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Abstract. An existence result of a solution for a class of nonlinear parabolic
systems is established. The data belong to L1 and no growth assumption is
made on the nonlinearities.

1. Introduction

In the present paper we establish an existence result of a renormalized solution
for a class of nonlinear parabolic systems of the type

∂u

∂t
− div

(

a(x, u,∇u) + Φ(u)
)

+ f1(x, u, v) = 0 in (0, T ) × Ω ;(1.1)

∂v

∂t
− div

(

a(x, v,∇v) + Φ(v)
)

+ f2(x, u, v) = 0 in (0, T )× Ω ;(1.2)

u = v = 0 on (0, T ) × ∂Ω ;(1.3)

u(t = 0) = u0 in Ω.(1.4)

v(t = 0) = v0 in Ω.(1.5)

In Problem (1.1)-(1.5) the framework is the following : Ω is a bounded domain of
RN , (N ≥ 1), T is a positive real number while the data u0 and v0 in L1(Ω). The
operator −div(a(x, u, Du)) is a Leray-Lions operator which is coercive and which
grows like |Du|p−1 with respect to Du, but which is not restricted by any growth
condition with respect to u (see assumptions (2.1), (2.2), (2.3) and (2.4) of Section
2.). The function Φ, f1 and f2 are just assumed to be continuous on R.

When Problem (1.1)-(1.5) is investigated there is difficulty is due to the facts
that the data u0 and v0 only belong to L1 and the function a(x, u, Du), Φ(u),
f1(x, u, v) and f2(x, u, v) does not belong (L1

loc((0, T ) × Ω))N in general, so that
proving existence of a weak solution (i.e. in the distribution meaning) seems to be
an arduous task. To overcome this difficulty we use in this paper the framework of
renormalized solutions. This notion was introduced by Lions and Di Perna [22] for
the study of Boltzmann equation (see also P.-L. Lions [17] for a few applications to
fluid mechanics models). This notion was then adapted to elliptic vesion of (1.1),
(1.2), (1.3) in Boccardo, J.-L. Diaz, D. Giachetti, F. Murat [10], in P.-L. Lions and
F. Murat [19] and F. Murat [19], [20]. At the same time the equivalent notion of
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entropy solutions has been developed independently by Bénilan and al. [2] for the
study of nonlinear elliptic problems.

As far as the parabolic equation case (1.1)-(1.5), (with, fi(x, u, v) = f ∈ L1(Ω×
(0, T ))) is concerned and still in the framework of renormalized solutions, the ex-
istence and uniqueness has been proved in D. Blanchard, F. Murat and H. Red-
wane [5] (see also A. Porretta [21] and H. Redwane [23]) in the case where fi(x, u, v)

is replaced by f + div(g) (where g belong Lp′

(Q)
N

). In the case where a(t, x, s, ξ)
is independant of s, Φ = 0 and g = 0, existence and uniqueness has been estab-
lished in D. Blanchard [3] ; D. Blanchard and F. Murat [4], and in the case where
a(t, x, s, ξ) is independent of s and linear with respect to ξ, existence and uniqueness
has been established in D. Blanchard and H. Redwane [7].

In the case where Φ = 0 and where the operator 4pu = div(|∇u|p−2∇u)
p-Laplacian replaces a nonlinear term div(a(x, s, ξ)), existence of a solution for
nonlinear parabolic systems (1.1)-(1.5) is investigated in El Ouardi, A. El Hachimi
( [14] [15]), in Marion [18] and in A. Eden and all [1] (see also L. Dung [12]), where
an existence result of as (usual) weak solution is proved.

With respect to the previous ones, the originality of the present work lies on the
noncontrolled growth of the function a(x, s, ξ) with respect to s, and the function
Φ, f1 and f2 are just assumed to be continuous on R, and u0, v0 are just assumed
belong to L1(Ω).

The paper is organized as follows : Section 2 is devoted to specify the assumptions
on a(x, s, ξ), Φ, f1, f2, u0 and v0 needed in the present study and gives the
definition of a renormalized solution of (1.1)-(1.5). In Section 3 (Theorem 3.0.4)
we establish the existence of such a solution.

2. Assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true : Ω
is a bounded open set on R

N (N ≥ 1), T > 0 is given and we set Q = Ω × (0, T ),
for i = 1, 2

a : Ω × R × R
N → R

N is a Carathéodory function,(2.1)

a(x, s, ξ).ξ ≥ α|ξ|p(2.2)

for almost every x ∈ Ω, for every s ∈ R, for every ξ ∈ R
N , where α > 0 given real

number.
For any K > 0, there exists βK > 0 and a function CK in Lp′

(Ω) such that

|a(x, s, ξ)| ≤ CK(x) + βK |ξ|p−1(2.3)

for almost every x ∈ Ω, for every s such that |s| ≤ K, and for every ξ ∈ R
N

[a(x, s, ξ) − a(x, s, ξ′)][ξ − ξ′] ≥ 0,(2.4)

for any s ∈ R, for any (ξ, ξ′) ∈ R
2N and for almost every x ∈ Ω.

Φ : R → R
N is a continuous function(2.5)
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For i = 1, 2

fi : Ω × R × R → R is a Carathéodory function,(2.6)

f1(x, 0, s) = f2(x, s, 0) = 0 a.e. x ∈ Ω, ∀s ∈ R.

For almost every x ∈ Ω, for every s1, s2 ∈ R :

sign(s1)f1(x, s1, s2) ≥ 0 and sign(s2)f2(x, s1, s2) ≥ 0(2.7)

For any K > 0, there exists σK > 0 and a function FK in L1(Ω) such that

|f1(x, s1, s2)| ≤ FK(x) + σK |s2|(2.8)

for almost every x ∈ Ω, for every s1 such that |s1| ≤ K, and for every s2 ∈ R.
For any K > 0, there exists λK > 0 and a function GK in L1(Ω) such that

|f2(x, s1, s2)| ≤ GK(x) + λK |s1|(2.9)

for almost every x ∈ Ω, for every s2 such that |s2| ≤ K, and for every s1 ∈ R.

