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AN EXISTENCE RESULT FOR NEUTRAL
FUNCTIONAL DIFFERENTIAL INCLUSIONS IN A
BANACH SPACE

TL.GUEDDA AND ¢A. HALLOUZ

ABSTRACT. In this paper we prove the existence of mild solutions
for semilinear neutral functional differential inclusions with un-
bounded linear part generating a noncompact semigroup in a Ba-
nach space. This work generalizes the result given in [4].

1. INTRODUCTION

Semilinear neutral functional differential inclusion has been the ob-
ject of many studies by many researchers in the recent years. We only
mention the works of some authors ([1], [2], [6]). The method which
consists in defining an integral multioperator for which fixed points set
coincides with the solutions set of differential inclusion has been often
applied to existence problems.

Our aim in this paper is to give an existence result for initial value
problems for first order semilinear neutral functional differential inclu-
sions in a separable Banach space E of the form:

%[x(t) —h(t,z;)] € Ax(t)+ F(t,z), te€l0,T],

(1.2) z(t) = (), t€]-r0],

where A : D(A) C E — FE is the infinitesimal generator of an uniformly
bounded analytic semigroup of linear operators {S(t)}+>o on a separa-
ble Banach space F; the multimap F': [0,7] x C([-r,0],E) — P(E)
and h :[0,7T] x C([-r,0],E) — E, are given functions, 0 < r <
00, € C([-r,0], FE), where P(F) denotes the class of all nonempty
subsets of E, and C([—7,0], E) denotes the space of continuous func-
tions from [—r, 0] to E.
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For any continuous function x defined on [—r,T| and any ¢ € [0, T,
we denote by z; the element of C([—r,0], E) defined by

z(0) = z(t +6),0 € [—r,0].
For any u € C([-r,0], E) the norm ||.||o(_,.o.5 of u is defined by

lulleroy.m) = sup{llu(s)l - s € [=r, 0]}

The function x(.) represents the history of the state from time ¢ —r,
up the present time t.

In [8] using topological methods of multivalued analysis, existence
results for semilinear inclusions with unbounded linear part generating
a noncompact semigroup in Banach space were given. In this paper,
using the method of fractional power of closed operators theory and
by giving a special measure of noncompactness, we extend this line of
attack to the problem (1.1)-(1.2). More precisely in section 3 we give
the measure of noncompactness for which the integral multioperator is
condensing, this will allow us to give an existence result for the problem
(1.1)-(1.2), and by using the properties of fixed points set of condensing
operators we deduce that the mild solutions set is compact.

2. PRELIMINARIES

Along this work, E will be a separable Banach space provided with
norm |.||, A : D(A) C E — E is the infinitesimal generator of an
uniformly bounded analytic semigroup of linear operators {S(¢) }+>o in
E. We will assume that 0 € p(A) and that ||S(t)|| < M forall t € [0,T].
Under these conditions it is possible to define the fractional power
(—A)*,0 < a < 1, as closed linear operator on its domain D(—A).
Furthermore, D(—A)® is dense in E and the function ||z, = |[(—A)%«||
defines a norm in D(—A)*. If X, is the space D(—A)“ endowed with
the norm |.||,, then X, is a Banach space and there exists ¢, > 0
such that ||[(—A4)*S(t)|| < %, for t > 0. Also the inclusion X, — Xjp
for 0 < 8 < a <1 is continuous.

For additional details respect of fractional power of a linear operator
and semigroup theory, we refer the reader to [11] and [16] ..

Let X be a Banach space and (Y,>) a partially ordered set. A

function ¥ : P(X) — Y is called a measure of noncompactness in X

if U(Q) = ¥(coQ) for every Q € P(X), where cof2 denote the closed
convex hull of (2.

A measure of noncompactness ¥ is called:
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(1) nonsingular if U({a} U Q) = ¥ () for every a € X, 2 € P(X);

(ii) monotone if £ 2; € P(X) and ©Qy C Oy imply ¥(Qy) < U(Qy);

(iii) real if Y = [0, 00] with the natural ordering, and V() < 400
for every bounded set Q2 € P(X).

If Y is a cone in a Banach space we will say that the measure of
noncompactness W is regular if W(€2) = 0 is equivalent to the relative
compactness of 2.

One of most important examples of measure of noncompactness pos-
sessing all these properties, is the Hausdorff measure of noncompactness

X(Q) =inf{e > 0;Q has a finite e-net in X}

Let K (X) denotes the class of compact subsets of X, Kv(X) denotes
the class of compact convex subsets of X, and (@, d) a metric space.

