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Abstract

In this paper the Fountain theorem is employed to establish infinitely
many solutions for the class of quasilinear Schrödinger equations −Lpu +
V (x)|u|p−2u = λ|u|q−2u + µ|u|r−2u in R, where Lpu = (|u′|p−2u′)′ +
(|(u2)′|p−2(u2)′)′u, λ, µ are real parameters, 1 < p < ∞, 1 < q < p, r > 2p and
the potential V (x) is nonnegative and satisfies a suitable integrability condition.

AMS Subject Classification: 35J20, 35J60, 35Q55.
Key words and phrases: Quasilinear elliptic equation; Schrödinger equation;
Variational method; Fountain theorem; p-Laplacian.

1 Introduction

In this paper we establish multiple solutions for quasilinear elliptic equations of the
form

−Lpu + V (x)|u|p−2u = λ|u|q−2u + µ|u|r−2u, (1.1)

u ∈ W 1,p(R), where

Lpu := (|u′|p−2u′)′ + (|(u2)′|p−2(u2)′)′u,

λ, µ ∈ R, 1 < p < ∞, 1 < q < p and r > 2p. We assume that the potential V (x) is
nonnegative, locally bounded and satisfies the conditions
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(V1) For some R0 ∈ (0, 1
2p

), there holds V (x) ≥ α > 0 for all x ∈ R such that

|x| > R0.

(V2)

∫
|x|≥R0

V (x)−1/(p−1)dx < ∞.

We work with the space of functions

X =

{
u ∈ W 1,p(R) :

∫
R

V (x)|u|p dx < ∞
}

which is a separable and reflexive Banach Space when endowed with the norm

‖u‖p =

∫
R
|u′|p dx +

∫
R

V (x)|u|p dx.

Notice that (1.1) is the Euler-Lagrange equation of the functional

Fλ,µ(u) =
1

p
‖u‖p +

2p−1

p

∫
R
|u′|p|u|p dx− λ

q

∫
R
|u|q dx− µ

r

∫
R
|u|r dx.

The functional Fλ,µ is well defined and of class C1 on the space X (see Lemma 2.2)
and we study the existence of solutions of (1.1) understood as critical points of Fλ,µ.
The next theorem contains our main result:

Theorem 1.1 Under the assumptions (V1) − (V2) and supposing 1 < p < ∞,
1 < q < p and r > 2p we have

(a) for every µ > 0, λ ∈ R, equation (1.1) has a sequence of solutions (uk) such
that Fλ,µ(uk) →∞ as k →∞.

(b) for every λ > 0, µ ∈ R, equation (1.1) has a sequence of solutions (vk) such
that Fλ,µ(vk) < 0 and Fλ,µ(vk) → 0 as k →∞.

After the well-known results of Ambrosetti-Brezis-Cerami [4], problems involving
elliptic equations with concave and convex type nonlinearities have been studied by
several authors, see for example [2], [6], [9], [11] for semilinear problems and [3], [8],
[18] for quasilinear problems.

The study of problem (1.1) was in part motivated by the works of Bartsch-
Willem [6], Poppenberg-Schmitt-Wang [16] and Ambrosetti-Wang [5]. In [6], Bartsch
and Willem proved similar results to the Theorem 1.1 for the semilinear problem
−∆u = λ|u|q−2u + µ|u|r−2u in an open bounded domain Ω ⊂ RN with Dirichlet
boundary conditions and 1 < q < 2 < r < 2∗. Poppenberg, Schmitt and Wang [16]
studied the existence of a positive ground state solution for the quasilinear elliptic
equation −u′′ + V (x)u − (u2)′′u = θ|u|p−1u in R, in the superlinear case by using a
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constrained minimization argument. Ambrosetti-Wang [5] consider the quasilinear
problem −u′′ + [1 + εa(x)]u− k[1 + εb(x)](u2)′′u = [1 + εc(x)]uq where q > 1, k, ε are
real numbers and a, b, c are real-valued functions belonging to a certain class S. The
authors use a variational method, together with a perturbation technique to prove
that there exists k0 > 0 such that for k > −k0 and a, b, c belonging to S, the equation
has a positive solution u ∈ H1(R), provided that |ε| is sufficiently small. Equations
of type (1.1) were also studied in [1].