(u0, v0) ∈ L1(Ω) × L1(Ω)(2.10)

Remark 2.0.1. As already mentioned in the introduction Problem (1.1)-(1.5) does
not admit a weak solution under assumptions (2.1)-(2.10) (even when f1 = f2 ≡ 0)
since the growths of a(u, Du) and Φ(u) are not controlled with respect to u (so
that these fields are not in general defined as distributions, even when u belongs
Lp(0, T ; W 1,p

0 (Ω))).
Throughout this paper and for any non negative real number K we denote by

TK(r) = min(K, max(r,−K)) the truncation function at height K. For any mea-
surable subset E of Q, we denote by meas(E) the Lebesgue measure of E. For any
measurable function v defined on Q and for any real number s, χ{v<s} (respectively,
χ{v=s}, χ{v>s}) is the characteristic function of the set {(x, t) ∈ Q ; v(x, t) < s}
(respectively, {(x, t) ∈ Q ; v(x, t) = s}, {(x, t) ∈ Q ; v(x, t) > s}). The definition
of a renormalized solution for Problem (1.1)-(1.5) can be stated as follows.

Definition 2.0.2. A couple of functions (u, v) defined on Q is called a renormalized
solution of Problem (1.1)-(1.5) if u and v satisfy :

(2.11) (TK(u), TK(v)) ∈ Lp(0, T ; W 1,p
0 (Ω))2 and (u, v) ∈ L∞(0, T ; L1(Ω))2 ;

for any K ≥ 0.

(2.12)

∫

{(t,x)∈Q ; n≤|u(x,t)|≤n+1}

a(x, u, Du)Du dxdt −→ 0 as n → +∞ ; ;

(2.13)

∫

{(t,x)∈Q ; n≤|v(x,t)|≤n+1}

a(x, v, Dv)Dv dxdt −→ 0 as n → +∞ ;

and if, for every function S in W 2,∞(R) which is piecewise C1 and such that S′ has
a compact support, we have

(2.14)
∂S(u)

∂t
− div(S′(u)a(x, u, Du)) + S′′(u)a(x, u, Du)Du

− div(S′(u)Φ(u)) + S′′(u)Φ(u)Du + f1(x, u, v)S′(u) = 0 in D′(Q) ;
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and

(2.15)
∂S(v)

∂t
− div(S′(v)a(x, v, Dv)) + S′′(v)a(x, v, Dv)Dv

− div(S′(v)Φ(v)) + S′′(v)Φ(v)Dv + f2(x, u, v)S′(v) = 0 in D′(Q) ;

(2.16) S(u)(t = 0) = S(u0) and S(v)(t = 0) = S(v0) in Ω.

The following remarks are concerned with a few comments on definition 2.0.2.

Remark 2.0.3. Equation (2.14) (and (2.15)) is formally obtained through pointwise
multiplication of equation (1.1) by S′(u) (and equation (1.2) by S′(v)). Note that
in definition 2.0.2, Du is not defined even as a distribution, but that due to (2.11)

each term in (2.14) (and (2.15)) has a meaning in L1(Q) + Lp′

(0, T ; W−1,p′

(Ω)).
Indeed if K is such that suppS′ ⊂ [−K, K], the following identifications are

made in (2.14) (and in (2.15)) :
? S(u) belongs to L∞(Q) since S is a bounded function.
? S′(u)a(u, Du) identifies with S′(u)a(TK(u), DTK(u)) a.e. in Q. Since indeed

|TK(u)| ≤ K a.e. in Q, assumptions (2.1) and (2.3) imply that
∣

∣

∣
a(TK(u), DTK(u))

∣

∣

∣
≤ CK(t, x) + βK |DTK(u)|p−1 a.e. in Q.

As a consequence of (2.11) and of S′(u) ∈ L∞(Q), it follows that

S′(u)a(TK(u), DTK(u)) ∈ (Lp′

(Q))N .

? S′′(u)a(u, Du)Du identifies with S′′(u)a(TK(u), DTK(u))DTK(u) and in view
of (2.1), (2.3) and (2.11) one has

S′′(u)a(TK(u), DTK(u))DTK(u) ∈ L1(Q).

? S′(u)Φ(u) and S′′(u)Φ(u)Du respectively identify with S′(u)Φ(TK(u)) and
S′′(u)Φ(TK(u))DTK(u). Due to the properties of S and (2.5), the functions S′, S′′

and Φ◦TK are bounded on R so that (2.11) implies that S′(u)Φ(TK(u)) ∈ (L∞(Q))N ,
and S′′(u)Φ(TK(u))DTK(u) ∈ Lp(Q).

? S′(u)f1(x, u, v) identifies with S′(u)f1(x, TK(u), v) a.e. in Q. Since indeed
|TK(u)| ≤ K a.e. in Q, assumptions (2.8) imply that

∣

∣

∣
f1(x, TK(u), v)

∣

∣

∣
≤ FK(x) + σK |v| a.e. in Q.

As a consequence of (2.11) and of S′(u) ∈ L∞(Q), it follows that

S′(u)f1(x, TK(u), v) ∈ L1(Q).

The above considerations show that equation (2.14) takes place in D′(Q) and

that ∂S(u)
∂t belongs to Lp′

(0, T ; W−1,p′

(Ω))+L1(Q), which in turn implies that ∂S(u)
∂t

belongs to L1(0, T ; W−1,s(Ω)) for all s < inf(p′, N
N−1 ). It follows that S(u) belongs

to C0([0, T ]; W−1,s(Ω)) so that the initial condition (2.16) makes sense. The same
holds also for v.
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3. Existence result

This section is devoted to establish the following existence theorem.

