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Abstract

Intervals of the parameter A are determined for which there exist positive
solutions for the system of nonlinear differential equations, u(™ + \a(t)f(v) =
0, v 4+ Ab(t)g(u) = 0, for 0 < t < 1, and satisfying three-point nonlocal bound-
ary conditions, u(0) = 0,4/(0) = 0,...,u™2(0) = 0, u(l) = au(n),v(0) =
0,2/(0) = 0,...,v"=2(0) = 0, v(1) = av(n). A Guo-Krasnosel’skii fixed point
theorem is applied.
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1 Introduction

We are concerned with determining intervals of the parameter A (eigenvalues) for which

there exist positive solutions for the system of differential equations,

u™ + Xa(t)f(v) =0, 0<t<I,
™+ Ab(t)g(u) =0

satisfying the three-point nonlocal boundary conditions,

where 0 < < 1,0 < an™ ! < 1 and
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(A) f.9 € C([0,00),[0,00)),
(B) a,b € C([0,1],]0,00)), and each does not vanish identically on any subinterval,

f=z

9() @) and gy =

(C) All of fy = lim, o+ %, go = limy o+ ©=, foo = limg oo
lim, oo @ exist as real numbers.

There is currently a great deal of interest in positive solutions for several types
of boundary value problems. While some of the interest has focused on theoretical
questions [5, 9, 13, 26], an equal amount of interest has been devoted to applications
for which only positive solutions have meaning [1, 8, 17, 18]. While most of the above
studies have dealt with scalar problems, some recent work has addressed questions of
positive solutions for systems of boundary value problems [3, 12, 14, 15, 16, 19, 22,
25, 27, 30]. In addition, some studies have been directed toward positive solutions for
nonlocal boundary value problems; see, for example, [4, 6, 10, 17, 18, 19, 21, 22, 20,
24, 26, 28, 29, 30].

Additional attention has been directed toward extensions to higher order problems,
such as in [2, 4, 7, 8, 11, 23, 29]. Recently Benchohra et al. [3] and Henderson
and Ntouyas [12] studied the existence of positive solutions of systems of nonlinear
eigenvalue problems. Here we extend these results to eigenvalue problems for systems
of higher order three-point nonlocal boundary value problems.

The main tool in this paper is an application of the Guo-Krasnosel’skii fixed point
theorem for operators leaving a Banach space cone invariant [9]. A Green’s function
plays a fundamental role in defining an appropriate operator on a suitable cone.

2 Some preliminaries

In this section, we state some preliminary lemmas and the well-known Guo-Krasnosel’skii
fixed point theorem.

Lemma 2.1 [4] Let 0 <n < 1,0 < an™ ! < 1; then for any u € C|0,1] the following
boundary value problem

u™(t) =0, 0<t<l1 (3)
u(0) = 0,'(0) =0,...,u™20) =0, wu(l)=au(y), (4)

has a unique solution

EJQTDE, 2007 No. 18, p. 2



where k(t,s) : [0,1] x [0,1] — R* is defined by

a(n,s)t"

(n—1)1 > 0<t<s<1,
k(t,s) = (5)
sl U g <s <t <1,
and )
_(11__;7277,717 77 S S}

) = (=9 —(—s)"*
- y S S n.

1—ann—1

Lemma 2.2 [4] Let 0 < o™ ' < 1. Let u satisfy u™(t) < 0,0 < t < 1, with the
nonlocal conditions (2). Then

inf u(t) >
o ult) 2 vl

where v = min {Oﬂ?n_la —al(i;z) ; n"‘l} .

Define 6(s) = max,e(o,1) |k(t, s)|. From Lemma 1.2 in [4], we know that

|k(t,s)| >~0(s), ten1], sel0,1]. (6)

By simple calculation we have (see [11])

(s) = max |k(t, )] < —0—)—
Ve Y T e (- )y

s (0,1). (7)

We note that a pair (u(t),v(t)) is a solution of eigenvalue problem (1), (2) if, and
only if,

u(t) = —)\/0 k(t,s)a(s)f <—)\/O k(s,r)b(r)g(u(r))dr) ds, 0<t<1, (8)
where )
u(t) = —)\/O k(t,s)b(s)g(u(s))ds, 0<t<1.