The special features of this class of problems in the present paper is that it is
defined in R, involves the p-Laplacian operator, the nonlinear term (|(u2)′|p−2(u2)′)′u
and concave and convex type nonlinearities. Here, we adapt an argument developed
by Poppenberg-Schmitt-Wang [16]. Our main results complement and improve some
of their results, in sense that we are considering a more general class of operators and
nonlinearities, and we have allowed that the potential V vanishes in a bounded part
of the domain, so that our results are new even in the semilinear case because we deal
with a more general class of potential. To obtain multiplicity of solutions for (1.1),
we will apply the Bartsch-Willem Fountain theorem as well as the Dual Fountain
theorem, see [6], [19].

Equations like (1.1) in the case p = 2 model several physical phenomena. More
explicitly, solutions of the equation

−∆u + V (x)u− k∆(u2)u = g(u) in RN (1.2)

are related to the existence of standing wave solutions for quasilinear Schrödinger
equations of the form i∂tz = −∆z + V (x)z − h(|z|2)z − k∆f(|z|2)f ′(|z|2)z where
V = V (x), x ∈ RN , is a given potencial, k is a real constant and f, h are real
functions. For more details on physical motivations and applications, we refer to [5],
[16] and references therein.

There are several recent works on elliptic problems involving versions of (1.2),
for instance, see [5], [10], [12], [13], [14], [15]. In [13], by a change of variables
the quasilinear problem was transformed to a semilinear one and an Orlicz space
framework was used as the working space, and they were able to prove the existence
of positive solutions of (1.1) by the mountain-pass theorem. The same method
of change of variables was used recently also in [10], but the usual Sobolev space
H1(RN) framework was used as the working space and they studied a different class
of nonlinearities. In [14], the existence of both one-sign and nodal ground states of
soliton type solutions were established by the Nehari method. But in these papers,
the authors do not deal with the concave and convex case.

The organization of this work is as follows: Section 2 contains some preliminary
results and we state the abstract theorems which we apply in this work. In Section 3,
we establish the Palais-Smale condition and Section 4 presents the proof of the main
theorem.
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Notation. In this paper we make use of the following notation:

•
∫

R denotes the integral on the line real and C, C0, C1, C2, ... denote positive
(possibly different) constants.

• For R > 0, IR denotes the open interval (−R,R).

• For 1 ≤ p ≤ ∞, Lp(R) denotes the usual Lebesgue space with norms

‖u‖p =

(∫
R
|u|pdx

)1/p

, 1 ≤ p < ∞;

‖u‖∞ = inf {C > 0 : |u(x)| ≤ C almost everywhere in R} .

• For 1 ≤ p < ∞, W 1,p(R) denotes the Sobolev space modeled on Lp(R) with
norm

‖u‖1,p =

[∫
R
(|u′|p + |u|p)dx

]1/p

.

• By 〈·, ·〉 we denote the duality pairing between X and its dual X∗;

• We denote weak convergence in X by “ ⇀ ” and strong convergence by “ → ”.

2 Abstract framework

In this section we establish some properties of the space X and functional Fλ,µ. By
the condition (V1), it follows that the embedding X ↪→ W 1,p(R) is continuous. Indeed,

‖u‖p
1,p ≤

∫
R
|u′|p dx +

∫ R0

−R0

|u|p dx + α−1

∫
|x|>R0

V (x)|u|p dx

≤ max{1, α−1}‖u‖p + 2R0‖u‖p
∞.