Theorem 3.0.4. Under assumptions (2.1)-(2.10) there exists at least a renormal-
ized solution (u, v) of Problem (1.1)-(1.5).

Proof. of Theorem 3.0.4. The proof is divided into 9 steps. In Step1, we introduce
an approximate problem. Step 2 is devoted to establish a few a priori estimates.
In Step 3, the limit (u, v) of the approximate solutions (uε, vε) is introduced and
is shown of (u, v) belongs to L∞(0, T ; L1(Ω))2 and to satisfy (2.11). In Step 4, we
define a time regularization of the field (TK(u), TK(v)) and we establish Lemma
3.0.5, which a allows us to control the parabolic contribution that arises in the
monotonicity method when passing to the limit. Step 5 is devoted to prove that an
energy estimate (Lemma 3.0.6) which is a key point for the monotonicity arguments
that are developed in Step 6 and Step 7. In Step 8, we prove that u satisfies (2.12)
and v satisfies (2.13). At last, Step 9 is devoted to prove that (u, v) satisfies (2.14),
(2.15) and (2.16) of definition 2.0.2 �

? Step 1. Let us introduce the following regularization of the data :

(3.1) aε(x, s, ξ) = a(x, T 1

ε
(s), ξ) a.e. in Ω, ∀s ∈ R, ∀ξ ∈ R

N ;

(3.2) Φε is a lipschitz continuous bounded function from R into R
N

such that Φε uniformly converges to Φ on any compact subset of R as ε tends to 0.

(3.3) fε
1 (x, s1, s2) = f1(x, T 1

ε
(s1), s2) a.e. in Ω, ∀s1, s2 ∈ R ;

(3.4) fε
2 (x, s1, s2) = f2(x, s1, T 1

ε
(s2)) a.e. in Ω, ∀s1, s2 ∈ R ;

(3.5) uε
0 and vε

0 are a sequence of C∞
0 (Ω)- functions such that

uε
0 → u0 in L1(Ω) and vε

0 → v0 in L1(Ω)

as ε tends to 0.
Let us now consider the following regularized problem.

∂uε

∂t
− div

(

aε(x, uε,∇uε) + Φε(u
ε)

)

+ fε
1 (x, uε, vε) = 0 in Q ;(3.6)

∂vε

∂t
− div

(

aε(x, vε,∇vε) + Φε(v
ε)

)

+ fε
2 (x, uε, vε) = 0 in Q ;(3.7)

uε = vε = 0 on (0, T )× ∂Ω ;(3.8)

uε(t = 0) = uε
0 in Ω.(3.9)

vε(t = 0) = vε
0 in Ω.(3.10)

In view of (2.3), (2.8) and (2.9), aε, fε
1 and fε

1 satisfiy : there exists Cε ∈

Lp′

(Ω), Fε ∈ L1(Ω), Gε ∈ L1(Ω) and βε > 0, σε > 0, λε > 0, such that

|aε(x, s, ξ)| ≤ Cε(x) + βε|ξ|
p−1 a.e. in x ∈ Ω, ∀s ∈ R, ∀ξ ∈ R

N .

|fε
1 (x, s1, s2)| ≤ Fε(x) + σε |s2| a.e. in x ∈ Ω, ∀s1, s2 ∈ R.
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and
|fε

2 (x, s1, s2)| ≤ Gε(x) + λε |s1| a.e. in x ∈ Ω, ∀s1, s2 ∈ R.

As a consequence, proving existence of a weak solution (uε, vε) ∈
(

Lp(0, T ; W 1,p
0 (Ω))

)2

of (3.6)-(3.10) is an easy task (see e.g. [1], [14] and [15]).

? Step 2. The estimates derived in this step rely on usual techniques for problems
of type (3.6)-(3.10) and we just sketch the proof of them (the reader is referred
to [3], [4], [7], [9], [5], [6] or to [10], [19], [20] for elliptic versions of (3.6)-(3.10)).

Using TK(uε) as a test function in (3.6) leads to

(3.11)

∫

Ω

T
ε

K(uε)(t) dx +

∫ t

0

∫

Ω

aε(x, uε, Duε)DTK(uε) dx ds

+

∫ t

0

∫

Ω

Φε(u
ε)DTK(uε) dx ds +

∫ t

0

∫

Ω

fε
1 (x, uε, vε)TK(uε) dx ds =

∫

Ω

T
ε

K(uε
0) dx

for almost every t in (0, T ), and where

T
ε

K(r) =

∫ r

0

TK(s) ds =

{

r2

2 if |r| ≤ K

K |r| − K2

2 if |r| ≥ K

The Lipschitz character of Φε, Stokes formula together with the boundary con-
dition (3.8) make it possible to obtain

(3.12)

∫ t

0

∫

Ω

Φε(u
ε)DTK(uε) dx ds = 0,

for almost any t ∈ (0, T ).

Since aε satisfies (2.2), fε
1 satisfies (2.7) and the properties of T

ε

K and uε
0, permit

to deduce from (3.11) that

(3.13) TK(uε) is bounded in Lp(0, T ; W 1,p
0 (Ω))

independently of ε for any K ≥ 0.
Proceeding as in [4], [7] [5] and [6] that for any S ∈ W 2,∞(R) such that S′ is

compact (suppS′ ⊂ [−K, K])

(3.14) S(uε) is bounded in Lp(0, T ; W 1,p
0 (Ω))

and

(3.15)
∂S(uε)

∂t
is bounded in L1(Q) + Lp′

(0, T ; W−1,p′

(Ω))

independently of ε, as soon as ε < 1
K .

