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Abstract. This paper is addressed to showing the existence of insensitizing controls for
the one-dimensional Cahn-Hilliard type equation with a superlinear nonlinearity. We
solve this problem by reducing the original problem to a controllability problem. The
crucial point in this paper is an observability estimate for a linearized cascade system
of the Cahn-Hilliard type equation. In order to obtain this observability estimate, we
establish a global Carleman estimate for a fourth order parabolic operator.
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1 Introduction

SetI = (0,1), T > 0, and Q = I x (0,T). Let w and O be nonempty open subsets of I.
We consider the Cahn-Hilliard type equation posed on the finite interval I satisfying some
homogeneous boundary conditions and an initial condition, namely

Yt + Yxxxx +f(]/) = é + h}(w in Q,

y(0,t) =0=y(1,t) in (0,7), 1.1)
yx(0,1) = 0=y, (1,t) in (0,T), '
y(x,0) =y (x) + t2%(x) in I,
where f is a C! function defined on R verifying f” € L? (R), f(0) = 0 and
/
fo) (1.2)

lim ————~2
|S|1£>noo log(1+ | s |)

& € L2(Q) and y° € L%(I) are given, z° € L?(I) is unknown with HZOHLz(I) =1, 7 is a small
unknown real number, and / € L?(Q) is a control function to be determined. Here x,, denotes
the characteristic function of w.
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The Cahn-Hilliard equation is an equation of mathematical physics which describes the
process of phase separation, by which the two components of a binary fluid spontaneously
separate and form domains pure in each component. It arises as a phenomenological model
for isothermal phase separation in a binary alloy, see Cahn [7, 8] and Hilliard [20] for a
derivation, [15, 23, 27] for general analysis, and the reviews given in [16].

Let us define

1 T
d)(y(-w,r,h))zi/o/O|y(x,t,r,h) 2 dxdt,

where y(-, -, T, h) is the solution of (1.1) associated to T.
The following control problem is addressed: Does there exist a control & € L2(Q) such

that
dP(y(-, -, T, h))

dt
holds? The problem is interesting, and attracts many authors” attention. We call it insensitiz-

ing control problem. Next, we investigate the existence of insensitizing controls for ® about
the system (1.1), their definitions are as follows.

=0

=0

Definition 1.1. The control  is said to insensitize the functional @ if for every z° satisfying
112°]| 12(ry = 1, the corresponding solution y of (1.1) satisfies

oW T =0

The insensitizing control problem consists in finding a control function such that some
functional of the state is locally insensitive to the perturbations of these initial and boundary
data. The concept of insensitizing control was introduced by J. L. Lions [21]. Later on, Bodart
and Fabre proposed the weakened notion of ¢é—insensitizing control in [2]. A similar result
was proved by Teresa [12] in unbounded domains. The first results on the existence and non-
existence of insensitizing controls were proved in [13]. For more general nonlinearities, see
[3, 4, 5]. A similar result for wave equations was obtained in [11, 26].

The main purpose in our paper is to study the existence of insensitizing controls for the
Cahn-Hilliard equation. As far as we know, there is no insensitivity result for this equation.
In this sense, this is the first attempt to consider insensitizing controls problem for the Cahn-
Hilliard equation. In order to solve this problem, we establish a new observability estimate
(see Theorem 1.2).

Following the methods introduced in [21] and developed in [2, 11, 13, 26], one gets that the
existence of a control & insensitizing the functional ® along the solutions of (1.1) is equivalent
to the existence of a control 4 such that the solution (7, q) of the cascade system (1.3)—(1.4)

yt + yxxxx + f(y) ={+ th in Q,

y(0,t) =0=1y(1,¢) in (0,T), (13)
y,(0,t) =0=y,(11t) in (0,7), '
7(x,0) = (x) in I

—qt + Gxxx + f1(¥)9 = Yx0 in Q,

q(0,t) =0=¢q(1,1) in (0,7), 1.4
qx(0,£) = 0 = gx(1,¢) in (0,T),

qg(x,T) =0 in [
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satisfies
g(x,0) =0.

Namely, system (1.3)—(1.4) is null controllable. The null controllability has been widely in-
vestigated for the heat equation and there has been a great number of results (see for in-
stance [6, 22] and the references therein for a detailed account). To our best knowledge,
there have been limited publications on the controllability of higher order parabolic equations.
Among them, Diaz [14] considered the approximate controllability and non-approximate con-
trollability of higher order parabolic equations. The null boundary controllability for a one-
dimensional fourth order parabolic equation was studied in [6, 10]. Cerpa [9] considered the
local boundary controllability for an especial one-dimensional fourth order parabolic equation
(Kuramoto-Sivashinsky equation). Recently, Zhou [28] considered the null controllability for
one-dimensional semilinear fourth order parabolic equations.

In order to investigate system (1.3)—(1.4), we firstly consider the linearized system of (1.3)-
(1.4)

Yt + Yxxxx +aYy = ¢+ th in Q,

y(0,t) =0=y(1,¢) in (0,T), (15)
yx(0,£) =0 =yx(1,1) in (0,T),
y(x,0) = (=) in I
=gt + qxxxx +bg =yxo  inQ,
q(0,t) =0=¢q(1,¢) in (0,T), (1.6)
gx(0,) =0 = q.(1,¢) in (0,T),
g(x,T) =0 in I
where a,b € L®(Q).
The adjoint system of (1.5)—(1.6) is
Pt + Pxxxx + b(X, t)lﬂ =0 in Q/
p(0,t) =0=p(1,t) in (0,T), (1.7)
px(0,8) = 0 = py(1,1) in (0, T), '
p(x,0) = p°(x) in
—Zt + Zyxxx T+ a(x, t)Z = PXo in Q/
z(0,t) =0 =z(1,t) in (0,7), (18)
2:(0,1) = 0 = z,(1,1) in (0, T), '
z(x,T) =0 in I.