Since ‖u‖p
∞ ≤ p‖u‖p

1,p , see for instance Brezis [7], we conclude that

‖u‖1,p ≤
(

max{1, α−1}
1− 2pR0

)1/p

‖u‖.

Furthermore, we have the following proposition:

Proposition 2.1 Under the conditions (V1)−(V2), the embedding from X into Ls(R)
is continuous for 1 ≤ s ≤ ∞ and compact for 1 ≤ s < ∞.
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Proof. Using Hölder’s inequality, we get∫
|x|≥R0

|u| ≤
(∫

|x|≥R0

V (x)|u|p dx

)1/p (∫
|x|≥R0

V (x)−1/(p−1)dx

)p/(p−1)

≤C‖u‖.

Hence

‖u‖1 =

∫ R0

−R0

|u|dx +

∫
|x|>R0

|u|dx ≤ 2R0‖u‖∞ + C‖u‖ ≤ C1‖u‖.

Since X is immersed continuously in L∞(R), we can conclude by interpolation that
the embedding from X into Ls(R) is continuous for 1 ≤ s ≤ ∞. Now, we prove
the compactness. Let (un) be a sequence in X satisfying ‖un‖ ≤ C. Thus, up to a
subsequence,

un ⇀ u0 in X.

Without lost of generality, we can assume that u0 = 0. Let us show that un → 0 in
L1(R). Given ε > 0, for R > 0 large enough we obtain∫

|x|≥R

V (x)−1/(p−1)dx <
( ε

2C

)(p−1)/p

.

Hence ∫
|x|≥R

|un|dx ≤
(∫

|x|≥R

V (x)|un|p dx

)1/p (∫
|x|≥R

V (x)−1/(p−1)dx

)p/(p−1)

<
ε

2C
‖un‖ ≤

ε

2
.

On other hand, as the embedding W 1,p(IR) ↪→ L1(IR) is compact there exists n0 such
that for all n ≥ n0 ∫ R

−R

|un|dx <
ε

2
.

Thus, for all n ≥ n0

‖un‖1 =

∫ R

−R

|un|dx +

∫
|x|≥R

|un|dx < ε

which implies that un → 0 in L1(R). From this convergence, if 1 < s < ∞ we obtain

‖un‖s
s =

∫
R
|un|s−1|un|dx ≤ ‖un‖s−1

∞ ‖un‖1 ≤ C‖un‖1 → 0 as n →∞,

and consequently
un → 0 in Ls(R) for 1 ≤ s < ∞

and the proof is complete.
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Lemma 2.2 The functional Fλ,µ : X → R is of class C1 in X and for u, v ∈ X

〈F ′
λ,µ(u), v〉 =

∫
R
|u′|p−2u′v′dx +

∫
R

V (x)|u|p−2uvdx + 2p−1

∫
R
|u|p|u′|p−2u′v′dx

+ 2p−1

∫
R
|u′|p|u|p−2uv dx− λ

∫
R
|u|q−2uv dx− µ

∫
R
|u|r−2uvdx.

Proof. It will be sufficient to show that Φ(u) :=
∫

R |u
′|p|u|p dx is of class C1 in X,

because for the other summands the proof is standard.
Existence of Gateaux derivative: Let u, v ∈ X and 0 6= t ∈ R. We have

Φ(u + tv)− Φ(u)

t
=

1

t

∫
R

[
|u′ + tv′|p(|u + tv|p − |u|p)

+ (|u′ + tv′|p − |u′|p)|u|p
]
dx.

(2.1)

Now, given x ∈ R and 0 < |t| < 1, by the mean value theorem, there exist λ, θ ∈ (0, 1)
such that

||u(x) + tv(x)|p − |u(x)|p|
|t|

= p|u(x) + λtv(x)|p−1|v(x)|

≤ p (|u(x)|+ |v(x)|)p−1 |v(x)|
and

||u′(x) + tv′(x)|p − |u′(x)|p|
|t|

= p|u′(x) + θtv′(x)|p−1|v′(x)|

≤ p (|u′(x)|+ |v′(x)|)p−1 |v′(x)|.