Now for fixed K > 0 : aε(TK(uε), DTK(uε)) = a(TK(uε), DTK(uε)) a.e. in Q

as soon as ε < 1
K , while assumption (2.3) gives
∣

∣

∣
aε(TK(uε), DTK(uε))

∣

∣

∣
≤ CK(x) + βK |DTK(uε)|p−1

where βK > 0 and CK ∈ Lp′

(Q). In view (3.13), we deduce that,

(3.16) a
(

TK(uε), DTK(uε)
)

is bounded in (Lp′

(Q))N .

independently of ε for ε < 1
K .
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For any integer n ≥ 1, consider the Lipschitz continuous function θn defined
through

θn(r) = Tn+1(r) − Tn(r)

Remark that ‖θn‖L∞(R) ≤ 1 for any n ≥ 1 and that θn(r) → 0 for any r when n

tends to infinity.
Using the admissible test function θn(uε) in (3.6) leads to

(3.17)

∫

Ω

θn(uε)(t) dx +

∫ t

0

∫

Ω

aε(u
ε, Duε)Dθn(uε) dx ds

+

∫ t

0

∫

Ω

Φε(u
ε)Dθn(uε) dx ds +

∫ t

0

∫

Ω

fε
1 (x, uε, vε)θn(uε) dx ds =

∫

Ω

θn(uε
0) dx,

for almost any t in (0, T ) and where θn(r) =

∫ r

0

θn(s) ds.

The Lipschitz character of Φε, Stokes formula together with boundary condition
(3.8) allow to obtain

(3.18)

∫ t

0

∫

Ω

Φε(u
ε)Dθn(uε) dx ds = 0.

Since θn(.) ≥ 0, fε
1 satisfies (2.7), we have

(3.19)

∫ t

0

∫

Ω

a(uε, Duε)Dθn(uε) dx ds ≤

∫

Ω

θn(uε
0) dx,

for almost t ∈ (0, T ) and for ε < 1
n+1 .

? Step 3. Arguing again as in [4], [7] [5] and [6] estimates (3.14), (3.15) imply
that, for a subsequence still indexed by ε,

(3.20) uε converges almost every where to u in Q,

and with the help of (3.13),

(3.21) TK(uε) converges weakly to TK(u) in Lp(0, T ; W 1,p
0 (Ω)),

(3.22) θn(uε) ⇀ θn(u) weakly in Lp(0, T ; W 1,p
0 (Ω))

(3.23) aε

(

TK(uε), DTK(uε)
)

⇀ XK weakly in (Lp′

(Q))N .

The same holds for vε :

(3.24) vε converges almost every where to v in Q,

(3.25) TK(vε) converges weakly to TK(v) in Lp(0, T ; W 1,p
0 (Ω)),

(3.26) θn(vε) ⇀ θn(v) weakly in Lp(0, T ; W 1,p
0 (Ω))

(3.27) aε

(

TK(vε), DTK(vε)
)

⇀ YK weakly in (Lp′

(Q))N

as ε tends to 0 for any K > 0 and any n ≥ 1 and where for any K > 0, XK , YK

belongs to (Lp′

(Q))N .
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We now establish that u and v belongs to L∞(0, T ; L1(Ω)). To this end, recalling
(2.7), (3.5), (3.12) and (3.20) allows to pass to the limit-inf in (3.11) as ε tends to
0 and to obtain

∫

Ω

TK(u)(t) dx ≤ K ‖u0‖L1(Ω).

Due to the definition of TK , we deduce from the above inequality that

K

∫

Ω

|u(x, t)| dx ≤
3K2

2
mes(Ω) + K ‖u0‖L1(Ω)

for almost any t ∈ (0, T ), which shows that u belongs to L∞(0, T ; L1(Ω)).
The same holds for v belongs to L∞(0, T ; L1(Ω)).
We are now in a position to exploit (3.19). Due to the definition of θn we have

a(uε, Duε)Dθn(uε) = a(uε, Duε)Duεχ{n≤|uε|≤n+1} ≥ α |Dθn(uε)|p a.e. in Q

Inequality (3.19), the weak convergence (3.22) and the pointwise convergence of uε
0

to u0 then imply that

α

∫

Q

|Dθn(u)|p dx dt ≤

∫

Ω

θn(u0) dx.

Since θn and θn both converge to zero everywhere as n goes to zero while

|θn(u)| ≤ 1 and |θn(u)| ≤ |u0| ∈ L1(Ω)

the Lebesgue’s convergence theorem permits to conclude that

(3.28) lim
n→+∞

∫

{n≤|u|≤n+1}

|Du|p dx dt = 0.

and

(3.29) lim
n→+∞

lim
ε→0

∫

{n≤|uε|≤n+1}

aε(u
ε, Duε)Duε dx dt = 0.

? Step 4. This step is devoted to introduce for K ≥ 0 fixed, a time regularization
of the function TK(u) in order to perform the monotonicity method which will be
developed in Step 5 and Step 6. This kind of regularization has been first introduced
by R. Landes (see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231
in [16]). More recently, it has been exploited in [8] and [11] to solve a few nonlinear
evolution problems with L1 or measure data.

This specific time regularization of TK(u) (for fixed K ≥ 0) is defined as follows.
Let (vµ

0 )µ be a sequence of functions defined on Ω such that

(3.30) v
µ
0 ∈ L∞(Ω) ∩ W

1,p
0 (Ω) for all µ > 0,

(3.31) ‖vµ
0 ‖L∞(Ω) ≤ K ∀µ > 0,

(3.32) v
µ
0 → TK(u0) a.e. in Ω and

1

µ
‖Dv

µ
0 ‖

p
Lp(Ω) → 0, as µ → +∞.
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Existence of such a subsequence (vµ
0 )µ is easy to establish (see e.g. [13]). For

fixed K ≥ 0 and µ > 0, let us consider the unique solution TK(u)µ ∈ L∞(Q) ∩

Lp(0, T ; W 1,p
0 (Ω)) of the monotone problem :

(3.33)
∂TK(u)µ

∂t
+ µ

(

TK(u)µ − TK(u)
)

= 0 in D′(Q).