According to the duality argument, the observability estimate of (1.7)-(1.8) is important for
the insensitizing control problem.

Theorem 1.2. For every p° € L?(I), if (p,z) is the solution to (1.7)—(1.8), there exist M > 0 and
C(T) > 0, such that

/ e T2 dxdt < eC(T)(“”HLW(Q)JFHI’HL""(Q)H)/ 22 dx dt. (1.9)
Q wx(0,T)
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The following duality identity for the solutions of (1.5)—(1.6) and (1.7)—(1.8) holds
/Q(C+ hxw)zdxdt = /I (9(x,0)p°(x) — z(x,0)y°(x)) dx (1.10)

for every h € L2(Q), y° € L?(Q), p° € L?(Q). Indeed, multiplying (1.5) by z and integrating
by parts in account of the boundary and initial (final) conditions in (1.5)—(1.6) and (1.7)—(1.8),
we can get (1.10).

By the observability estimate (1.9) of the linearized system (1.5)—(1.6) and the fixed point
theorem, we have the following result:

Theorem 1.3. Let O and w be nonempty open subsets of I satisfying w N O # @ and y° = 0. Then
for any & € L2(Q) verifying e2 & € L2(Q), one can find a control function h € L2(Q) insensitizing
the functional ® along the solution of (1.1), where M is same as in Theorem 1.2.

Remark 1.4. In view of Theorem 1.3, we can obtain the null controllability of (1.3)—(1.4) with
the nonlinearities f(s) = o(s(log(|s|))) for |s| — oo. For the scalar Cahn-Hilliard type equa-
tion
Yt + Yxxex + F(y) = hxo in Q,
y(0,t) = 0 = y(1,¢) in (0,T),
yx(0,£) =0 =y,(1,¢) in (0,T),
y(x,0) =y°(x) in I

(1.11)

with nonlinearities such that F(s) = o(s(log% (s]))) for |s| — oo, it seems possible to obtain
the null controllability of (1.11). Indeed, following the same idea as in [18], we can choose a
small time T* < T and find a control & that drives the solution to zero at T*, then extend h by
zero to the rest interval [T*, T1.

However, for the system (1.3)—(1.4), since the existence of the nonhomogeneous term ¢, the
above method does not work. More precisely, even though we can obtain the null control-
lability of (1.3)—(1.4) at a small time T*, the zero control in [T*, T] cannot guarantee the null
controllability of (1.3)—(1.4) at T owing to ¢. According to the existent methods, the best result
for the nonlinearities in (1.3)—(1.4) we can obtain is f(s) = o(s(log(|s|))) for |s| — oo. The
key point is the estimate (4.7) in Section 4. The same reason can also be found in [3] which
considers the insensitizing controls for a heat equation.

The paper is organized as follows. In Section 2, we present some well-posedness results
by the classical semigroup theory, multipliers method and suitable energy estimates. Then,
we establish a Carleman estimate for the fourth order parabolic operator. The observability
estimate is established in Section 3. In Section 4, by means of the variational approach, the
observability estimate in the above section and Kakutani’s fixed point theorem, we establish
the existence of insensitizing controls for the Cahn-Hilliard equation.

2 Some preliminaries

In order to prove Theorem 1.2, we should establish a global Carleman estimate for a fourth
order parabolic operator.
Let p € C®(Q)) satisfy that p > 0in Q, ¥(0) = ¢(1) =0, [¢¥llc@ =1 | ¢« [> 0in O\wy,

_ g.“(tp(x)'*'s) — ek

Px(0) > 0and (1) < 0. For any given positive constants A and y, we set d(x, t) KT
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0(x,t) = M and @(x,t) = %, V(x,t) € Q. Let P be an operator
Py =Yt Yaxxxs

defined on U := {y € L?(0,T; H*(I)) | y(t,0) = y(t,1) = y:(t,0) = y«(t,1) = 0, t €
(0,T), Py € L2(0, T; LA(I))}.

Proposition 2.1. There exist four constants g > 1, Co > 0, C; > 0and C, > 0 such that for u = uo
and for every A > Co(T + T?) and y € U, we have

/Q (Alqof)z(y?  Vrae) + APO Yy + NGO, + A G70%2 + N 7072 ) dcdt

(2.1)
<G </ 0% Py|? dx dt —l—/ AN @”0%y* dx dt> )
Q Qw
Moreover,
/Q (Ailt(T - t)02<y% + y?cxxx) + /\til(T - t)ilezy?cxx + A3t73(T - t)7392y32cx
FASES(T — £)759212 + A7+7(T — t)’792y2> dx dt 2.2)

<G </ A@t7(T — t) "7y dxdt —1—/ 92|Py|2dxdt> .
wx(0,T) Q

Remark 2.2. A Carleman estimate for the fourth order parabolic operator was previously ob-
tained in [28]. Our Carleman estimate is a generalization to the result in [28]. More precisely,
we can also obtain the estimate for [, (%4092(]/% + V2ax) + A90%Y2,. )dx dt. We only sketch the
proof in the Appendix.

Now, we present a regularity result for the following system

Yt + Yxxxx + ay =g in Q/

y(0,t) =0=y(1,¢) in (0,7T), 2.3)
yx(0,£) =0 =yx(1,¢) in (0,7T),

y(x,0) =y (x) in I.

Proposition 2.3.