A multimap G : Z — K(X) is called W—condensing if for every
bounded set Q C F, that is not relatively compact we have U(G(Q)) 2
U(Q2), where Z C X.

A multivalued map G : X — K(Q) is u.s.c at a point € X, if for ev-
ery € > 0 there exists neighborhood V() such that G(z') C W.(G(z)),
for every 2’ € V(z). Here by W.(A) we denote the e-neighborhood
of a set A, ie., Wo(A) ={y € Y : d(y,A) < ¢}, where d(y,A) =
inf,cqd(z,y).

A multimap G : X — P(Q) is said to be quasicompact if its restric-
tion to every compact subset A C X is compact.

A multifunction F : [0,7] — K(X) is said to be strongly measur-
able if there exists a sequence {F,} -, of step multifunctions such
that Haus (F (t), F n(t)) — 0 as n — oo for g — a.e. t € [0,7] where
p denotes a Lebesgue measure on [0,7] and Haus is the Hausdorff
metric on K(X). Every strongly measurable multifunction F admits
a strongly measurable selection g : [0, 7] — X i.e., g(t) € F (t) for a.e.
t € 10,77

Let L'([0,T], X) denotes the space of all Bochner summable func-
tions

A multifunction F : [0, 7] — K(X) is said to be

(i) integrable provided it has a summable selection g € L*([0, 7], X),

(ii) integrably bounded if there exists a summable function ¢(.) €
LY([0,T),X) such that [|[F (t)|] = sup{|jy|| : v € F(t)} < q(t) for a.e.
t € 10,77

A sequence {f,}5°, C L'([0,T], X) is semicompact if

(i) it is integrably bounded: ||f,(¢)|| < q(¢) for a.e. ¢ € [0,T] and for
every n > 1, where ¢(.) € L'([0, T],R™T)
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(ii) the set { f,(t)}o2,is relatively compact for almost every t € [0, T.

Any semicompact sequence in L([0, 7], X) is weakly compact in
LY([0,T], X).

For all this definitions see for example [8].

In the sequel, C'([—r, T], E') denotes the space of continuous functions
from [—r,T] to E endowed with the supremum norm. For any z €

C([—’I“, T],E),

el ¢y = sup L@ - ¢ € [=r, T}

In section 3 we establish an existence result to the problem (1.1)-(1.2)
using the following well known results. (See [8]).

Lemma 1. Let E be a Banach space and ¢ : E — E a bounded linear
operator. Then for every bounded subset Q) C E

X(o() < I8l x ().

Lemma 2. Let E be a separable Banach space and G : [0,T] — P(E)
an integrable, integrably bounded multifunction such that

X (G(1) < q(t)
for a.e. t € [0,T] where ¢ € L} ([0,T]). Then for all t € [0,T]

/ X (Gls))ds < / als)ds.

Lemma 3. Let E be a separable Banach space and J an operator
J: LN([0,7), B) = C([0,T), E)

which satisfies the following conditions:
J1) There exists D > 0 such that

1If(t) = ||<D/ 1£(5) — g(s)l|ds, 0<t<T

for every f,g € L*([0,T], K

Jso) For any compact K C E and sequence {f, 322, C L'([0,T), F)
such that {f,(t)}>2,; C K for a.e. t € [0,T] the weak conver-
gence f, — fo implies J(f,) — J(fo).

Then,
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(i) If the sequence of functions {f,}>>, C L([0,T], E) is such
that [|f.(t)| < 7(t) a.e t € [0,T], for all n = 1,2,..., and
x({fa}521) <(C(t) ae. t €[0,T], where m, ¢ € L ([0,77], then

NReant SD/Q

for all t € [0, 7.
(ii) For every semicompact sequence {f,}°2, C L([0,T]; E) the

sequence {J(f,)}52, is relatively compact in C'([0,77; E), and,;
moreover, if f, — fo then
J(fn) =>J( fo)-

An example of this operator is the Cauchy operator J : L'([0,T], E) —
C([0,T), E) defined for every f € L'([0,T], E) by

T = [ 8=
where {S(t) }+>0 is a Cy—semigroup in E (see [3]).

Lemma 4. ([8]). If G is a convex closed subset of a Banach space E,
and T' : G — Kv(Q) is closed © condensing, where © is nonsingular
measure of noncompactness defined on subsets of G, then Fixl' # ().

