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Abstract. In this paper, we focus on a ratio dependent predator–prey system with self-
and cross-diffusion and constant harvesting rate. By making use of a brief stability and
bifurcation analysis, we derive the symbolic conditions for Hopf, Turing and wave bi-
furcations of the system in a spatial domain. Additionally, we illustrate spatial pattern
formations caused by these bifurcations via numerical examples. A series of numerical
examples reveal that one can observe several typical spatiotemporal patterns such as
spotted, spot-stripelike mixtures due to Turing bifurcation and an oscillatory wave pat-
tern due to the wave bifurcation. Thus the obtained results disclose that the spatially
extended system with self-and cross-diffusion and constant harvesting rate plays an
important role in the spatiotemporal pattern formations in the two dimensional space.
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1 Introduction

In population dynamics, many ecologists and mathematicians are interested in Michaelis–
Menten-type predator–prey model, so-called a ratio-dependent predator–prey system [2, 6,
10, 14, 20] as follows: 

dU
dT

= rU
(

1− U
K

)
− cUV

mV + U
,

dV
dT

= V
(
−D +

f U
mV + U

)
,

(1.1)

where U and V stand for prey and predator, respectively. All parameters are positive con-
stants. Especially, the parameters r, K, c and m stand for the prey intrinsic growth rate, the
carrying capacity of prey, the capturing rate, and the half-saturation constant, respectively.
The predator grows logistically with the growth rate D and the conversion efficiency f .

Following [10, 25, 26], with the scaling

U
K

= u,
mV
K

= v, t =
T
r

, a =
c

mr
, b =

f
r

and d =
D
r

,
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we can arrive at the following equations containing dimensionless quantities:
du
dt

= u(1− u)− auv
u + v

,

dv
dt

= v
(
−d +

bu
u + v

)
.

(1.2)

From the point of view of human needs, the exploitation of biological resources and the
harvest of populations are commonly practiced in fishery, forestry and wildlife management.
Concerning the conservation for the long-term benefits of humanity, there is a wide range of
interest in the use of bioeconomic modeling to gain insight in the scientific management of
renewable resources like fisheries and forestries [24, 25, 26, 27, 30]. Thus, the authors in [25,
26, 27] considered the following systems and studied dynamics and bifurcation phenomena
of the systems: 

du
dt

= u(1− u)− auv
u + v

− h,

dv
dt

= v
(
−d +

bu
u + v

)
,

(1.3)


du
dt

= u(1− u)− auv
u + v

,

dv
dt

= v
(
−d +

bu
u + v

)
− h.

(1.4)

Generally speaking, in nature, the tendency of the prey would be to keep away from preda-
tors, and hence the escape velocity of the prey may be taken as proportional to the dispersive
velocity of the predators. Also, the tendency of predators would be to get closer to the prey,
and hence the chase velocity of predators may be considered to be proportional to the disper-
sive velocity of the prey. In this context, there has been considerable interest in investigating
the stability behavior of systems of interacting population by taking into account the effect of
self as well as cross-diffusion [5, 11, 17]. Thus, in this paper, we will consider the following
system with diffusion effects and constant harvesting rate:

∂u
∂t

= d11∇2u + d12∇2v + u(1− u)− auv
v + u

− h in Ω,

∂v
∂t

= d21∇2u + d22∇2v + v
(
−d +

bu
v + u

)
in Ω,

(1.5)


∂u
∂t

= d11∇2u + d12∇2v + u(1− u)− auv
v + u

in Ω,

∂v
∂t

= d21∇2u + d22∇2v + v
(
−d +

bu
v + u

)
− h in Ω,

(1.6)

where d11, d22 represent the positive self-diffusion coefficients and d12, d21 the cross-diffusion
coefficients of prey and predator, respectively and ∇2 = ∂

∂x + ∂
∂y is the usual Laplacian oper-

ator in the two-dimensional space Ω. The boundary conditions are taken as ∂u
∂n = ∂v

∂n = 0 on
∂Ω, which means that no external input is imposed from outside. Here, n is the outward unit
normal vector of the boundary ∂Ω.