As (|u|+ |v|)p−1 |v|, |u|p ∈ L∞(R) and (|u′| + |v′|)p, (|u′|+ |v′|)p−1 |v′| ∈ L1(R), it
follows, from (2.1) and Lebesgue’s dominated convergence theorem, that

〈Φ′(u), v〉 = p

∫
R
|u|p|u′|p−2u′v′dx + p

∫
R
|u′|p|u|p−2uv dx.

Continuity of the Gateaux derivative: We choose a sequence un → u in X and
v ∈ X with ‖v‖ ≤ 1. By the Hölder’s inequality we have

|〈Φ′(un), v〉 − 〈Φ′(u), v〉|

≤ p

∫
R

∣∣|un|p|u′n|p−2u′n − |u|p|u′|p−2u′
∣∣ |v′|dx

+ p

∫
R

∣∣|u′n|p|un|p−2un − |u′|p|u|p−2u
∣∣ |v|dx

≤ p

(∫
R

∣∣|un|p|u′n|p−2u′n − |u|p|u′|p−2u′
∣∣p/(p−1)

dx

)(p−1)/p

+ pC

(∫
R

∣∣|u′n|p|un|p−2un − |u′|p|u|p−2u
∣∣p/(p−1)

dx

)(p−1)/p

.
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According to the Lebesgue’s dominated convergence theorem, the right hand side
tends to 0 uniformly for ‖v‖ ≤ 1. Thus Φ′ : X → X∗ is continuous.

Let us consider the condition below:

(A1) the compact group G acts isometrically on the Banach space X =
⊕∞

j=0 Xj,
the spaces Xj are invariant and there exists a finite dimensional space V such
that, for every j ∈ N, Xj ' V and the action of G on V is admissible, that is,
every continuous equivariant map ∂U → V k−1, where U is an open bounded
invariant neighborhood of 0 in V k, k ≥ 2, has a zero.

From now on, we follow the notations:

Yk :=
k⊕

j=0

Xj, Zk :=
∞⊕

j=k

Xj,

To prove the item (a) of the Theorem 1.1, we shall use the Fountain theorem of T.
Bartsch [6] as given in [19, Theorem 3.6]:

Lemma 2.3 (Fountain Theorem) Under the assumption (A1), let I ∈ C1(X, R)
be an invariant functional. If, for every k ∈ N, there exist ρk > rk > 0 such that

(A2) ak := max
u∈Yk,‖u‖=ρk

I(u) ≤ 0;

(A3) bk := min
u∈Zk,‖u‖=rk

I(u) →∞, k →∞;

(A4) I satisfies the (PS)c condition for every c > 0,

then I has an unbounded sequence of critical values.

For the item (b), we shall apply a dual version of the Fountain Theorem, see [6,
Theorem 2] or [19, theorem 3.18].

Lemma 2.4 (Dual Fountain Theorem) Under the assumption (A1), let I ∈
C1(X, R) be an invariant functional. Moreover, suppose that I satisfies the following
conditions:

(B1) for every k ≥ k0, there exists Rk > 0 such that I(u) ≥ 0 for every u ∈ Zk with
‖u‖ = Rk;

(B2) bk := inf
u∈Zk,‖u‖≤Rk

I(u) → 0 as k →∞;

(B3) for every k ≥ 1 there exists rk ∈ (0, Rk) and dk < 0 such that I(u) ≤ dk for
every u ∈ Yk with ‖u‖ = rk;
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(B4) every sequence (un) ⊂ Yn with I(un) < 0 bounded and (I|Yn)′(un) → 0 as n →∞
has a subsequence which converges to a critical point of I.

Then for each k ≥ k0, I has a critical value ck ∈ [bk, dk] and ck → 0 as k →∞.

Observe that (B2) and (B3) imply bk ≤ dk < 0.