(3.34) TK(u)µ(t = 0) = v
µ
0 in Ω.

Remark that due to (3.33), we have for µ > 0 and K ≥ 0,

(3.35)
∂TK(u)µ

∂t
∈ Lp(0, T ; W 1,p

0 (Ω)).

The behavior of TK(u)µ as µ → +∞ is investigated in [16] (see also [11] and [13])
and we just recall here that (3.30)-(3.34) imply that

(3.36) TK(u)µ → TK(u) a.e. in Q ;

and in L∞(Q) weak ? and strongly in Lp(0, T ; W 1,p
0 (Ω)) as µ → +∞.

(3.37) ‖TK(u)µ‖L∞(Q) ≤ max
(

‖TK(u)‖L∞(Q) ; ‖vµ
0 ‖L∞(Ω)

)

≤ K

for any µ and any K ≥ 0.

The very definition of the sequence TK(u)µ for µ > 0 (and fixed K) allow to
establish the following lemma

Lemma 3.0.5. Let K ≥ 0 be fixed. Let S be an increasing C∞(R)-function such
that S(r) = r for |r| ≤ K and supp(S′) is compact. Then

lim
µ→+∞

lim
ε→0

∫ T

0

∫ s

0

〈∂S(uε)

∂t
,

(

TK(uε) − (TK(u))µ

)〉

dt ds ≥ 0

where 〈 , 〉 denotes the duality pairing between L1(Ω) + W−1,p′

(Ω) and L∞(Ω) ∩

W
1,p
0 (Ω).

Proof of Lemma 3.0.5 : The Lemma is proved in [5] (see Lemma 1, p.341).

? Step 5. In this step we prove the following lemma which is the key point in the
monotonocity arguments that will be developed in Step 6.

Lemma 3.0.6. The subsequence of uε defined is Step 3 satisfies for any K ≥ 0
(3.38)

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

a(uε, DTK(uε))DTK(uε) dx ds dt ≤

∫ T

0

∫ t

0

∫

Ω

XKDTK(u) dx ds dt

Proof of Lemma 3.0.6 : We first introduce a sequence of increasing C∞(R)-functions
Sn such that, for any n ≥ 1

(3.39) Sn(r) = r for |r| ≤ n,

(3.40) suppS′
n ⊂ [−(n + 1), (n + 1)],

(3.41) ‖S′′
n‖L∞(R) ≤ 1.

Pointwise multiplication of (3.6) by S′
n(uε) (which is licit) leads to
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(3.42)
∂Sn(uε)

∂t
− div

(

Sn(uε)aε(x, uε, Duε)
)

+ S′′
n(uε)aε(x, uε, Duε)Duε

− div
(

Φε(u
ε)S′

n(uε)
)

+ S′′
n(uε)Φε(u

ε) + fε
1 (x, uε, vε)S′

n(uε) = 0 in D′(Q).

We use the sequence TK(u)µ of approximations of TK(u) defined by (3.33), (3.34)
of Step 4 and plug the test function TK(uε) − TK(u)µ (for ε > 0 and µ > 0) in
(3.42). Through setting, for fixed K ≥ 0,

(3.43) W ε
µ = TK(uε) − TK(u)µ

we obtain upon integration over (0, t) and then over (0, T ) :

(3.44)
∫ T

0

∫ t

0

〈∂Sn(uε)

∂t
, W ε

µ

〉

ds dt +

∫ T

0

∫ t

0

∫

Ω

S′
n(uε)aε(x, uε, Duε)DW ε

µ dx ds dt

+

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)W ε

µaε(x, uε, Duε)Duε dx ds dt

+

∫ T

0

∫ t

0

∫

Ω

Φε(u
ε)S′

n(uε)DW ε
µ dx ds dt

+

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)W ε

µΦε(u
ε)Duε dx ds dt

+

∫ T

0

∫ t

0

∫

Ω

fε
1 (x, uε, vε)S′

n(uε)W ε
µ dx ds dt = 0

In the following we pass to the limit in (3.44) as ε tends to 0, then µ tends to
+∞ and then n tends to +∞, the real number K ≥ 0 being kept fixed. In order
to perform this task we prove below the following results for fixed K ≥ 0 :

(3.45) lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

〈∂Sn(uε)

∂t
, W ε

µ

〉

ds dt ≥ 0 for any n ≥ K,

(3.46) lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′
n(uε)Φε(u

ε)DW ε
µ dx ds dt = 0 for any n ≥ 1,

(3.47) lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)W ε

µΦε(u
ε)Duε dx ds dt = 0 for any n,

(3.48) lim
n→+∞

lim
µ→+∞

lim
ε→0

∣

∣

∣

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)W ε

µaε(u
ε, Duε)Duε dx ds dt

∣

∣

∣
= 0,

and

(3.49) lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

fε
1 (x, uε, vε)S′

n(uε)W ε
µ dx ds dt = 0 for any n ≥ 1.

Proof of (3.45). In view of the definition (3.43) of W ε
µ , lemma 3.0.5 applies with

S = Sn for fixed n ≥ K. As a consequence (3.45) holds true.
EJQTDE, 2007 No. 24, p. 10



Proof of (3.46). For fixed n ≥ 1, we have

(3.50) S′
n(uε)Φε(u

ε)DW ε
µ = S′

n(uε)Φε(Tn+1(u
ε))DW ε

µ

a.e. in Q, and for all ε ≤ 1
n+1 , and where suppS′

n ⊂ [−(n + 1), n + 1].