In [31], the authors have investigated spatiotemporal dynamics of systems (1.5) and (1.6)
when d12 = d21 = 0.
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The values of d12 and d21 imply that the prey species approaches towards the lower con-
centration of the predator species and the predator species tends to diffuse in the direction of
higher concentration of the prey species. In many cases, the predator prefers to avoid group
defence by a huge number of prey and chooses to catch its prey from a smaller concentration
group unable to sufficiently resist [5, 8]. For this reason, it is reasonable to assume that d12

could be any number while d21 is positive. In addition, we assume that

d11d22 > d12d21 (1.7)

which indicates that self-diffusion is stronger than cross-diffusion. In other words, the flow
of the respective densities in the spatial domain depends more strongly on their own density
than on the others.

Studies of reaction–diffusion systems have led to the characterization of three basic types
of symmetry-breaking bifurcation responsible for the emergence of spatiotemporal patterns.
The classification of these bifurcations is based on linear stability analysis of a homogeneous
state. The space-independent Hopf bifurcation breaks the temporal symmetry of a system
and gives rise to oscillations that are uniform in space and periodic in time. The (station-
ary) Turing bifurcation breaks spatial symmetry, leading to the formation of patterns that are
stationary in time and oscillatory in space. The wave (oscillatory Turing or finite-wavelength
Hopf) bifurcation breaks both spatial and temporal symmetries, generating patterns that are
oscillatory in space and time [1, 4, 9, 11, 12, 13, 15, 17, 21, 22]. Thus, in this paper, we will
focus on studying bifurcation phenomena of systems (1.5) and (1.6).

2 Bifurcation analysis

2.1 Bifurcations of system (1.5)

In this subsection, first, we will take into account system (1.5) to investigate its dynamics and
bifurcation phenomena.

In order to accomplish the purposes, we need to consider the nonspatial system (1.3) of
system (1.5).

It is easy to see that simple calculation yields that there are at most four equilibria for
system (1.3) as follows;

(u1, v1), (u2, v2), (u∗1 , v∗1) and (u∗2 , v∗2), (2.1)

where

ui =
1 + (−1)i

√
1− 4h

2
, vi = 0, u∗i =

b− a(b− d) + (−1)i
√
(a(b− d)− b)2 − 4hb2

2b

and
v∗i =

b− d
d

u∗i

for i = 1, 2.
Hence for the persistence of the ecosystem, the equilibrium of the greatest interest would

be an equilibrium interior to the first quadrant. In fact, if the conditions

0 < b− d <
b
a

and 0 < h < min
{( a(b− d)− b

2b

)2
,

1
4

}
(2.2)
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hold, there exist exactly the four equilibria mentioned above.
From [25], the existence and the stability of the equilibria for system (1.3) is given by the

following lemma.

Lemma 2.1. The equilibria (u2, 0) and (u∗1 , v∗1) are hyperbolic saddles and the equilibrium (u1, 0) is a
hyperbolic unstable node if the condition (2.2) holds.

It follows from [25] that the stability of the equilibrium point (u∗2 , v∗2) depends on the value
of h when the condition 0 < b− d < b

a < 1 hold. For this reason, throughout the paper, we
assume that the conditions

0 < b− d <
b
a
< 1 and 0 < h < min

{( a(b− d)− b
2b

)2
,

1
4

}
(2.3)

are satisfied. Thus from the biological point of view, we focus our concern on studying the
stability behavior of the interior equilibrium point (u∗2 , v∗2). To simplify notation, we let (u∗, v∗)
stand for the equilibrium (u∗2 , v∗2).