3 The Palais-Smale condition

We begin this section by proving that any Palais-Smale sequence of the functional
Fλ,µ is bounded.

Lemma 3.1 Any (PS)c sequence in X, that is, satisfying Fλ,µ(un) → c and
F ′

λ,µ(un) → 0 is bounded.

Proof. We have for n large

Fλ,µ(un)− 1

r
〈F ′

λ,µ(un), un〉 ≤ ‖un‖+ c + 1.

On the other hand, by Lemma 2.2,

Fλ,µ(un)− 1

r
〈F ′

λ,µ(un), un〉 =

(
1

p
− 1

r

)
‖un‖p + 2p−1

(
1

p
− 2

r

) ∫
R
|u′n|p|un|p dx

+ λ

(
1

r
− 1

q

) ∫
R
|un|q dx.

Thus,

‖un‖+ c + 1 ≥
(

1

p
− 1

r

)
‖un‖p − C‖un‖q,

from which it follows that (un) is bounded since r > 2p and p > q.

Lemma 3.2 (The Palais-Smale condition) The functional Fλ,µ satisfies the
(PS)c condition for all c ∈ R.

Proof. Let (un) be in X satisfying Fλ,µ(un) → c and F ′
λ,µ(un) → 0. We will show

that (un) has a convergent subsequence. By Lemma 3.1, (un) is bounded. Thus, up
to a subsequence, un ⇀ u in X and using Proposition 2.1 un → u in Lq(R) and in
Ls(R). Therefore, the Hölder’s inequality implies that∫

R
|un|q−2un(un − u) dx → 0 and∫

R
|un|r−2un(un − u) dx → 0 as n →∞.

(3.1)
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We have

on(1) =〈F ′
λ,µ(un), un − u〉+ λ

∫
R
|un|q−2un(un − u)dx

+ µ

∫
R
|un|r−2un(un − u)dx

=

∫
R
|u′n|p−2u′n(u′n − u′)dx +

∫
R

V (x)|un|p−2un(un − u)dx

+ 2p−1

[ ∫
R
|un|p|u′n|p−2u′n(u′n − u′)dx +

∫
R
|u′n|p|un|p−2un(un − u)dx

]
and since

∫
R |u

′|p−2u′(u′n − u′)dx = on(1) and
∫

R V (x)|u|p−2u(un − u)dx = on(1) as
n →∞, the equality above can be rewritten as

on(1) =

∫
R
(|u′n|p−2u′n − |u′|p−2u′)(u′n − u′)dx

+

∫
R

V (x)(|un|p−2un − |u|p−2u)(un − u)dx

+ 2p−1

[ ∫ R

−R

|un|p|u′n|p−2u′n(u′n − u′)dx︸ ︷︷ ︸
I1

+

∫
|x|>R

|un|p|u′n|p−2u′n(u′n − u′)dx︸ ︷︷ ︸
I2

]

+ 2p−1

[ ∫ R

−R

|u′n|p|un|p−2un(un − u)dx︸ ︷︷ ︸
I3

+

∫
|x|>R

|u′n|p|un|p−2un(un − u)dx︸ ︷︷ ︸
I4

]
.

As |u|p, |u′|p ∈ L1(R), given ε > 0 there exists R > 0 such that∫
|x|>R

|u|p dx < εp and

∫
|x|>R

|u′|p dx < εp. (3.2)

By the convergence
∫

R |u|
p|u′|p−2u′(u′n − u′) → 0 as n →∞ we obtain

I1 =

∫ R

−R

(|un|p|u′n|p−2u′n − |u|p|u′|p−2u′)(u′n − u′)dx

=

∫ R

−R

(|un|p − |u|p)|u′|p−2u′(u′n − u′)dx

+

∫ R

−R

|un|p(|u′n|p−2u′n − |u′|p−2u′)(u′n − u′)dx.