(i) If g € L*(0,T; L2(I)), a € L*(Q) and y° € L2(I), system (2.3) has a unique mild solution y in
C([0, T]; L*(I)) N L*(0, T; H3(I)). Moreover, there exists a constant C = C(T), such that

Hy"C([O,T];L2(I))ﬁLZ(O,T;Hg(I)) < CeCllalie@+1) (Hg”L2(O,T;L2(I)) + HVOHU(I)) .

(ii) If g € L>(0, T; L2(1)), a € L*(Q) and y° € H3(I), system (2.3) has a unique mild solution y in
C([0, TJ; H3(I)) N L2(0, T; H*(I)). Moreover, there exists a constant C = C(T), such that

||y||c([O,T};Hg(1))mL2(0,T;H4(1)) < CeClllallo)+1) <||8||L2(0,T;L2(1)) + HyOHHg(I)) .

Remark 2.4. By the classical semigroup theory, multipliers method and suitable energy esti-
mates [19, 24], we can obtain Proposition 2.3.
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3 Proof of Theorem 1.2

Applying the classical estimates for the parabolic equation to the system (1.7)—(1.8), we can

obtain the following lemma.
Lemma 3.1. System (1.7)—(1.8) has the following energy estimates

(i)

/Pz(fz)dx < APl t2=h) /P2(t1)dX, Vit < ty;
I I
(i1)
T
I2(6) Bagy < [ eCll=@ VD () 2pds, Vi € [0,T)

In particular, we have

/p <t+ )dx<e”bL°° %/p vt € [Z,?],

and hence,

On the other hand,

T @l +1) 5 T
12 Bxgyds < (T = ellli=ce z/ Ip&)opds, Vee |5.T],

thus
/ Z2dxds < e(”“”L""<Q>+1)T/ pzdxds.
Ix(L,1) Oox(L,1)

By the same method as in [5, Lemma 2.4], a simple calculation yields

Lemma 3.2. Set my = min (eSV — e"(l/’(")+3)> and My = max (e5P‘ — eﬂ(”’(x)”)).
xeQ) xeQ)

2AMg

(i) When A > 2M , the function e” 770 (T — t)~7 is decreasing in (0, T).
(ii) When A > 15T , we have A802t~15(T — #)715 < 230714y 88,

In particular, we have that for any t € (0, %),

2AM) 2AM, 2AM,

eif(T—f>t77(T—t)77 —e Tt 7 .e T(T[g (T t)

-7 2AM, -7
2AM, T - = /T
e (2) e (2)

_2AMy

=e 1 -C(T).

Proof of Theorem 1.2
We first assume that p° € H3(I).

(3.1)

(3.2)
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According to Proposition 2.1, we obtain that there exists a positive Ag, such that when
A > Ag

/A792t—7(T—t)—7p2dxdt+/ AQ*t°(T — ) p2 dx dt
Q Q
+/ /\362t—3(T—t)—3p§xdxdt+/ AMO*H YT — 1) 1p2, dxdt
Q Q
<C / N (T — )7 p*d dt+/62b 2d dt>
<c([ o VET - dxdes [ elepias

<c NTORET(T — )72 dxdt + - / N2 (T — 1) 7 p? d dt
wx(0,T) 2 /g

and
/ N2 7(T —t) 722 dxdt + / A t75(T — ) >Z2dxdt
Q Q
+ / ASO2t73(T — +) 322, dx dt + / AT — 1) 122, dxdt
Q Q
<C </ N2 7(T — ) 722 dx dt + / 0%|pxo — az|* dx dt>
wx(0,T) Q

<C (/ N2 7(T — t) 722 dx dt + ! / N2 (T — ) 722 dx dt + / 0% p*xo dx dt).
wx(0,T) 2.JQ Q
Then we have

/QA792t—7(T—t)—7p2dxdt+/QA592t—5(T—t)—5p§dxdt
+/ AQ273(T — ) 3p2, dxdt+/ APt YT — ) 1p2,  dxdt (3.3)
Q Q

<C N> 7(T —t) 7 p* dx dt
wx(0,T)

and
//\792t’7(T—t)’7zzdxdt—i—/ A% (T — t) 222 dx dt
Q Q
+/QA392t3(T—t)3z,%x dxdtdt+/QA92t1(T—t)1z§xxdxdt (3.4)

<C ( / N@247(T — £) 722 dx dt + / 62p%xo dx dt) :
wx(0,T) Q

Let us consider two open sets B; and B, such that By C B, C wN O, and let us set
u = A762t=7(T —t)~7. Consider a function & € Cy(I)such that0 < ¢; <1in I, ¢ = 1in By,
Supp Cl C B2 Cwn O/ ‘gll/x2|/ ‘C%%" |§11x/xz*(|/ |Clallo;92m(| c Loo(Q)

1 1 1




8 P. Gao

From (3.3), we can deduce that
/Q/\79%7(T — 1) p? dxdt+/QA592t5(T ) °p2 dx dt
+ /Q A3Q23(T — 1) 3p2, dxdt + /Q/\Gztl(T P2 dxdt

<C N> 7(T —t) " p* dx dt
B1 X(O,T)

<C N@* (T —t) " p* dx dt
Ox(0,T)

< C/ Gup - pxo dx dt
Q
=C /Q gl”P . (_Zt + Zxxxx + a(X, t)Z) dx dt
= C/Q <ZP (Gu)r+ (a—Db)zp - Cru+4zpxxx - (G1U)x + 62Pxx - (11) xx