Diffusion is often considered as a stabilizing process, yet it is the diffusion-induced in-
stability of a homogeneous stable steady state that results in a reaction-diffusion system’s
spatial pattern formation [18]. It is easy to show that the equilibrium point (u∗, v∗) for ho-
mogeneous system (1.3) is still a steady state for system (1.5). Now we investigate the local
dynamical behavior of the spatial system (1.5) in a two-dimensional space by virtue of linear
stability analysis. In order to accomplish this process, we test how perturbation of a homoge-
neous steady-state solution behave in the long time limit. For this we choose two-dimensional
Fourier modes

ū = exp((kxx + kyy)i + λt),

v̄ = exp((kxx + kyy)i + λt),
(2.4)

where ~x = (x, y) and~k = (kx, ky) and λ is the frequency.
It is worth pointing out that the terms mkxx, nkyy with m, n > 1 are not needed to be

considered in the Fourier series since we take into account linear stability analysis of a spa-
tiotemporal perturbation. Replacing u and v in system (1.5) by u∗+ ū and v∗+ v̄, respectively,
to linearize the diffusion terms with help of Taylor expansion around the positive equilibrium
point (u∗, v∗). Thus we can obtain the characteristic equation

|A− k2D− λI| = 0, (2.5)

where D is the diffusion matrix given by

D =

(
d11 d12

d21 d22

)
(2.6)

and the matrix A is given by

A =

(
∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

)
(u∗,v∗)

=

 1− 2u∗ − av∗2

(u∗+v∗)2 − au∗2

(u∗+v∗)2

bv∗2

(u∗+v∗)2 −d + bu∗2

(u∗+v∗)2

 ≡ ( a11 a12

a21 a22

)
, (2.7)

f = u(1− u)− auv
v+u − h and g = v

(
−d + bu

v+u

)
and k2 = k2

x + k2
y; k stands for the wave number

and I represents the 2× 2 identity matrix.
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Equation (2.5) can be rewritten by an elementary calculation as

λ2 + α(k2)λ + β(k2) = 0, (2.8)

where

α(k2) = (d11 + d22)k2 − (a11 + a22),

β(k2) = (d11d22 − d12d21)k4 − (a11d22 + a22d11 − a12d21 − a21d12)k2 + a11a22 − a12a21.
(2.9)

Therefore, the solutions of equation (2.8) yield the dispersion relation

λ(k) =
1
2

(
−α(k2)±

√
α(k2)2 − 4β(k2)

)
. (2.10)

Now, we will discuss bifurcation phenomena of system (1.5) by considering the three
bifurcation critical lines as mentioned in the Introduction.

It is well known that the onset of Hopf bifurcation corresponds to the case when a pair of
imaginary eigenvalues cross the real axis from the negative to the positive side and that this
bifurcation occurs only when the diffusion vanishes [16, 17, 21, 22]. Thus we can get the next
theorem.

Theorem 2.2. The equilibrium state (u∗, v∗) is an unstable point of system (1.3) if h > hH, where

hH =
(b2 − ab(b− d))2 − (d(a− b)(b− d))2

4b4 . (2.11)

Proof. See [25].

Remark 2.3. From Theorem 2.2, we can get the critical value of the Hopf bifurcation parameter
h which equals to

hH =
(b2 − ab(b− d))2 − (d(a− b)(b− d))2

4b4 . (2.12)

Moreover, it follows from [25] that system (1.5) has at least one stable limit cycle if h > hH.
In fact, Hopf bifurcation breaks the temporal symmetry of system (1.5), which gives rise

to oscillations that are uniform in space and periodic in time with the frequency

ωH = Im(λ(0)) =
√

β(0) =
1
b

√
(b− d)d

√
(b− a(b− d))2 − 4hb2 (2.13)

and the corresponding wavelength is

λH =
2π

ωH
=

2πb√
(b− d)d

√
(b− a(b− d))2 − 4hb2

, (2.14)

where Im(z) represents the imaginary part of the number z.