Values of A for which there are positive solutions (positive with respect to a cone)
of (1), (2) will be determined via applications of the following fixed point theorem.
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Theorem 2.1 Let B be a Banach space, and let P C B be a cone in B. Assume {4
and €y are open subsets of B with 0 € )y C 0y C €, and let

T:PN(QW\Q)—P
be a completely continuous operator such that, either
(1) ||Tul| < ||Jul|,u € PNOQ, and ||Tul| > ||u||,u € PN OQy, or
(ii) ||Tu|| > ||ul|,w € PN OQ, and ||Tu|| < ||ul|,u € P NOQs.

Then T has a fized point in P N (Qy \ Q).

3 Positive solutions in a cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (that is, positive
solutions) of (1), (2). For our construction, let B = C0, 1] with supremum norm, || - |,
and define a cone P C B by

P = {az € B | z(t) > 0on [0,1], and Ir[linl]x(t) > fnyH} :
teln,

For our first result, define positive numbers L; and Ly by

L= max{ [72 /77 19(7«)@(7«) foodr} : [72 /77 10(r)a(r)goodr} 1},
M:mm“Awmwwwﬁ,wammWﬂl}

Theorem 3.1 Assume conditions (A), (B) and (C) are satisfied. Then, for each X
satisfying

-1

and
1

Ly < X\ < Ly, )
there exists a pair (u,v) satisfying (1), (2) such that u(xz) > 0 and v(z) >0 on (0,1).

Proof. Let A be as in (9). And let € > 0 be chosen such that

max{ - e - ar| | / 0110l (g0 — ] } <)
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and
-1

A < min { { /0 1 0(r)a(r)(fo + e)dr]

, [/01 0(r)b(r) (g0 + E)dr] _1} .

Define an integral operator T : P — B by

Tu(t) = —\ /Olkr(t, s)a(s)f (—A /Olk(s,r)b(r)g(u(r))dr) ds, uweP.  (10)

We seek suitable fixed points of 1" in the cone P.

By Lemma 2.2, T"P C P. In addition, standard arguments show that 7" is completely
continuous.

Now, from the definitions of fy and gg, there exists an H; > 0 such that

F(2) < (fo+ )w and g(z) < (go+€)a, 0 <z < H).

Let u € P with |ju|| = H;. We first have from (7) and choice of e,

—)\/0 k(s,r)b(r)g(u(r))dr < )\/0 O(r)b(r)g(u(r))dr

IN

)\/0 O(r)b(r)(go + €)u(r)dr

IN

A / 0(r)b(r)dr(go + €)|[u]
Jul
= Hl.

IN

As a consequence, we next have from (7), and choice of ¢,

Tu(t) = —\ /0 lk(t, s)a(s)f (—)\ /O 1k(s,r)b(7’)g(u(7’))dr) ds

IN

)\/01 O(s)a(s)f (—)\/01 k(s,’r’)b(’r’)g(u(’r))d’r) ds
A g0t +) [3 [ ksrbotutr] ds

IN

IN

)\/O 0(s)a(s)(fo + €)Hids
H,

]

IN
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So, [|Tu|| < [Jul]. If we set
={z e B ||| < Hi},

then
| Tul| < ||u||, for u e P NO;.

Next, from the definitions of f., and g, there exists Hs > 0 such that

f(2) 2 (foo — Oz and g(2) > (g — Oz, x>,

H
HQZmaX{QHl, 2}.
v

Let uw € P and ||u|| = Hs. Then,

Let

min u(t) > v|jul| > Hs.
ten,1]

Consequently, from (8) and choice of e,

—A/O k(s m)b(r)g(u(r))dr = M/ 0(r)b(r)g(u(r))dr

> v [ 0e)gtulrr
> )\'y/ O(r)b(r)(goo — €)u(r)dr
> Ay [ 0(r)b(r)(gec — €)dry|lull
> lull
= HQ.
And so, we have from (8) and choice of e,
Tu(n) > /0 < )\/ k(s,r)b(r)g(u(r))dr) ds
> )\'y/ 0(s —€) [—)\/ k(s,r)b(r)g(u(r))dr} ds
> /\7/ 0(s — €)Hads
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vV
>
5

2 / 0(5)a(s) (oo — €) Hads

v

Hy

]

Hence, ||Tu|| > ||u]]. So, if we set

then
|Tu|| > ||u||, for u € P N OQ,. (12)

Applying Theorem 2.1 to (11) and (12), we obtain that 7" has a fixed point u €
PN (Q\ Q). As such, and with v defined by

wwz—yék@$M$mw®wa

the pair (u,v) is a desired solution of (1), (2) for the given A. The proof is complete.[]
Prior to our next result, we introduce another hypothesis.
(D) g(0) =0 and f is an increasing function.