+4zpy - (C1t)xxx + 2P (Clu)xxxx) dx dt
=Ch+bLh+L+1L+Is+1).
Since
&) = A7eXMt7(T — )7
|(&1u)e] < CAPP (T — 1) 7°¢,
|(Gau)x| < CA7ME7(T — 1) 77 |&1a| + CAPMES(T — 1) 756,
|(G1t)xx| < CA7EME7 (T — £) 77| G| + CASSM S (T — 1) 78|14
+C)\882)\at78(T ) 8§ —|—C/\9 2)uzt 9( ) 961
|(G1)xxx| < CA7 (T — 1) 7 (|G| + AETHT = £) 7 G1aa
H AT = 4) (G| + AT — 1) 28| + AN (T — 1) 73|
+ AT =) 72)5 | + AN (T = 1) 7 &)
[(114) xxax| < CEZM(/\gt_g(T - t)_9|‘§1xx| + Alot_lo(T - t)_10|‘:1x|
F AT — )& [+ A% (T — )78 Grne] + 1G100nn )

by the Cauchy-Schwartz inequality and following the ideas in [5], it holds that for sufficiently
large Ag

|I| = '/sz~ (Clu)tdxdt‘
<6 / N @247 (T — )7 p?¢, dx dt + C(6) / A2 1(T — £)~1228, dx dt,
0 0
|| = / (a—Db)zp- §1udxdt’
0

<6 / N2t (T — £)~7 2, dx dt + C(6) / N7 (T — 1) 7226, dx dt,
Q Q

|13’ = /szxxx'(glu)xdxdt’

<6 / AGEN(T — £)\p2, & dxdt + C(6) / AISG215(T — 4)=1520 0 dxdt,
Q Q
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|| = ‘/szxx . (§1u)xxdxdt’
< / A3Q2=3(T — 1) 3 p2. & dx dt + C(6) / A15Q2-15(T _ 1)=15,2y 0 dxdt,
Q Q
< 5/ ASQ25(T — 1) 528, dxdt+C(5)/ A15G215(T — 4)=1520 1 dxdt,
Q Q
’I6| = ‘/QZP : (glu)xxxx dxdt'
< / N2 (T — 1) 72, dx dt + C(6) / ABG213(T — 1) "122 0 dx dt
Q Q
with A > Aj. Thus
/Q)Fezﬂ(ir’— t) 7 p*dx dt + /Q/\592t5(T— ) Opdxdt
+/ A3Q273(T — ) 3p2, dxdt+/ M2 (T — 1) 1p2, dxdt
Q Q
< C(Il+12—|—13+14+15—|—16)
< 5</ N 7(T — )7 p2& dx dt + A%t (T — t) 2 p2& dx dt
Q
+/QA392t—3(T—t)—3p§x§1 dxdt+/Q/\92t—1(T—t)—lpixxgl dxdt)
+C(5) / A15924-15(T — 1) =152 du .
Q
Then we have
/ N2 7(T — )7 p?dx dt+/ ASQ2t75(T — ) 2p2 dx dt
Q Q
+ [ A3023(T — 1) 3p2 dxdt + | AG* (T —t)"1p2,, dxdt
pxx pxxx
Q Q
< C/ A2 (T — 1) 1522y, dx dt,
Q

namely,
/ 0%t~ 7(T —t) " p*dxdt < C/ A8 15(T — £) 1922 x, dux dt. (3.5)
Q Q

From (3.4) and (3.5), we can deduce that for sufficient large A

/ A0 7(T —t) 722 dx dt
Q

IN

C (/ N 7(T —t) 722 dx dt +/ 0%px% dxdt)
By x(0,T) Q

IN
@)

A0 7 (T — ) 722d dt+/\7/92t—7 T —t) " px3d dt>
(/Bﬂm (T— 1) 72 dx RSO

IN

C </ A70%t7(T — t) 7722 dx dt +/ A2 15(T — 1) 71522y, dx dt>
By %x(0,T) Q

< C(T)/Q/\1502t15(T—t)1522)(32 dx dt
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with A > Ay. Namely

/ 627 2dxdt < C(T / ASQ2415(T

— 1)

—-15.2
Z"XB,

dx dt.

(3.6)

Set A > A; := max {2M 1572 ,Ao} and My = % On the one hand, according to Lemma

8m0

3.2, (3.6) and the defmltlon of 6, we have

< C(T)/ 627 (T — t) 722 dx dt

< C(T) | *77(T —t) 72 dxdt

Byx(0,T)

On the other hand, from (3.1), (3.2) and (3.5), it holds that

/ e’gz2 dx dt
Ix(£,1)

< / 22 dx dt
Ix(3,T)

< S lallio()+1) / p?dx dt
- Ox(% T)
< LD lalli()+1) / p?dx dt
= x(31)

< €Dl () Hbllog) +1) / p? dx dt
Ix(5,25)

MH
2

< LD lallio(g) Hblls o) +1) /
Ix(T

W

AE)

0%t~ 7(T —

t)

< (€T (lall(g) +HIbllso ) +1) / 6247 (T — )7 p? dx dt
Ix(0,T)

< CDlallee(g) +11bllee () +1) / AB92+715(T —
Box(0,T)

Thus, in view of Lemma 3.2, we have

M
/ e’TAz2 dx dt
Q

M M
= e’TAzzdxdt—i— e~ 7 22 dx dt

1x(0,1) x(L,m

< LDl + Il +1) / ASG2E15(T — 1152 dy dt
B,x(0,T)

Finally, setting A = A1 in (3.7) and we define M = M,,.

< D) lallioo@)Hbll 1w 0)+1) / 22 dx dt.
Byx(0,T)

< C(T) ABO2t715(T — 1) "2 dx dt.

