a1(θ) and a2(θ) are trigonometric polyno-
mials of degree 1 and 2 are universal centers and, in consequence, verify the composition condition.

The proof given in [5] (see also [15]) consists in solving the center problem for equation
(1.2) with a1(θ) and a2(θ) of degree at most 2 and to check that all the center cases are uni-
versal. However, this procedure is unapproachable for higher degrees due to the cumbersome
computations needed to solve the center problem. Indeed, Blinov’s result solves the center
and the universal center problem for Abel differential equations (1.1) up to degree 2. The next
equations to be studied are the cubic ones, i.e. d = 3.

The following result concludes that the lowest degree of a trigonometric Abel equation (1.1)
with a non-universal center is 3.

Theorem 1.6. The cubic (d = 3) trigonometric Abel differential equation

dρ

dθ
= (cos θ + 2 cos 2θ) ρ2 + (sin θ − sin 2θ + sin 3θ) ρ3, (1.4)

has a center which is not universal.
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The proof of this result is given in Section 2.

There are two big families of universal centers of equation (1.2): when the equation is either
α-symmetric or of separable variables, see definitions below. Given an angle α ∈ [0, π), we
say that the differential equation (1.2) is α-symmetric if its flow is symmetric with respect to the
straight line θ = α. Obviously, this is equivalent to that equation (1.2) is invariant under the
change of variables θ 7→ 2α − θ. Any differential equation (1.2) which is α-symmetric has a
center, due to the symmetry.

A differential equation (1.2) is of separable variables if the function on the right-hand side of
equation (1.2) splits as product of two functions of one variable, one depending on ρ and the
other on θ, that is, dρ/dθ = a(θ) b(ρ). In such a case there is only one center condition which
is
∫ 2π

0 a(θ) dθ = 0.
The following result for equation (1.2) is proved in [14].

Theorem 1.7. [14] If the differential equation (1.2) has a center which is either α-symmetric, or of
separable variables, then it is universal.

For the case of the Abel trigonometric equation (1.1), we give the following result about the
universal centers which belong to the classes of α-symmetric or of separable variables differen-
tial equations. To simplify notation, we consider 1 as a prime number.

Proposition 1.8. If the degrees of a1(θ) and a2(θ) are both prime numbers or they are coprime and the
Abel differential equation (1.1) has a universal center then the differential equation is either α-symmetric
or of separable variables.

As a direct consequence of this result, we have that any universal center of equation (1.1)
with d = 3 is either α-symmetric or of separable variables.

This note is organized as follows. Section 2 contains the proofs of the two main results,
namely Theorem 1.6 and Proposition 1.8, together with some preliminary results.

2 Preliminary results and proofs of the main results

As we have stated in the previous section, a way to characterize that equation (1.2) has a center
is to prove the existence of a first integral H(ρ, θ) which is defined in a neighborhood of ρ = 0
and it is 2π-periodic in θ. A function which is closely related to a first integrals is the inverse
integrating factor. A function V(ρ, θ) defined in a neighborhood of ρ = 0, of class C1 and non
locally null, is an inverse integrating factor of equation (1.2) if

∂V
∂ρ
F (ρ, θ) +

∂V
∂θ

=
∂F
∂ρ

V(ρ, θ)

and V(ρ, θ) is 2π-periodic in θ. Given an inverse integrating factor V(ρ, θ) of (1.2), one can
construct a first integral H(ρ, θ) of (1.2) through the following line integral:

H(ρ, θ) =
∫ (ρ,θ)

(ρ0,θ0)

dρ−F (ρ, θ)dθ

V(ρ, θ)

along any curve connecting an arbitrarily chosen point (ρ0, θ0) (such that V(ρ0, θ0) 6= 0) and
the point (ρ, θ). The following result reads for Corollary 5 in [12] written with our notation and
our assumptions, see also [13].
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Lemma 2.1. [12] Let V(ρ, θ) be an inverse integrating factor of equation (1.2) whose leading term in
the development around ρ = 0:

V(ρ, θ) = ρµ v(θ) + o(ρµ),

where v(θ) 6≡ 0, is such that either µ = 0 or µ > 1 and µ is not a natural number, then equation (1.2)
has a center, that is ρ = 0 belongs to a continuum of periodic orbits.