Using the inequality

〈|x|p−2x− |y|p−2y, x− y〉 ≥

 Cp|x− y|p, if p ≥ 2

Cp
|x− y|2

(|x|+ |y|)2−p
, if 1 < p < 2

(3.3)
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where x, y ∈ RN , Cp > 0 and 〈·, ·〉 is the standard scalar product in RN (see Simon
[17]), the second summand in I1 is nonnegative and applying the mean value theorem
to the integrand of the first integral, we get

I1 ≥
∫ R

−R

|ξn|p−2ξn(un − u)|u′|p−2u′(u′n − u′)dx + on(1),

where
min{un, u} ≤ ξn ≤ max{un, u}.

Notice that for all n and for some C > 0, |ξn(x)| ≤ C almost everywhere in R because
(un) is bounded in L∞(R). Observe that∣∣∣∣ ∫ R

−R

|ξn|p−2ξn(un − u)|u′|p−2u′(u′n − u′)dx

∣∣∣∣
≤

∫ R

−R

|ξn|p−1|un − u||u′|p−1|u′n − u′|dx

≤ C‖un − u‖L∞(IR)

∫ R

−R

|u′|p−1|u′n − u′|dx

≤ C‖un − u‖L∞(IR)

(∫ R

−R

|u′|p dx

)(p−1)/p (∫ R

−R

|u′n − u′|p dx

)1/p

≤ C‖un − u‖L∞(IR) → 0 as n →∞,

since the embedding W 1,p(R) ↪→ L∞(IR) is compact. Thus I1 ≥ on(1). Next, our
purpose is to estimate the integral I2. We have that

I2 =

∫
|x|>R

|un|p|u′n|p dx−
∫
|x|>R

|un|p|u′n|p−2u′nu
′dx

≥−
∫
|x|>R

|un|p|u′n|p−2u′nu
′dx.

By (3.2), we can conclude that∣∣∣∣∫
|x|>R

|u′n|p|un|p−2u′nu
′dx

∣∣∣∣ ≤‖un‖p

(∫
|x|>R

|u′n|p dx

)(p−1)/p (∫
|x|>R

|u′|p dx

)1/p

≤Cε.

Therefore I2 ≥ −Cε. For the integral I3, we have

|I3| ≤
∫ R

−R

|u′n|p|un|p−1|un − u|dx ≤‖un − u‖L∞(IR)‖un‖p−1
∞ ‖un‖

≤C‖un − u‖L∞(IR) → 0 as n →∞.
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Writing the integral I4 in the following way

I4 =

∫
|x|>R

|u′n|p|un|p dx−
∫
|x|>R

u′n|p|un|p−2unu dx,

similarly to I2, we conclude that I4 ≥ −Cε, where ε > 0 was fixed previously.
Summarizing, we obtain

2pCε + on(1) ≥
∫

R
(|u′n|p−2u′n − |u′|p−2u′)(u′n − u′)dx

+

∫
R

V (x)(|un|p−2un − |u|p−2u)(un − u)dx

and by the inequality (3.3) we get

2pCpε + on(1) ≥


∫

R
|u′n − u′|p dx +

∫
R

V (x)|un − u|p dx, if p ≥ 2∫
R

|u′n − u′|2

(|u′n|+ |u′|)2−p
dx +

∫
R

V (x)|un − u|2

(|un|+ |u|)2−p
dx, if 1 < p < 2.

Thus, if p ≥ 2 we deduce that ‖un − u‖p → 0 as n → ∞ since ε > 0 was arbitrary.
Therefore un → u in X. If 1 < p < 2 we also have

lim
n→∞

∫
R

|u′n − u′|2

(|u′n|+ |u′|)2−p
dx = 0 and lim

n→∞

∫
R

V (x)
|un − u|2

(|un|+ |u|)2−p
dx = 0. (3.4)

Using the Hölder’s inequality and the fact that (u′n) is bounded in Lp(R) we get∫
R
|u′n − u′|p dx ≤

(∫
R

|u′n − u′|2

(|u′n|+ |u′|)2−p
dx

)p/2 (∫
R

(|u′n|+ |u′|)pdx

)(2−p)/2

≤C

(∫
R

|u′n − u′|2

(|u′n|+ |u′|)2−p
dx

)p/2

→ 0 as n →∞.