£) 1522 dx dt.

T dx dt

(3.7)

By a density argument, (3.7) holds for the solution (p,z) of (1.7)—(1.8) if the initial data
p® € L2(I). Indeed, we can choose a sequence {0} c Hi(1 ) such that p% — p° in Lz(I ). By

i) of Proposotion 2.3, we obtain that fQ -4 Z2dxdt — f e~ 22 dx dt and [, < (0T) Z2dxdt —
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Juox(o 1) Z° dx dt, where z, and z are the solutions of (1.7)~(1.8) with the initial data pj and p’,
respectively. Since [, e~ z2dxdt < C Jox o) z2 dx dt, by passing to the limit n — oo, (3.7)
holds for the initial data p® € L?(I).

4 Proof of Theorem 1.3

In this section, we set ¥° = 0. In order to establish the null controllability property of (1.3)-
(1.4), we firstly consider the null controllability property of (1.5)—(1.6).
We define the following functional:

Je: L2(I) = R

1 rT T
) =5 [ [ Zavdr+elpll + [ [ ezdra

where z is the solution of the adjoint system (1.7)—(1.8).
The following proposition ensures that the minimum of |, gives a control for the null
controllability property of (1.5)—(1.6).

Proposition 4.1. Given ¢ > 0. If p? is a minimum point of J. in L2(I) and 2 is the solution of
(1.7)—(1.8) with initial data p?, then h = 2. is a control for (1.5)—(1.6) such that

1ge(x, 0) [ 21y <& (41)

Proof. For reasons of simplicity, we denote ;38, Ze, qe by f)o, Z,q.
For any p! € L?(I) and s € R, the following inequality holds

0 < Je(sp' +p°) — JS(AO)

T
/ / sz! +29) (20)2> dxdt+s/ /Czldxdt
T2 0JI

4%p+pmz—wwmz)

2// —|—252le) dde—s/ /é‘z dx dt

+4WP+pmmwame,

where z! is the solution of (1. 7) (1.8) with initial data p'.
Since [|sp" + P°ll 121y = 18°lr2(ry < Islllp*ll12(1), we obtain

0< 3 [ (2@ v avat s [ [ ddt+elsllp i

Dividing by s > 0 and by passing to the limit s — 0, it holds that

o<// 294 &) dxdt +el|p* | 2 1)

The same calculations with s < 0 gives that

0<// (20 + ) dxdt + el p" | 2
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Namely,

L//‘ +Cdxﬁ'<dWHB

If we take h = Z in (1.3)—(1.4), by (1.10), we know

/Qzl(2|w+§)dxdt:/Iq(x,O)pl(x)dx.

'/qu x) dx

1q(x, 0)[[r2(p) <&

Thus
<elplzay, Vp'e L),

namely

O

Proposition 4.2. For any ¢ > 0, if p0 is a minimum point of [, in L2(I) and 2. is the solution of
(1.7)-(1.8) with initial data °, then

5 © o M
HZEHLZ(wX(O,T)) < eC(T)(llallLeo ) +11 1 (Q)+1)||82t§“L2(Q). (4.2)
Proof. It is easy to see that

0= Je(0) > Je(pD)

1 T T
:5//"z%uw+//fzwm+ammmm

> / / ) dxdt — e &l 20yl Zell 20y + el P12
R o o M ~
= E/() /w(zg)zdxdt—e (T)(lallLeo(q)+1IllL (Q)+1)”eZtgHLZ(Q)”ZSHLZ(MX(O,T))-

Then, we have

12ell 2o 0,1)) < eC(T)(Halle<Q>+Hb||L°°<Q>+1)||e%§HLZ(Q)

Proposition 4.3. J.(-) is continuous, strictly convex and

]e(PO) >

liminf
1P002 0y o0 170221y

Proof. The continuity and strict convexity can be obtained easily. Next, we show that J¢(-) is
coercive.

Let p5 € L(1) |9 2(1) — .

Define 0

UO — Pn
"l

and (v,,w,) denotes the corresponding solution to (1.7)~(1.8) with p® = 0. Then ||o9| 2 =
1, by (i) of Proposition 2.3,

||Un||c([0,T];L2(1))mLZ(o,T;Hg(I))) <C, Hw"HC([O,T];L2(I))ﬁL2(O,T;H5(I))) <C
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where C is a constant which is independent of 7.

According to Uy = —Upxxxx — b0 and Wy = —Wyxxxx — AW + X0, {vn} and {wy} are
bounded in L2(0, T; H2(I)). Applying Aubin’s compactness theorem (see, for instance, [25]),
we obtain a subsequence (still denoted by 7) such that

09 =0 weaklyin L*(I),
v, — v stronglyin L*(Q),
w, — w strongly in L*(Q).

On the other hand,

0
H;S(’fn) - ||p"||L2 //w dxdt+/ /Cwndxdt—i—s
L2

The following two cases may occur:

@i) lirg inf fOT [; w2 dxdt > 0. In this case we obtain immediately that
n—oo

0
lim inf M >
1P002 0 o0 170221y

(ii) lim inf fOT [;wdxdt = 0. In this case, since v — v° weakly in L*(I), v, — v strongly
n—oo

in L2(Q) and w, — w strongly in L?(Q), (v, w) is the solution of (1.7)~(1.8) with initial
data p° = v°. Moreover, by the lower semi-continuity

T T
/ /wzdxdt < liminf/ /w% dxdt = 0.
JO JI n—oo  Jo JI

Therefore, w = 0, namely w, — 0 strongly in L?(Q). Consequently fOT [; Swy dxdt — 0.
Hence,

Je(P) < i r _
hmmfi > liminf Cwpdxdt+¢e) =e.
P Tl = et o s

Then, we can obtain the following result:

Proposition 4.4. System (1.5)—(1.6) with initial data y° = 0 is null controllable. Moreover, the control
h satisfies

1] 2 o)) < C(T)(llall o () + 1Bl oo () +1) HE%CHLZ(Qy (4.3)

Proof. For any € > 0, there exist a control 2. € L?*(Q) satisfying (4.2) and g, satisfying (4.1),
where (v, g¢) is the solution of (1.5)(1.6) with initial data y° = 0 and h = z..