Now we are in conditions to prove our first result.

Proof of Theorem 1.6. For the particular Abel differential equation (1.4), we denote by a1(θ) :=
cos θ + 2 cos 2θ, a2(θ) := sin θ − sin 2θ + sin 3θ and

ã1(θ) :=
∫ θ

0
a1(s)ds, ã2(θ) :=

∫ θ

0
a2(s)ds.

We have that the iterated integral

I221(a) =
∫

0≤s1≤s2≤s3≤2π
a2(s3) a2(s2) a1(s1) ds3 ds2 ds1

= −
∫ 2π

0
ã1(s) ã2(s) a2(s) ds =

π

2
.

Therefore and on account of Theorem 1.3, if equation (1.4) has a center, it cannot be universal.
Moreover, the function

H(ρ, θ) :=
g2 − (cos θ + sin θ − 1)g + 1− cos θ

g2 + (cos θ + sin θ − 1)g + 1− cos θ
· e−4g+2 arctan

(
(cos θ−sin θ−1)g

g2+cos θ−1

)
,

with

g(ρ, θ) =

√
1
ρ
− sin θ + sin 2θ

is a first integral of equation (1.4). This is because the function H(ρ, θ), for ρ > 0 small enough,
is of class C1; is not constant; it is periodic in θ of period 2π; and satisfies (∂H/∂ρ)F (ρ, θ) +

∂H/∂θ ≡ 0. Therefore, equation (1.4) has a center.
Another way to prove this statement is to note that the algebraic function

V(ρ, θ) =
ρ3/2 [2 + 2 sin(2θ)ρ + (2− 3 cos θ + 2 cos(2θ)− cos(3θ)) ρ2]

2
√

1− (sin θ − sin(2θ)) ρ
,

is an inverse integrating factor of equation (1.4). On account of Lemma 2.1 and since the leading
term of the development of V(ρ, θ) around ρ = 0 is V(ρ, θ) = ρ3/2 + o(ρ3/2) (that is µ = 3/2)
we have that equation (1.4) has a center.

Our second result, Proposition 1.8, relies on the degrees of trigonometric polynomials. The
following result is Lemma 16 of [14] deals with the relation between degrees of trigonometric
polynomials.

Lemma 2.2. [14] Let A(θ) and B(θ) be two trigonometric polynomials of degrees d and d̄, respectively.
The following statements hold.

(a) The trigonometric polynomial A′(θ) is of degree d.

(b) The trigonometric polynomial A(θ)B(θ) is of degree d + d̄.
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(c) Let N(z) be a polynomial in R[z] of degree k, then N(A(θ)) is a trigonometric polynomial of
degree k d.

Proof of Proposition 1.8. If the Abel differential equation (1.1) has a universal center then we
have that ã1(θ) and ã2(θ) satisfy the composition conditions i.e., there exist a nonconstant
trigonometric polynomial q(θ) and two real polynomials p1, p2 ∈ R[z] such that ã1(θ) =

p1 (q(θ)) and ã2(θ) = p2 (q(θ)). Let di = deg ai for i = 1, 2. By Lemma 2.2(a), we have
that di = deg ãi for i = 1, 2.

Assume first that d1 and d2 are both prime numbers. Then, by Lemma 2.2(c) we have that
either deg q = 1 or deg p1 = deg p2 = 1. In the case that deg q = 1 the differential equation
(1.1) has a center which is α-symmetric, see [14]. In the case that deg p1 = deg p2 = 1, we
have ã1(θ) = α1q(θ) + β1 and ã2(θ) = α2q(θ) + β2 with αi and βi real numbers, i = 1, 2. As
we can take without loss of generality that q(0) = 0, and since ã1(0) = ã2(0) = 0, we get that
β1 = β2 = 0. Hence in this case equation (1.1) takes the form

dρ

dθ
= q ′(θ)(α1 ρ2 + α2 ρ3),

which is an equation of separable variables.
Assume now that d1 and d2 are coprime. Again by Lemma 2.2(c), we have that deg q = 1

(or it would be a common divisor of d1 and d2). Thus, the differential equation (1.1) has a center
which is α-symmetric, see [14].
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