By similar arguments, we also have that
∫

R V (x)|un − u|pdx → 0 which shows that
‖un − u‖p → 0 and the proof is complete.

4 Proof of the main result

Now, we are ready to prove the main theorem:
Proof of Theorem 1.1.
(a) Let us verify that in Lemma 2.3 the conditions (A1) − (A4) are satisfied. Since
X is a reflexive, separable Banach space, let us fix (ej)

∞
j=0 a Schauder basis for X.
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Thus X =
⊕∞

j=0 Xj where Xj = Rej and on X we consider the antipodal action of
Z2 which verifies the condition (A1). Let us define

βk := sup
u∈Zk\{0}

‖u‖r

‖u‖
.

By similar arguments as in [19, Lemma 3.8], we have that βk → 0 as k →∞. On Zk,
we get

Fλ,µ(u) ≥ 1

p
‖u‖p − |λ|

q
‖u‖q

q −
µ

r
‖u‖r

r ≥
1

p
‖u‖p − |λ|

q
C‖u‖q − µ

r
βr

k‖u‖r.

Since q < p we have
|λ|
q

C‖u‖q ≤ 1

2p
‖u‖p

for ‖u‖ ≥ R, R > 0 large. Thus, for ‖u‖ ≥ R we obtain

Fλ,µ(u) ≥ 1

2p
‖u‖p − µ

r
βr

k‖u‖r.

Choosing rk := (µβr
k)

1/(p−r), it follows that rk →∞. Hence, there exists k0 such that
rk ≥ R for all k ≥ k0. Thus, if u ∈ Zk and ‖u‖ = rk with k ≥ k0, we obtain

Fλ,µ(u) ≥
(

1

2p
− 1

r

)
(µβr

k)
p/(p−r)

and since βk → 0 as k →∞, relation (A3) is proved. The functional Fλ,µ is even and

Fλ,µ(u) ≤ 1

p
‖u‖p +

2p−1

p
C‖u‖p

∞‖u‖p − λ

q
‖u‖q

q −
µ

r
‖u‖r

r

≤ 1

p
‖u‖p +

2p−1

p
C‖u‖2p − λ

q
‖u‖q

q −
µ

r
‖u‖r

r

≤ 1

p
‖u‖p +

2p−1

p
C‖u‖2p − λ

q
C‖u‖q − µ

r
C‖u‖r

because on the finite-dimensional space Yk all norms are equivalent. Since r > 2p the
relation (A2) is satisfied for every ρk > rk > 0 large enough.

The condition (A4) holds by Lemma 3.2. It suffices then to use the Fountain
theorem and the item (a) is proved.
(b) In order to see (B1) of Lemma 2.4 we set

αk := sup
u∈Zk\{0}

‖u‖q

‖u‖
.
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It follows easily from the Proposition 2.1 that αk → 0 as k → ∞. We obtain for
u ∈ Zk

Fλ,µ(u) ≥ 1

p
‖u‖p − λ

q
αq

k‖u‖
q − |µ|

r
C‖u‖r.

Since r > p, we have
|µ|
r

C‖u‖r ≤ 1

2p
‖u‖p

for ‖u‖ ≤ R, R > 0 small. Thus,

Fλ,µ(u) ≥ 1

2p
‖u‖p − λ

q
αq

k‖u‖
q.

Setting Rk :=

(
2pλαq

k

q

)1/(p−q)

, we get

1

2p
Rp

k =
λ

q
αq

kR
q
k.