From (4.2), by extracting subsequences, still denoted in the same way, we have that there
exists a function z € L?(w x (0, T)) such that £, — z in L?(w x (0, T)). Let h = z. Combining
(4.1), (4.2) and (4.3), the solution g to (1.5)—(1.6) with h = z as the control satisfies q(-, T) = 0,
and h satisfies (4.3). O
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We now apply a fixed point argument to prove a insensitivity result in the nonlinear case.
Proof of Theorem 1.3

We may as well assume that f is in C!(R) and we shall use a fixed point argument applying
Kakutani’s theorem. The general case of a function f can be easily obtained by a density

argument (see [3, 17]).
f(s)
g(s) = {s’ 570,

Let
f'(0), s=0.

Then g is continuous in R and for each ¢ > 0, there exists a positive constant C, (which only
depends on ¢ and on the function f) such that

8(s)| + [f'(s)| < C¢ +elog(1 +s]) (4.4)

forall s € R.
Set X = L*(Q).
For any 77 € B(0,R) C X, R > 0 to be determined later, we consider the following system

Yi+ Yo + 8y =& +hloe  inQ,

y(0,t) = 0 = y(1,1) n (0.7) s
yx(0,1) =0 =y,(1,¢) in (0,T),
y(x,0) =0 inl

—qt+ e + /(Mg =ylo  inQ,

q(0,t) =0 =q(1,t) in (0,T), ws)
qx(0,1) = 0 = gx(1,¢) in (0,T),
q(x,T) =0 in .

In accordance with the results in Proposition 4.4, for any 7 € X, there exists h, € L*(w x
(0, T)) such that g, (-,0) = 0, and h,, satisfies

iyl 2o (0,17) < SIS lleo @) HIF (1) 100() +1) ||e%6||L2(Q)

It follows from Proposition 2.3 that

HVHC [0,T);H2(1))NL2(0,T;H4(I))

< (1) MU= Vig 4 bl | 12(g)

< C(T)eS D s =@ (|| 12 +Hh! lz2(0) 4.7)
SC(T)eC (g llLe(o <H§||2 (T)(llg(n )HL°° ) () llpeo (@) +1) Hezfg‘LZ )

< (1)l (e “(HcHLz )+ le¥ellizg)):

Now, for each 7 € B(0, R), set
H(y) :{h,? € L2(w x (0,T)) : (,q) is the solution of (4.5)~(4.6), g, (-,0) =0,

and [y 201y < XD im0l o) s g,
A(n) ={y : (v,9) is the solution of (4.5)-(4.6) with h, € H(n)}.
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In this way, we have been able to introduce a set-valued mapping on X :
A:neX— A CX

We shall prove that this mapping possesses at least one fixed point y.

Let us prove that A fulfills the assumptions of Kakutani’s fixed-point theorem.

In the first place, one can check that A(#x) is a nonempty closed convex subset of X for
fixed z € Xj, due to the linearity of system (4.5)-(4.6).

According to estimate (4.7), A(n) is a bounded set in C([0, T]; H3(I)) N LZ(O T; H*(I)).
Since C([0, T]; H3(I)) N L?(0, T; H*(I)) C L*(0, T; H*(I)) N H*(0, T; L*(I)) — CP% with B=131,
it follows that each A(7) is a compact subset in X.

In the second place, A is upper semicontinuous. Indeed, if {#,} C X, y» € A(yn), 10 —
7 in X, and y, — y in X, by using the regularity of the solution of (4.5)-(4.6), extracting
subsequences, still denoted in the same way, there exist g € C([0, T], L?(I)) N L*(0, T; H3(I))
and h € L*(w x (0,T)), such that g, — q in C([0,T],L*(I)) N L?*(0, T; H3(I)) and h, — h
in L?(w x (0,T)), then (y,q,h) satisfies (4.5)-(4.6) corresponding to & € L?(w x (0,T)), and
q(-,0) = 0in ), namely y € A(7).

Finally, let us see that there exists R > 0 such that A(B(0,R)) C B(0,R). Indeed, for any
1 € B(0,R), from (4.7) and (4.4) it is observed that each y € A(7) satisfies

Hy”c 0,T];H3(1))NL2(0,T;H4(I))
< C(T)LOUEW @I D@ (|1 2 + le¥ lli2(0))
(T)BC )(Cetelog(1+17]l Lo (@) +1) (ngLz(Q) + He%CHLZ(Q))

D Ceretonlt =@ D (|1g | 2g) + e ¢e2(0))

c M
DD 1+ RICD(El2g) + lle? Ellig))-

C
<C

| /\

1

T(T)’ we obtain

Thus, choosing & =

1 M
1Yllcqo 2y o,mmery) < C(L+R)2(IE N 2() + lle &l 12())s

from which we infer the existence of R > 0 large enough such that

1yllx < Cllyllc(o,m:m2(0))ne2 0,714 (1))
1 M
< C(1+R)2([I€lr2(q) + lle & lliz(g))
< R.

Namely, A(B(0,R)) C B(0,R).