Since S′
n is smooth and bounded, (2.5), (3.2) and (3.20) lead to

(3.51) S′
n(uε)Φε(Tn+1(u

ε)) → S′
n(u)Φ(Tn+1(u))

a.e. in Q and in L∞(Q) weak ?, as ε tends to 0.
For fixed µ > 0, we have

(3.52) W ε
µ ⇀ TK(u) − TK(u)µ weakly in Lp(0, T ; W 1,p

0 (Ω))

and a.e. in Q and in L∞(Q) weak ?, as ε tends to 0.
As a consequence of (3.50), (3.51) and (3.52) we deduce that

(3.53) lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′
n(uε)Φε(u

ε)DW ε
µ dx ds dt

=

∫ T

0

∫ t

0

∫

Ω

S′
n(u)Φ(u)

[

DTK(u) − DTK(u)µ

]

dx ds dt

for any µ > 0.
Appealing now to (3.36) and passing to the limit as µ → +∞ in (3.53) allows to

conclude that (3.46) holds true.

Proof of (3.47). For fixed n ≥ 1, and by the same arguments that those that lead

to (3.50), we have

S′′
n(uε)Φε(u

ε)DuεW ε
µ = S′′

n(uε)Φε(Tn+1(u
ε))DTn+1(u

ε)W ε
µ a.e. in Q.

From (2.5), (3.2) and (3.20), it follows that for any µ > 0

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)Φε(u

ε)W ε
µ dx ds dt

=

∫ T

0

∫ t

0

∫

Ω

S′′
n(u)Φ(u)

[

DTK(u) − DTK(u)µ

]

dx ds dt

with the help of (3.36) passing to the limit, as µ tends to +∞, in the above equality
leads to (3.47).

Proof of (3.48). For any n ≥ 1 fixed, we have suppS′′
n ⊂ [−(n + 1),−n]∪ [n, n + 1].

As a consequence
∣

∣

∣

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)aε(u

ε, Duε)DuεW ε
µ dx ds dt

∣

∣

∣

≤ T ‖S′′
n‖L∞(R)‖W

ε
µ‖L∞(Q)

∫

{n≤|uε|≤n+1}

aε(u
ε, Duε)Duε dx dt,

for any n ≥ 1, and any µ > 0. The above inequality together with (3.37) and (3.41)
make it possible to obtain

(3.54) lim
µ→+∞

lim
ε→0

∣

∣

∣

∫ T

0

∫ t

0

∫

Ω

S′′
n(uε)aε(u

ε, Duε)DuεW ε
µ dx ds dt

∣

∣

∣
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≤ C lim
ε→0

∫

{n≤|uε|≤n+1}

aε(u
ε, Duε)Duε dx dt,

for any n ≥ 1, where C is a constant independent of n.
Appealing now to (3.29) permits to pass to the limit as n tends to +∞ in (3.54)

and to establish (3.48).

Proof of (3.49). For fixed n ≥ 1, we have

fε
1 (x, uε, vε)S′

n(uε) = f1(x, Tn+1(u
ε), vε)

a.e. in Q, and for all ε ≤ 1
n+1 .

In view (2.8), (3.20) and (3.24), Lebesgue’s convergence theorem implies that for
any µ > 0 and any n ≥ 1

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

fε
1 (x, uε, vε)S′

n(uε)W ε
µ dx ds dt

=

∫ T

0

∫ t

0

∫

Ω

f1(x, u, v)S′
n(u)

(

TK(u) − TK(u)µ

)

dx ds dt.

Now for fixed n ≥ 1, using (3.36) permits to pass to the limit as µ tends to +∞
in the above equality to obtain (3.49).

We now turn back to the proof of lemma 3.0.6, due to (3.44), (3.45), (3.46),
(3.47), (3.48) and (3.49), we are in a position to pass to the lim-sup when ε tends
to zero, then to the limit-sup when µ tends to +∞ and then to the limit as n tends
to +∞ in (3.44). We obtain using the definition of W ε

µ that for any K ≥ 0

lim
n→+∞

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′
n(uε)aε(u

ε, Duε)
(

DTK(uε) − DTK(u)µ

)

dx ds dt ≤ 0.

Since S′
n(uε)aε(u

ε, Duε)DTK(uε) = a(uε, Duε)DTK(uε) for ε ≤ 1
K and K ≤ n.

The above inequality implies that for K ≤ n

(3.55) lim
ε→0

∫ T

0

∫ t

0

∫

Ω

aε(u
ε, Duε)DTK(uε) dx ds dt

≤ lim
n→+∞

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′
n(uε)aε(u

ε, Duε)DTK(u)µ dx ds dt

The right hand side of (3.55) is computed as follows. In view (3.1) and (3.40), we
have for ε ≤ 1

n+1 .

S′
n(uε)aε(u

ε, Duε) = S′
n(uε)a

(

Tn+1(u
ε), DTn+1(u

ε)
)

a.e. in Q.

Due to (3.23) it follows that for fixed n ≥ 1

S′
n(uε)aε(u

ε, Duε) ⇀ S′
n(u)Xn+1 weakly in Lp′

(Q),

when ε tends to 0. The strong convergence of TK(u)µ to TK(u) in Lp(0, T ; W 1,p
0 (Ω))

as µ tends to +∞, then allows to conclude that

(3.56) lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫

Ω

S′
n(uε)aε(u

ε, Duε)DTK(u)µ dx ds dt
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=

∫ T

0

∫ t

0

∫

Ω

S′
n(u)Xn+1DTK(u) dx ds dt =

∫ T

0

∫ t

0

∫

Ω

Xn+1DTK(u) dx ds dt

as soon as K ≤ n, since S′
n(r) = 1 for |r| ≤ n. Now for K ≤ n we have

a
(

Tn+1(u
ε), DTn+1(u

ε)
)

χ{|uε|<K} = a
(

TK(uε), DTK(uε)
)

χ{|uε|<K} a.e. in Q

Passing to the limit as ε tends to 0, we obtain

(3.57) Xn+1χ{|u|<K} = XKχ{|u|<K} a.e. in Q − {|u| = K} for K ≤ n.

As a consequence of (3.57) we have for K ≤ n

(3.58) Xn+1DTK(u) = XKDTK(u) a.e. in Q.