Clearly Rk → 0, so there exists k0 with Rk ≤ R when k ≥ k0. Thus, if u ∈ Zk, k ≥ k0

and satisfies ‖u‖ = Rk we have

Fλ,µ(u) ≥ 1

2p
‖u‖p − λ

q
αq

k‖u‖
q = 0.

This proves (B1). Next, (B2) follows immediately from Rk → 0. To check (B3), we
observe that on the finite dimensional space Yk all norms are equivalent. Hence, there
exist C0, C1 > 0 such that

Fλ,µ(u) ≤1

p
‖u‖p + C‖u‖2p − λ

q
C0‖u‖q − µ

r
C1‖u‖r

=‖u‖q

(
1

p
‖u‖p−q + C‖u‖2p−q − λ

q
C0 −

µ

r
C1‖u‖r−q

)
Since q < p < r and Rk → 0, taking rk ∈ (0, Rk) with Rk sufficiently small, (B3) is
satisfied. This is precisely the point where λ > 0 enters. Finally, the condition (B4)
is showed similarly to Lemma 3.2.

In conclusion, we add some remarks about the behavior of solutions with respect
to parameters λ and µ.

Remark 1 (a) For λ ∈ R and µ ≤ 0 there are no solutions with positive energy.
Moreover

inf {‖u‖ : u solves (1.1), Fλ,µ(u) > 0} → ∞ as µ → 0+.

(b) For µ ∈ R and λ ≤ 0 there are no solutions with negative energy. Moreover

sup {‖u‖ : u solves (1.1), Fλ,µ(u) < 0} → 0 as λ → 0+.
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Proof of (a): Let λ, µ ∈ R. From F ′
λ,µ(u) = 0 we obtain

λ‖u‖q
q = −µ‖u‖r

r + ‖u‖p + 2p

∫
R
|u|p|u′|p dx.

If Fλ,µ(u) ≥ 0, we have(
1

p
− 1

q

)
‖u‖p + µ

(
1

q
− 1

r

)
‖u‖r

r + 2p

(
1

2p
− 1

q

) ∫
R
|u|p|u′|p dx ≥ 0.

Since 1 < q < p and r > 2p, we see immediately that for µ ≤ 0 the only solution with
nonnegative energy is u = 0. Now, if µ > 0, then there are constants c1, c2 > 0 with

−c1‖u‖p + µ‖u‖r ≥ 0,

hence
‖u‖r−p ≥ µ−1c1/c2 → +∞ as µ → 0+,

and the result follows.

Proof of (b): Fix λ, µ ∈ R. Similarly, from F ′
λ,µ(u) = 0 we obtain

µ‖u‖r
r = −λ‖u‖q

q + ‖u‖p + 2p

∫
R
|u|p|u′|p dx.

Thus, if Fλ,µ(u) ≤ 0 we have(
1

p
− 1

r

)
‖u‖p + λ

(
1

r
− 1

q

)
‖u‖q

q + 2p

(
1

2p
− 1

r

) ∫
R
|u|p|u′|p dx ≤ 0.

This implies that for λ ≤ 0 the only solution with non-positive energy is u = 0. For
µ > 0, there are constants c3, c4 > 0 with

c3‖u‖p − λc4‖u‖q ≤ 0,

hence
‖u‖p−q ≤ λc4/c3 → 0 as λ → 0+.

Remark 2 For λ > 0 small, it is easy to see that the functional Fλ,µ possesses the
mountain-pass geometry. Thus, using the mountain-pass theorem (see [19, Theorem
2.10]) equation (1.1) has a mountain-pass type solution. This solution is nonnegative.
Indeed, it is enough to work with the functional

Jλ,µ(u) =
1

p
‖u‖p +

2p−1

p

∫
R
|u′|p|u|p dx− λ

q

∫
R
(u+)q dx− µ

r

∫
R
(u+)r dx

and if 〈J ′
λ,µ(u), v〉 = 0 for all v ∈ X, setting v = u−, where u− = max{−u, 0}, we

obtain that u− = 0. Thus u ≥ 0.
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