By the Kakutani’s fixed point theorem (see, for instance, [1]), Theorem 1.3 follows.
5 Appendix A: Proof of Proposition 2.1
Set u = 0y, Py = f. Direct computation shows that

g(yt + yxxxx) = ut + Aou + A1ty + Aoliyy + Asliyxy + Uyxxx, (5.1)



16 P. Gao

where
AO - l% + 4lxlxxx - lxxxx - 6l§lxx + 31320( - lt/
Ay = — 413 + 121y — 4y,
A2 — 6l§ - 6lxx,
As = —A4l,.
Set
Il =ur+ Blux + B3uxxx + Eu,
12 = Uyxxx + BO“ + BZuxx + Fux/
R = 9f — 1 — b = Sou + Squty + Solyy,
where

Bo=1%, By = -4, By,=6I2, By=—4l,
E = —4l§lxx, F = 121xlxx/ SO = 4lxlxxx - lxxxx - 6lyzclxx + 313205 - lt/
S = 120 Ly — 4lxxx, Sz = —6lyyx.

Step 1. We shall prove the following equality

b=l bl bl bl

R S DU S SN R SO (5.2)

where
3 2 3 2 1 2
{' t }x = {utuxxx — UxtUyx + BZ”t”x + Elexux - EBluxx + *BlBZMX
1 1 1 3 3
+ EBoBlu2 + EBwim + EBZBg,uﬁx + Z(BoBg)xxu EBoBg,u
1
+ 4E 2 — 2Eyti® — (BoE)i® + SEFu? - (BgF)xui}x,
3 3 2 2 2 1 2 1 2
T { — P Byyu® — 2 (BoBs)yu? + 3Eyu® — 2Eu? + = ByEu? + fBgFux} )
2 2 2 2 x
1
TN - {231u i BOBgu —2E.u }m,
1
{ }xxxx = {EEUZ} ’
XXXX
1 1 1
(o b= {380 — 3Bl + 5}
1 1 1 1 1
uz{' te } == MZ{ - EBOt - E(BOBl)x - E(BOBS)xxx + EExxxx + E(BZE)xx

1
+ BoE — 5 (EP):

1 1 3
(-} = 12{ 3 Bo — 3Breve — 5 (BiBa)s + 3 (BoBs) — 2w — BoE

1
+ BF+ E(Bg,z-*)xx},
3 1
u?cx{' T } = uazcx{Ele - E(B2B3)x + E — B3F}/

uazcxx{' e } = uazcxx{ - §B3x}-
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Indeed, (5.2) can be obtained from the following equations.
L oo
Ut - Uxxxx = (utuxxx - uxtuxx)x + E(MXX)t/
1 21 2
Ut - Botlyy = — Boyupiy + EBZtux - §<B2ux>t + (BZutux)xz

1
- Bou = 5 ((BouZ)t - Bomz),

us - Fu, = Fuuy,

1 3 3 3
Blux cUxxxx = E(Blui)xxx - E(leui)xx + (Elexugzc - §B1u§x>x
3 1
+ Eleu}zcx - ilexxu;zcr

1
Bl”x : BZuxx = BlBZuxuxx = E ((BlBZu?c)x - (BlBZ)xui)/
1
Byt - Bout = BoByutiy = 5((BoBlu2)x - (BgBl)xuz),
Byuy - Fu, = B{Fu2,

1
B3uxxx *Uxxxx = E ((BBuyzcxx)x - BBxuixx)/

1
Bayyy - Botlyy = BoB3tlyyliyyy = 5 ((BZB?)”ix)x - (BZB3)xu§x>r

X

1 3
Bsuyxx - Bou = BoBsutiyyy = E(B0B3u2>xxx - E ((BOB?:)xuz)x

3 3 3 1
+ (E(BOBB)xxuz - 53033%2())( + 5(3033)9&1% — E(BOBS)xxxuz
1 1
Bstiyxy - Fity = B3Filyliyyy = E(BgFui)xx — ((BsF)xu3) , — BsFujz, + E(133F)xxu§,

1
Eu - UUpxyy = E(Euz)xxxx - Z(Exuz)xxx + (3Exxu2 — ZEuyzc)xx

1
+ (4Exu§ — 2Exxxu2)x + Euix — 2Exxu§x + EExxxxuzz

1 1
Eu - Botixy = ByEutttyy = E(BzEuz)xx — ((BzE)xu?) . — BoEu + 5(BZE)WZ,

Eu - Byu = BoEu?,

Eu - Fuy = EFuu, = - ((EFu®)y — (EF)yu?).

N[ =

Step 2. We shall prove the following estimate

/Q <A1(p92 (Y7 + Yaxxa) + A90°Yr0x + A2@°0°)5, + A 0°0%y5 + A7¢792y2> dx dt

<C (/QWO (A@B*12 . + A29°0%2, + A2970%2 + A7 7 0%y?) dx dt + /Q 622 dx dt) .
Indeed, by the definition of 4, ¢, and y, it is obvious that

o] < C(P)pg, aw| < C)HPe,  |axa| < C¥)ie,
|Axxrx| < C(¢)V4¢, |@xxxxx| < C(lp)y5q), [ C(4’)V64’r

17

7

(5.3)
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‘axxxxxxx| < C(’P)]ﬂq)/ |ﬂxt‘ < C(lp)P‘T(Pz/ |ﬂxxt| < C(IP)TyZ(PZ/
|Axxxt| < C(IP)VSTG”ZI |@xxxt| < C(IP)TV4§02f lag| < CTQDZI
‘att’ < CT4§[)4.