Recalling (3.55), (3.56) and (3.58) allows to conclude (3.38) holds true and the
proof of lemma 3.0.6 is complete.

? Step 6. In this step we prove the following monotonicity estimate :

Lemma 3.0.7. The subsequence of uε defined in step 3 satisfies for any K ≥ 0

(3.59) lim
ε→0

∫ T

0

∫ t

0

∫

Ω

[

a(TK(uε), DTK(uε)) − a(TK(uε), DTK(u))
]

[

DTK(uε) − DTK(u)
]

dx ds dt = 0

Proof of Lemma 3.0.7. Let K ≥ 0 be fixed. The monotone character (2.4) of a(s, ξ)
with respect to ξ implies that

(3.60)

∫ T

0

∫ t

0

∫

Ω

[

a(TK(uε), DTK(uε)) − a(TK(uε), DTK(u))
]

[

DTK(uε) − DTK(u)
]

dx ds dt ≥ 0,

To pass to the limit-sup as ε tends to 0 in (3.60), let us remark that (2.1), (2.3)
and (3.20) imply that

a(TK(uε), DTK(u)) → a(TK(u), DTK(u)) a.e. in Q,

as ε tends to 0, and that
∣

∣

∣
a(TK(uε), DTK(u))

∣

∣

∣
≤ CK(t, x) + βK |DTK(u)|p−1

a.e. in Q, uniformly with respect to ε.
It follows that when ε tends to 0

(3.61) a
(

TK(uε), DTK(u)
)

→ a
(

TK(u), DTK(u)
)

strongly in (Lp′

(Q))N .

Using (3.38) of lemma (3.0.6), (3.21), (3.23) and (3.61) allow to pass to the lim-sup
as ε tends to zero in (3.60) and to obtain (3.59) of lemma 3.0.7.

? Step 7. In this step we identify the weak limit XK and we prove the weak L1

convergence of the ”truncated” energy a
(

TK(uε), DTK(uε)
)

DTK(uε) as ε tends to

0.
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Lemma 3.0.8. For fixed K ≥ 0, we have as ε tends to 0

(3.62) XK = a
(

TK(uε), DTK(uε)
)

a.e. in Q.

And as ε tends to 0
(3.63)

a
(

TK(uε), DTK(uε)
)

DTK(uε) ⇀ a
(

TK(u), DTK(u)
)

DTK(u) weakly in L1(Q).

Proof of Lemma (3.0.8). The proof is standard once we remark that for any K ≥ 0,
any 0 < ε < 1

K and any ξ ∈ R
N

aε(TK(uε), ξ) = a(TK(uε), ξ) = a 1

K
(TK(uε), ξ) a.e. in Q

which together with (3.21), (3.61) makes it possible to obtain from (3.59) of lemma
3.0.7

(3.64) lim
ε→0

∫ T

0

∫ t

0

∫

Ω

a 1

K

(

TK(uε), DTK(uε)
)

DTK(uε) dx ds dt

=

∫ T

0

∫ t

0

∫

Ω

σKDTK(u) dx ds dt.

Since, for fixed K > 0, the function a 1

K
(s, ξ) is continuous and bounded with

respect to s, the usual Minty’s argument applies in view (3.21), (3.23), and (3.64).
It follows that (3.62) holds true (the case K = 0 being trivial). In order to prove
(3.63), we observe that the monotone character of a (with respect to ξ) and (3.59)
give that for any K ≥ 0 and any T ′ < T

(3.65)
[

a(TK(uε), DTK(uε)) − a(TK(uε), DTK(u))
][

DTK(uε) − DTK(u)
]

→ 0

strongly in L1((0, T ′) × Ω) as ε tends to 0.
Moreover (3.21), (3.23), (3.61) and (3.62) imply that

a
(

TK(uε), DTK(uε)
)

DTK(u) ⇀ a
(

TK(u), DTK(u)
)

DTK(u) weakly in L1(Q),

a
(

TK(uε), DTK(u)
)

DTK(uε) ⇀ a
(

TK(u), DTK(u)
)

DTK(u) weakly in L1(Q),

and

a
(

TK(uε), DTK(u)
)

DTK(u) −→ a
(

TK(u), DTK(u)
)

DTK(u) strongly in L1(Q),

as tends to 0. Using the above convergence results in (3.65) shows that for any
K ≥ 0 and any T ′ < T

(3.66) a
(

TK(uε), DTK(uε)
)

DTK(uε) ⇀ a
(

TK(u), DTK(u)
)

DTK(u)

weakly in L1((0, T ′) × Ω) as tends to 0.
Remark that for T > T , we have (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8)

and (2.9) hold true with T in place of T , we can show that the convergence result
(3.66) is still in L1(Q) weak, namely that (3.63) holds true.
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? Step 8. In this step we prove that u satisfies (2.12) (and (2.13)). To this end,
remark that for any fixed n ≥ 0 one has

∫

{(t,x)/ n≤|uε|≤n+1}

a(uε, Duε)Duε dx dt

=

∫

Q

aε(u
ε, Duε)

[

DTn+1(u
ε) − DTn(uε)

]

dx dt

=

∫

Q

aε

(

Tn+1(u
ε), DTn+1(u

ε)
)

DTn+1(u
ε) dx dt

−

∫

Q

aε

(

Tn(uε), DTn(uε)
)

DTn(uε) dx dt

for ε < 1
n+1 .

According to (3.63), one is at liberty to pass to the limit as ε tends to 0 for fixed
n ≥ 0 and to obtain

(3.67) lim
ε→0

∫

{(t,x)/ n≤|uε|≤n+1}

aε(u
ε, Duε)Duε dx dt

=

∫

Q

a
(

Tn+1(u), DTn+1(u)
)

DTn+1(u) dx dt

−

∫

Q

a
(

Tn(u), DTn(u)
)

DTn(u) dx dt

=

∫

{(t,x)/ n≤|u|≤n+1}

a(u, Du)Du dxdt

Taking the limit as n tends to +∞ in (3.68) and using the estimate (3.67) show
that u satisfies (2.12), (and v satisfies (2.13)).