We now define positive numbers L3 and L, by

Ly = max{ {72 /n 1 0(r)a(r) fodr} , [72 /n 1 H(T)a(r)godr} 1},
Ly := min{[ /0 10(r)a(r)foodr} , { /O 10(T)b(r)goodr}_l}.

Theorem 3.2 Assume conditions (A)—(D) are satisfied. Then, for each A satisfying

-1

and
-1

Ly < A < Ly, (13)
there exists a pair (u,v) satisfying (1), (2) such that u(xz) > 0 and v(z) >0 on (0,1).

Proof. Let A be as in (13). And let € > 0 be chosen such that

mmﬂffwmmwwﬂm},Vﬂﬁmwmwwwy}gA

EJQTDE, 2007 No. 18, p. 7

-1



and

-1

A < min { { /0 1 0(r)a(r)(fx + e)dr]

, {/01 O(7)b(1)(goo + e)dr] _1} .

Let T be the cone preserving, completely continuous operator that was defined by
(10).
From the definitions of fy and gy, there exists H; > 0 such that

f(z) > (fo—€)z and g(z) > (9o — €)z, 0<az < Hj.
Now ¢(0) = 0 and so there exists 0 < Hy < H; such that
H,
Ji 0(r)b(r)dr
Choose u € P with ||u]| = Hy. Then

Ag(z) < 0<xz<H,.

9

—)\/O k(s,m)b(r)g(u(r))dr < X

IN
>

VAN
=

Then, by (8) and (D)

Tu(n) ZA¢A¥@MMf@nL¥vWﬂmmmeds

1
ZM/
n

>

@MQ%—@M/GMWWWMMMS

v
>~
5
3\}:
D

@mmumfnffewwm@—awMMs

v

Ay/e@wmﬁ—amws

V
>
5

2/9®Mﬂh—%w%

v
=
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So, [|Tu|| > [|ul|. If we put
0 = {ZL‘ eB | ||ZL'|| < HQ},

then
| Tul| > ||u||, for u e P N OQy. (14)

Next, by definitions of f. and g.., there exists H, such that
f(2) < (fso + )z and g(z) < (goo + €)x, x> H.

There are two cases, (a) g is bounded, and (b) ¢ is unbounded.
For case (a), suppose N > 0 is such that g(z) < N for all 0 < z < co. Then, for
ueP

Y /0 k(s 1)b(r)g(u(r))dr < N /0 0(r)b(r)dr-
Let )

M = max{f(x) |0<x< N)\/O H(T)b(r)d'r’} )
and let

Hy > max {2H2, M /0 1 e(s)a(s)ds} .

Then, for u € P with ||u|| = Hs,

Tu(t)

IA

A /o 0(s)a(s)Mds
Hj

el

IA

so that ||[Tul| < ||ul|. If
Oy ={z € B |z] < Hs},

then
|Tu|| < ||u||, for u € PN OQ,. (
For case (b), there exists Hs > max{2H,, H,} such that g(z) < g(Hs), for 0 <
Hj. Similarly, there exists Hy > maX{H3,)\f01 H(T)b(r)g(Hg)dr)} such that f(x)
f(Hy), for 0 < x < Hy. Choosing u € P with ||u|| = Hy, we have by (D) that

15)
<
<

Tu(t) < A /0 10(5)@(3) f (A /0 1 H(T)b(r)g(Hg)dr) ds
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IN

A /0 0(s)a(s) f (H,)ds

IN

)\/0 0(s)a(s)ds(foo + €)Ha
H,

[l

IN

and so ||Tu|| < ||ul|. For this case, if we let

then

Q ={z eB| |zl < Ha},

| Tu|| < ||u||, for u e P N Q. (16)

In either of the cases, application of part (ii) of Theorem 2.1 yields a fixed point u

of T belonging to P N (2 \ 1), which in turn yields a pair (u,v) satisfying (1), (2) for

the chosen value of A\. The proof is complete. O
References
[1] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive Solutions of Differential,

2]

[5]

[6]

[7]

Difference and Integral Equations, Kluwer, Dordrecht, 1999.

R. P. Agarwal and F. H. Wong, Existence of positive solutions for non-positive
higher order BVPs, Comput. Appl. Math. 88 (1998), 3-14.