In order to illustrate some numerical examples to substantiate theoretical results of this
paper, we solve the partial differential equation (1.5) by discretizing the space and time and
thus we regard the continuous domain Ω in system (1.5) as 200 × 200 lattice sites and we
set the spacing between the lattice points to be ∆x = ∆y = 0.25. The zero-flux boundary
condition is employed for the numerical simulations. We adopt a finite difference scheme for
the spatial derivatives and an explicit Euler method for the time integration with the time step
∆t = 0.01. It is well known that the spatiotemporal dynamics of a diffusion–reaction system
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depends on the choice of initial conditions [7, 13, 19, 23]. In the paper, an initial conditions
is taken as a small amplitude random perturbation around the steady state (u∗, v∗) since it is
very natural from the biological point of view. We stop the simulation when the numerical
solutions either reach a stationary state or show oscillatory behavior.

Example 2.4. In order to illustrate phenomena caused by Hopf bifurcation numerically, we
choose parameter values in system (1.5) as a = 4, b = 2, d = 1.85, d11 = 0.1, d12 = 0.003 and
d22 = 0.2. From Theorem 2.2, we know that Hopf bifurcation occurs when h > hH = 0.1177.
Figure 2.1 shows snapshots of contour pictures of the time evolution of prey population in
system (1.5) when d21 = 0.004 and h = 0.118 > hH. However, it is a little bit hard to observe
an oscillatory phenomenon arising from Hopf bifurcation from these snapshots. Thus, we
exhibit the local phase portrait of system (1.5) for a fixed point (0.4171, 0.0338) in Figure 2.2 to
observe the existence of a stable limit cycle. In addition, we can calculate numerically that the
frequency of the periodic oscillations in time ω ≈ 0.1396 and the corresponding wave length
λ ≈ 45.1. Also, it follows from (2.13) and (2.14) that the theoretical frequency of the periodic
oscillations in time is ωH = 0.1364 and the corresponding wave length λH = 46.0517.

Figure 2.1: Snapshots of contour pictures of the time evolution of prey in system (1.5) when
d21 = 0.004 and h = 0.118 > hH = 0.1177: (a) initial state; (b) 100 iterations; (c) 28000
iterations; (d) 50000 iterations.

On the other hand, the Turing condition is one in which the uniform steady state of a
reaction-diffusion partial differential equation (PDE) is stable for the ordinary differential
equation, but it is unstable for the corresponding PDE with diffusion terms [1, 3, 8, 13, 31].
In this context, we can get conditions that Turing bifurcation takes place in the following
theorem.

Theorem 2.5. Turing bifurcation occurs if

a11d22 + a22d11 − a12d21 − a21d12 > 0 (2.15)

and

a11a22 − a12a21 −
(a11d22 + a22d11 − a12d21 − a21d12)

2

4(d11d22 − d12d21)
< 0 (2.16)

are satisfied.
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Figure 2.2: Dynamical behavior of system (1.5) for a fixed point (0.4171, 0.0338) when d21 =

0.004 and h = 0.118 > hH = 0.1177: (a) A stable limit cycle of system (1.5); (b) Time series of
prey; (c) Time series of predator.

Proof. It follows from the condition (2.3) that

tr(A) = a11 + a22 < 0 and det(A) = a11a22 − a12a21 > 0, (2.17)

where tr(A) and det(A) represent the trace and the determinant of the matrix A, respectively.
Thus the uniform steady state (u∗, v∗) is stable for the nonspatial system (1.3). Now, we need
to find conditions under which the stationary state is not stable to spatial perturbations when
k 6= 0 in equation (2.8). Let us consider the two roots, λ1, λ2 of the characteristic equation
(2.8). Then we have λ1 + λ2 = −α(k2) and λ1λ2 = β(k2). Since tr(A) < 0, α(k2) is positive for
all k and hence the two roots can not be positive at the same time to occur Turing bifurcation.
Therefore Turing bifurcation can happen if there exists k so that β(k2) < 0. Let us regard
β(k2) as a polynomial of k2. Then the leading coefficient d11d22 − d12d21 of β(k2) is positive
because of the condition (1.7). In order to obtain conditions for yielding Turing bifurcation, it
is needed to think about the value of β(k2). In fact, β(k2) has the minimum value at

k2
T =

a11d22 + a22d11 − a12d21 − a21d12

2(d11d22 − d12d21)

=
d2(a(d21 − d22) + b(d11 − d12)) + b2d(2d12 − d11)− b3d12

2b2(d11d22 − d12d21)

+
bd22(ad−

√
(b− a(b− d))2 − 4hb2)

2b2(d11d22 − d12d21)
.