? Step 9. In this step, u is shown to satisfies (2.14) and (2.16 for u) (and v

is shown to satisfies (2.15) and (2.16) for v). Let S be a function in W 2,∞(R)
such that S′ has a compact support. Let K be a positive real number such that
suppS′ ⊂ [−K, K]. Pointwise multiplication of the approximate equation (3.6) by
S′(uε) (and (3.7) by S′(vε)) leads to

(3.68)
∂S(uε)

∂t
− div

(

S′(uε)aε(u
ε, Duε)

)

+ S′′(uε)aε(u
ε, Duε)Duε

− div
(

S′(uε)Φε(u
ε)

)

+ S′′(uε)Φε(u
ε)Duε + fε

1 (x, uε, vε)S′(uε) = 0 in D′(Q).

In what follows we pass to the limit as ε tends to 0 in each term of (3.68).

? Limit of ∂S(uε)
∂t

Since S is bounded and continuous, and S(uε) converges to S(u) a.e. in Q and

in L∞(Q) weak ?. Then ∂S(uε)
∂t converges to ∂S(u)

∂t in D′(Q) as ε tends to 0.

? Limit of − div
(

S′(uε)aε(u
ε, Duε)

)

Since suppS′ ⊂ [−K, K], we have for ε < 1
K ,
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S′(uε)aε(u
ε, Duε) = S′(uε)aε

(

TK(uε), DTK(uε)
)

a.e. in Q.

The pointwise convergence of uε to u as ε tends to 0, the bounded character of S,
(3.21) and (3.62) of Lemma (3.0.8) imply that

S′(uε)aε

(

TK(uε), DTK(uε)
)

⇀ S′(u)a
(

TK(u), DTK(u)
)

weakly in Lp′

(Q),

as ε tends to 0, because S′(u) = 0 for |u| ≥ K a.e. in Q. And the term

S′(u)a
(

TK(u), DTK(u)
)

= S′(u)a(u, Du) a.e. in Q.

? Limit of S′′(uε)aε(u
ε, Duε)Duε

Since suppS′′ ⊂ [−K, K], we have for ε ≤ 1
K?

S′′(uε)aε(u
ε, Duε)Duε = S′′(uε)aε

(

TK(uε), DTK(uε)
)

DTK(uε) a.e. in Q.

The pointwise convergence of S′′(uε) to S′′(u) as ε tends to 0, the bounded character
of S′′, TK and (3.63) of lemma (3.0.8) allow to conclude that

S′′(uε)aε(u
ε, Duε)Duε ⇀ S′′(u)a

(

TK(u), DTK(u)
)

DTK(u)

weakly in L1(Q), as ε tends to 0. And

S′′(u)a
(

TK(u), DTK(u)
)

DTK(u) = S′′(u)a(u, u)Du a.e. in Q.

? Limit of S′(uε)Φε(u
ε)

Since suppS′ ⊂ [−K, K], we have for ε ≤ 1
K?

S′(uε)Φε(u
ε) = S′(uε)Φε(TK(uε)) a.e. in Q.

As a consequence of (2.5), (3.2) and (3.20), it follows that for any 1 ≤ q < +∞

S′(uε)Φε(u
ε) → S′(u)Φ(TK(u)) strongly in Lq(Q),

as ε tends to 0. The term S′(u)Φ(TK(u)) is denoted by S′(u)Φ(u).

? Limit of S′′(uε)Φε(u
ε)Duε

Since S′ ∈ W 1,∞(R) with suppS′ ⊂ [−K, K], we have

S′′(uε)Φε(u
ε)Duε = Φε(TK(uε))DS′(uε) a.e. in Q,

we have, DS′(uε) converges to DS′(u) weakly in Lp(Q)
N

as ε tends to 0, while
Φε(TK(uε)) is uniformly bounded with respect to ε and converges a.e. in Q to
Φ(TK(u)) as ε tends to 0. Therefore

S′′(uε)Φε(u
ε)Duε ⇀ Φε(TK(uε))DS′(uε) weakly in Lp(Q).

? Limit of fε(x, uε, vε)S′(uε)
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Due to (2.6), (2.8), (3.3), (3.20) and (3.24), we have

fε(x, uε, vε)S′(uε) → f(x, u, v)S′(u) strongly in L1(Q),

as ε tends to 0.
As a consequence of the above convergence result, we are in a position to pass to

the limit as ε tends to 0 in equation (3.68) and to conclude that u satisfies (2.14),
(and v satisfies (2.15))

It remains to show that S(u) (and S(v)) satisfies the initial condition (2.16 for
u) (and (2.16 for v). To this end, firstly remark that, S being bounded, S(uε) is
bounded in L∞(Q). Secondly, (3.68) and the above considerations on the be-

havior of the terms of this equation show that ∂S(uε)
∂t is bounded in L1(Q) +

Lp′

(0, T ; W−1,p′

(Ω)). As a consequence, an Aubin’s type lemma (see, e.g, [24],
Corollary 4) implies that S(uε) lies in a compact set of C0([0, T ]; W−1,s(Ω)) for

any s < inf
(

p′, N
N−1

)

. It follows that, on one hand, S(uε)(t = 0) = S(uε
0) con-

verges to S(u)(t = 0) strongly in W−1,s(Ω). On the order hand, (3.5) and the
smoothness of S imply that S(uε

0) converges to S(u)(t = 0) strongly in Lq(Ω) for
all q < +∞. Then we conclude that

S(u)(t = 0) = S(u0) in Ω.

The same holds also for v

S(v)(t = 0) = S(v0) in Ω.

As a conclusion of step 3, step 8 and step 9, the proof of theorem 3.0.4 is complete.
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