M. Benchohra, S. Hamani, J. Henderson, S. K. Ntouyas and A. Ouahab, Positive
solutions for systems of nonlinear eigenvalue problems, Global J. Math. Anal. 1
(2007), 19-28.

P. Eloe and B. Ahmad, Positive solutions of a nonlinear nth order boundary value
problem with nonlocal conditions, Appl. Math. Lett. 18 (2005), 521-527.

L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differ-
ential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748.

W. Feng and J. R. L. Webb, Solvability of a three point nonlinear boundary value
problem at resonance, Nonlinear Anal. 30 (1997), 3227-3238.

J. R. Graef, J. Henderson and B. Yang, Positive solutions of a nonlinear higher
order boundary-value problem, Electron. J. Differential Equations 2007 (2007),
No. 45, 10 pp.

EJQTDE, 2007 No. 18, p. 10



8]

[9]

[10]

J. R. Graef and B. Yang, Boundary value problems for second order nonlinear
ordinary differential equations, Comm. Appl. Anal. 6 (2002), 273-288.

D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Aca-
demic Press, Orlando, 1988.

C. Gupta, A sharper condition for the solvability of a three-point second order
boundary value problem, J. Math. Anal. Appl. 205 (1997), 586-597.

X. Hao, L. Liu and Y. Wu, Positive solutions for nonlinear nth order singular
nonlocal boundary value problem, preprint.

J. Henderson and S. K. Ntouyas, Positive solutions for systems of nonlinear bound-
ary value problems, Nonlinear Studies, in press.

J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems,
J. Math. Anal. Appl. 208 (1997), 1051-1060.

J. Henderson and H. Wang, Nonlinear eigenvalue problems for quasilinear systems,
Computers Math. Appl. 49 (2005), 1941-1949.

J. Henderson and H. Wang, An eigenvalue problem for quasilinear systems, Rocky
Mountain. J. Math. 37 (2007), 215-228.

L. Hu and L. L. Wang, Multiple positive solutions of boundary value problems for
systems of nonlinear second order differential equations, J. Math. Anal. Appl., in
press.

G. Infante, Eigenvalues of some nonlocal boundary value problems, Proc. Edin-

burgh Math. Soc. 46 (2003), 75-86.

G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation,
Nonlin. Differ. Equ. Appl. 13 (2006), 249-261.

B. Liu, L. Liu and Y. Wu, Positive solutions for singular systems of three-point
boundary value problems, Computers Math. Appl. 53 (2007), 1429-1438.

D. Ma and W. Ge, Existence and iteration of positive pseudo-symmetric solutions
for a three-point second-order p-Laplacian BVP, Appl. Math. Lett. (2007), in press.

R. Y. Ma, Positive solutions of a nonlinear three-pointboundary value problem,
FElectron. J. Differential Equations 1999 (1999), No. 34, 8pp.

R. Y. Ma, Multiple nonnegative solutions of second order systems of boundary
value problems, Nonlinear Anal. 42 (2000), 1003-1010.

EJQTDE, 2007 No. 18, p. 11



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. Y. Ma and H. Y. Wong, On the existence of positive solutions of fourth-order
ordinary differential equations, Appl. Anal. 59 (1995), 225-231.

Y. Raffoul, Positive solutions of three-point nonlinear second order boundary value
problems, FElectron. J. Qual. Theory Differ. Equ. (2002), No. 15, 11pp.

H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal.
Appl. 281 (2003), 287-306.

J. R. L. Webb, Positive solutions of some three point boundary value problems
via fixed point index theory, Nonlinear Anal. 47 (2001), 4319-4332.

Z. L. Yang and J. X. Sun, Positive solutions of boundary value problems for
systems of nonlinear second order ordinary differential equations, Acta. Math.
Sinica 47 (2004), 111-118 (in Chinese).

Y. Yang, Existence of positive pseudo-symmetric solutions for one-dimensional
p-Laplacian boundary-value problems, Flectron. J. Differential Equations 2007
(2007), No. 70, 6pp.

S. L. Yu, F H. Wong, C. C. Yeh and S W. Lin, Existence of positive solutions for
n + 2 order p-Laplacian BVP, Computers Math. Appl. 53 (2007), 1367-1379.

Y. Zhou and Y. Xu, Positive solutions of three-point boundary value problems for
systems of nonlinear second order ordinary differential equations, J. Math. Anal.
Appl. 320 (2006), 578-590.

(Received June 12, 2007)

EJQTDE, 2007 No. 18, p. 12