(2.18)

Thanks to the condition (2.15), k2
T > 0. Thus, for the existence of a value k for which β(k2) < 0

the condition β(k2
T) < 0 must hold. Therefore we have the condition (2.16) as follows:

β(k2
T) = a11a22 − a12a21 −

(a11d22 + a22d11 − a12d21 − a21d12)
2

4(d11d22 − d12d21)
< 0. (2.19)

Remark 2.6. The critical value hT of the Turing bifurcation can be obtained if the inequality in
(2.19) is replaced by equality. In fact, we can get

hT =
(b− a(b− d))2

4b2 −
(

Γ + 2
√

Φ
2b2d2

22

)2

, (2.20)
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where

Γ = ad(d− b)d2
22 + b(b− d)2d12d22 − ad2d21d22 + bd(d− b)d11d22 + 2bd(b− d)d12d21

and
Φ = bd(b− d)(d11d22 − d12d21)(bd22 + dd21 − dd22)(−b2d12 + bdd12 + add22).

At the Turing threshold hT, the spatial symmetry of the system is broken and the patterns are
stationary in time and oscillatory in space with the wavelength

λT =
2π

kT
. (2.21)

Moreover, using algebraic calculations one can figure out that a change of sign in β(k2) occurs
when the value k2 lies in the interval (k2

1, k2
2), where k2

1 and k2
2 are roots of the equation

β(k2) = 0.

Example 2.7. In this example, to show typical Turing patterns we use the same parameter
values in Example 2.4 as a = 4, b = 2, d = 1.85, d11 = 0.1, d12 = 0.003 and d22 = 0.2. For
the fixed value d21 = 0.008, if one selects the values h = 0.1174 and h = 0.118, one can easily
check that system (1.5) satisfies the conditions (2.15) and (2.16) in Theorem 2.5. Thus the
Turing bifurcation takes place for these cases. Moreover, as mentioned in Remark 2.6, we can
get the Turing critical value hT = 0.1173. In Figures 2.3 and 2.4, typical Turing patterns, called
stripelike and spot-stripelike patterns, of prey in system (1.5) can be observed for h = 0.1174
and h = 0.118, respectively.

In reaction-diffusion systems, most studies have been devoted to the study of Hopf bifurca-
tion and Turing structures arising from Turing bifurcation [1, 3, 8, 11, 13, 15, 16, 19, 22, 25, 26].
In the present decade, attention has turned toward patterns arising from the wave bifurca-
tion(instability). In fact, the wave bifurcation caused by the wave instability plays an impor-
tant part in pattern formations in many areas [11, 12, 21, 28, 29]. Similar to Hopf bifurcation,
the wave bifurcation take places when a pair of imaginary eigenvalues cross the real axis from
the negative to the positive side for k = kw 6= 0 in equation (2.8). Thus we get the following
theorem for the wave bifurcation.

Theorem 2.8. The wave bifurcation occurs if h > hw, where

hw =

(
b− a(b− d)

2b

)2

−
(

b2(d11 + d22)
√

∆ + Θ
4b2(d12d21 + d2

22)

)2

, (2.22)

A = a22d11 − a12d21 − a21d12,

B = d11d22 − d12d21,

∆ = A(A− 2a22(d11 + 2d22)) + a2
22(d

2
11 + 2d2

22 + 6d11d22 − 4d12d21)

− 4a12a21(d12d21 + d2
22) and

Θ = 2B(−b2a22 + ad2 − abd)

− (d11 + d22)(b2(a12d21 + a21d12 + a22d22) + 2add22(b− d)).