Observe that 9 < T¢? < Tg? < Tpt < L5 < T0 6.
For the term u?{-- -} in (5.2), if we choose A > uC(y)(T + T?) with C(y) large enough,

then it holds that

1 1 1 1 1 1
_EBOt - E(BOBl)x - E(BOB\’&)xxx + EExxxx + E(BZE)xx + BOE - E(EF)x = 10/\7}48?71,0?5 + RO/
where
[Ro| < CA7p7 ¢
Namely

u?{---} = 10A" 18" p8u® + Rou®. (5.4)
Using the same method, we can obtain that
uz{- -} = 6A° P Youl + Ruusg,
ugcx{' te } = 62/\3,” % wxuxx + Rzuxx, (5‘5)
u?cxx{' e } = 2/\]12g01[1x Uyyy T R3uxxxf

where
IRi| < CA°u°9°, |Ra| < CA%P9> and |R3| < CAug.

Now, we estimate the term f cheF{ b F {0 faee H {0 Fe) dxdtin (5.2).
Indeed, noting y(0,t) = y(1, ) yx(O t) = yx(1,t) = 0and lim; o+ @(t,-) = lim;_,7- @(t,-) =
+00, we have
u(0,t) =u(1,t) = ux(0,t) = ux(1,t) =0 Vte (0,7T)

and
u(x,0) =u(x, T) = ux(x,0) = uy(x, T) = thxx(x,0) =ty (x,T) =0 VxelL

Then the following holds

/Q({"'}X+{'"}xx+{"‘}xxx+{"‘}t) dx dt

1 1
- Bng, — 5B1) + 1 (5Bs)) dxdt
_ / —1083) + 2, (=2L)), dxdt

>

2 y(1) — V(0).

Noting (1) > 0 and ¢,(0) < 0, we have

T

210033 y2) + xxx(ZAwpt/Jx)) (1,£)dt >0,

(—10A%2 92 2) + 2, (— 2Awp¢x))(0,t)dtzo.

c\ﬂc\

Thus,
V(1) —V(0) >0. (5.6)
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Due to (5.1), we have
I + 1 = 0f — Sou — Squyx — Saliyy,

where
1So> < CA7u” g7, |S1]> < CA%u¢® and  [Sy]* < CA%uP¢°.
Then we can deduce that
/Q(I% + B4 2L 1) dxdt
- ||Il + IZH%z(Q)
= [16f — Sout — Sty — Sattax 172

<C </Q 0% f2 dx dt + /(2(/\7y7g07u2 + AU @Pul + ABuddu,) dx dt> .

(5.7)

From (5.4)—(5.7), we can obtain that

/Q (1 + 13+ A1yl + N pl e yQus + At > prud, + AP oyt ) dx dt

<C (/Q 0%f2 dx dt + /(2()\7;47go7u2 + AP + Audedul,) dx dt) :

Recall that |¢y| > 0in I\ w, it follows that

/ \ (V12971 + Mplooul + Ppteug, + M pus,,) dx dt

Q\Qv

< C(y) </Q 0%f2 dx dt + /(2(/\7;47(p7u2 + AP ud + Myl gPul,) dx dt) ,
from which if we choose g = C + 1, then it holds that
H ¥
A7 071 + A51505u2 + A3180%u2. + Auou. ) dx dt
\ we Wy W@ Uy T APPULxx
Q\Qv
< Ci(y) (/ 0% f2 dx dt + / (AW o"u® + NuP e u? + AP e’ul, + Aygouixx)) dx dt.
Q Qv
Then
us + uy + Uy T u x dt
QNI+ R+ N0 g i+ Apgiiny) dxd
Q\Qv
+ /Qw (W 9"u? + A0 9% + AP us + Apguiyy) dax dt

<C (/Qw()\7y7(p7u2 + M @Pul + Ml p3ud, + Augu,,) dx dt —i—/QGZfZ dx dt) .

Thus
/Q AW 9"1 + NP ul + AP oui, + Apgudy,) dx dt

<C </ 0%f2 dxdt +/ (AW o"u® + MuP e uZ + AP e’ul, + qum,%xx)> dx dt,
Q Qv
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from which it holds that
/Q (N @7u? + A 9°us + A @°ul + Aguly,) dxdt
< C(p) </Q 0% £ dx dt + /Qw(/\7go7u2 + A @ ut + AUl + A(puxxx)> dx dt.
According to the definition of I; and I, direct computation shows
L 5 1 2
/Q Euxxxx dxdt = /Q E|Iz — Bottyy — Bou — Fuy |~ dx dt
<C /Q(I§ + A o"u? + A2 @2u2 + A3¢Pu2,) dx dt
and
/ ut dxdt = / —|I} — Bitty — Balixxx — Eu|2dx dt
<cC /Q 1% TN TR AP 4 Aguid,,) dx dt.
Thus we have
1
/Q E(ug + u?cxxx) dx dt S C /Q(Il2 + I% + )\7907”2 + AS(PSui + /\3§0 uxx + /\(Puxxx) dx dt.
It follows that
1, 1 77,2 1 3552 1 233
0 /\gout +A¢ 2o TAQTUE + N0 @Pu2 + AP @Pul, + Apud,, ) dxdt
<C </Q 92f2 dxdt + /Qwo (/\7q07u2 + }\54)5”326 + )‘3({)37’13@ + )quujzcxx) dx dt) .

Returning u to 8y, we can obtain (5.3).
Step 3. By using the same method in [28], we can eliminate the terms wiO Ap0%y2, . dx dt,
Jowo A @°0%y3, dxdt and [ou, A° 90y} dx dt in (5.3). Further, we have (2.1).
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