(2.23)

Proof. For the occurrence of a wave bifurcation, the equation (2.8) must have purely imaginary
roots when k is not zero. Thus the conditions α(k2) = 0 and β(k2) > 0 must hold for some
k 6= 0 for the existence of the wave bifurcation. From the condition α(k2) = 0, we can get

k2 =
a11 + a22

d11 + d22
=

d(a− b)(b− d)− b
√
(b− a(b− d))2 − 4hb2

b2(d11 + d22)
≡ k2

w. (2.24)
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Moreover, it follows from an elementary calculation that if h > hw then β(k2
w) > 0.

Figure 2.3: Snapshots of contour pictures of the time evolution of prey in system (1.5) when
d21 = 0.008 and h = 0.1174 > hT = 0.1173: (a) initial state; (b) 10000 iterations; (c) 150000
iterations; (d) 950000 iterations.

Figure 2.4: Snapshots of contour pictures of the time evolution of prey in system (1.5) when
d21 = 0.008 and h = 0.118 > hT = 0.1173: (a) initial state; (b) 1000 iterations; (c) 40000
iterations; (c) 45000 iterations.

Remark 2.9. It is well known that, at the wave threshold hw, both spatial and temporal sym-
metries are broken and the patterns are oscillatory in space and time with the wave length

λw =
2π

kw
, (2.25)

where

k2
w =

d(a− b)(b− d)− b
√
(b− a(b− d))2 − 4hb2

b2(d11 + d22)
. (2.26)



10 H. Baek

Example 2.10. Now, consider the same parameter values as in Example 2.7 except for the
values d21 = 0.001 and h = 0.117. It follows from Theorem 2.8 that the wave bifurcation
occurs under hT = 0.1173 > h > hw = 0.0126. In fact, if one takes the harvesting rate
h = 0.117, one can observe wave phenomena numerically as shown in Figure 2.5. Figure 2.5
(d) is a space-time plot obtained by piling up the prey population for the lines y = 100 in
each snapshots as time progresses. Also, numerical calculations yield that the frequency of
the periodic oscillations in time kw ≈ 0.3740 and the corresponding wavelength λw ≈ 45.1.
From (2.24) and (2.25), the values of the frequency and the corresponding wavelength can be
obtained as kw = 0.4226 and λw = 35.1791, respectively.

Figure 2.5: Snapshots of contour pictures of the time evolution of prey in system (1.5) when
hT = 0.1173 > h = 0.117 > hw = 0.0126:(a) initial state; (b) 80000 iterations; (c) 85000
iterations; (d) Space-time plot.

2.2 Bifurcations of system (1.6)

As shown in [26], the expressions, which depend on all parameters in system (1.4), of the
equilibria of the nonspatial system (1.4) of system (1.6) are too complicated to analyze their
stabilities or bifurcation phenomena. Thus, in this subsection, we will restrict our attention to
the case a = 1. Although the case a = 1 is a special case for system (1.6), mathematically and
biologically the procedure of investigating for bifurcations of system (1.6) with a = 1 is generic
since it can be applied to explore bifurcations of system (1.6) in other cases of parameters [26].

It is from [26] that the nonspatial system (1.4) has no equilibrium points or a unique
equilibrium or two equilibria according to the conditions of parameters. Among them, for the
persistence of the ecosystem, we will pay attention to the case that the nonspatial system (1.4)
has two equilibria, (x1, y1) and (x2, y2) in the first quadrant, where

xi =
b + d + (−1)i

√
(b− d)2 − 4bh

2b
,

yi =
b− d + (−1)i+1

√
(b− d)2 − 4bh

2b
, i = 1, 2.

(2.27)
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Thus we focus our concern on studying the stability behavior of the interior equilibrium points
(x1, y1) and (x2, y2). Since the necessary conditions for the existence of the two equilibria
(x1, y1) and (x2, y2) are 0 < h < b

(1+
√

b)2 and d < b. From now on, we assume that the
conditions

0 < h <
b

(1 +
√

b)2
and d < b. (2.28)

hold. In fact, (x2, y2) is a hyperbolic saddle and (x1, y1) is a focus (or a center or a node) [26].
For this reason, in this section, we consider the positive equilibrium point (x1, y1). We denote
it briefly by (x∗, y∗), where

x∗ =
b + d−

√
(b− d)2 − 4bh
2b

, y∗ =
b− d +

√
(b− d)2 − 4bh
2b

= 1− x∗. (2.29)

Using similar processes to Subsection 2.1, we can have the following theorems.

Theorem 2.11. The equilibrium state (x∗, y∗) is an unstable point of system (1.4) if h > hH. Here,

hH =
d(1− 2b) + (b + d)

√
d(b− 1)

b− 1
(2.30)

Proof. See [26].

Theorem 2.12. Turing bifurcation occurs if h > hT. Here, the critical value hT satisfies the equation

4D
(

G(F2 +
ET

b
− 1) +

F2E2
T

4b

)
−
(

d11G + bd12F2 + d22(F2 +
ET

b
− 1)− d21E2

T
4b2

)2

= 0, (2.31)

where D = d11d22 − d12d21, ET = b + d−
√
(b− d)2 − 4bhT, F = E

2b − 1 and G = d− E2

4b .

Theorem 2.13. The wave bifurcation occurs if h > hw. Here, the critical value hw satisfies the equation

Q
(

d− M2

4b

)
+

PM2

4b
− R

d11 + d22

(
d11

(
d− M2

4b

)
+ d22Q− d21M2

4b2 + bd12P
)

+
(d11d22 − d12d21)R2

(d11 + d22)2 = 0, (2.32)

where M = b + d−
√
(b− d)2 − 4bhw, P = (M

2b − 1)2, Q = P + M
b − 1, R = Q + d− M2

4b .

3 Conclusion and discussion

In this study, we investigate bifurcation phenomena of a ratio dependent predator–prey sys-
tem with self- and cross-diffusion and constant harvesting rate. It has been shown from the
bifurcation analysis that the system has Turing, Hopf and wave bifurcations. Furthermore, we
demonstrate by numerical simulations that typical Turing patterns such as spotted and spot-
stripelike mixtures patterns, a stable limit cycle due to Hopf bifurcation and an oscillatory
wave phenomenon can be emerged as the harvesting rate h varies.

In fact, in many researches [1, 3, 13, 15, 16, 19, 21, 22, 25, 26], investigation of the spatial
pattern of a predator–prey system with self-diffusion have been done. It revealed that regular
Turing patterns can be induced by self-diffusion. Moreover, the authors in [5, 8, 17] have
shown that both self- and cross-diffusion can lead the population to be in regular distribution.
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Especially, they looked into that Turing patterns can be induced by different mechanisms,
not only self-diffusion. In the present paper, the great difference between the mathematical
systems in [5, 8, 17] and the system dealt with in the paper is consideration of the prey or
predator harvesting. Our bifurcation analysis and numerical computations unveil that Turing
patterns including spotted and spot-stripelike mixtures patterns can also be observed, which
are similar phenomena to a predator–prey system without any harvesting rate, though the
harvesting effect exists. Based on these facts, we reckon that harvesting plays a significant
role in pattern formation in predator–prey systems with self-and cross-diffusion. In addition,
we studied the wave bifurcation, which is also called oscillatory Turing or finite-wavelength
Hopf bifurcation. More recently, attention has turned toward patterns arising from the wave
bifurcation [12, 28]. From the wave bifurcation, oscillatory wave patterns which are different
from spatial patterns caused by Turing bifurcation can be obtained. Thus, this research will
be useful for understanding the dynamic complexity of ecosystems or physical system when
there is harvesting effect on prey or predator population.
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