Lemma 5. ([8]). Let Z be a closed subset of a Banach space E and F :
Z — K(F) a closed multimap, which is a-condensing on every bounded
subset of Z, where o is a monotone measure of noncompactness. If the
fixed points set FixF' is bounded, then it is compact.

3. EXISTENCE RESULT

Let us define what we mean by a mild solution of the problem (1.1)-
(1.2).

Definition 1. A function v € C([—r,T|, E) is said to be a mild so-
lution of the problem (1.1)-(1.2) if the function s — AS(t—s)h(s,xs) is
integrable on [0,t) for each 0 < t < T, and there exists f € L*([0,T], E),
f(t) € F(t,z;) a.e. t €[0,T], such that

z(t) = St)(p(0) = h0,¢)) + h(t,xt)+/0 S(t—s)f(s)ds

t
+/ AS(t — s)h(s,xs)ds, t€[0,T],
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and
x(t) = p(t), te[-r0].

To establish our result we consider the following conditions:
Suppose that the multimap F : [0,7] x C([-r,0],E) — Kuv(E)
satisfies the following properties:

F1) the multifunction F(-,u) has a strongly measurable selection
for every u € C([-r,0], E);

F2) the multimap F : (¢t,-) — Kv(F) is upper semicontinuous for
ea. t€0,77;

F3) there exists a function 8 € L'([0,T],R") such that, for every
ue C([-r0],E),

1EE wl < 5@+ lullero.m)sa-e t €0, T];
F4) there exists a function x € L'([0,T],R") such that for every
QcC C([_Ta O]vE)u

X(F(t,9)) < k(1) es[gpo}x(Q(S)),a-e- te 0,7,

where, for s € [—r,0], Q(s) = {u(s);u € Q}.
Assume also that

H) there exist constants dy, ds,w, 0 € RT and 0 < a < 1, such that
h is X,-valued, and

(1) for every u € C([-r,0], E), and t € [0,T]
I(=A)*h(t, W)l < du [[ullo—rom) + do;

(17) for every bounded set Q@ C C([—r,0], F) and t € [0, T,
X((=A)*A(t, Q) < w sup x(Qs));

s€[—r,0]
(i1) for every uj,uy € C([—r,0], E) and t,s € [0, 7],
(AP bt 02) = (=) B, 00) | < 1 =l + 91— 5.

where ¥ : [0,T] — R" is a continuous function, such that 9(0) = 0.

We note that from assumptions (F'1) — (F'3) it follows that the su-
perposition multioperator
selp C([—T’, T]aE) - P(Ll([OaT]a E))
defined for x € C([—r,T], E) by:

selp(x) = {f € LY[0,T], E), f(t) € F(t,z,),a.e. t €[0,T]}
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is correctly defined (see [8]) and is weakly closed in the following sense:
if the sequences {xn}zozl - C([_Ta T]aE)v{fn}zO:l C Ll([O7T]7E)7
fa(t) € F(t,27), a.e. t € [0,T],n > 1 are such that 2" — 2°, f,, — fo.,
then fo(t) € F(t,x}) a.e. t €[0,T] (see [8]). Since the family {S(t)},-,
is an analytic semigroup [16], the operator function

s — AS(t — s) is continuous in the uniform operator topology on [0, t)
which from the estimate

[(=A)S(t = s)h(s,z)l| = [[(=A)'"*S(t = s)(=A)*h(s,z,)||
lea

< m(dl 1%\l o0, ) T )
Cl—a

= (t—s)—o (i |2l vy, ) + d2)

and the Bochner’s theorem implies that AS(t — s)h(s, x;) is integrable
on [0,1).

Now we shall prove our main result.
Theorem 1. Let the assumptions (F1) — (F4) and (H) be satisfied. If
[(=4)~|| max {w, 6, d1} <1

then the mild solutions set of the problem (1.1)-(1.2) is a nonempty
compact subset of the space C([—r,T), E).

Proof. In the space C([—r,T], E), Let define the operator
I:c(-nrT],E)— P(C([-r,T],F)) in the following way:

F(:L‘)(t) = {y € C([_r7 T]aE) : y(t) = cp(t), te [_Tv O] and
y(t) = Y(f)(t)+ h(t,z) +/0 AS(t — s)h(s,x5)ds; fort €0,T] }

where f € selp(z), and the operator T : L'([0,T], E) — C([0,T], E) is
defined by

T(F)(t) = S(t)zo + /0 S(t — s)f(s)ds, t € [0,T]

where g = ¢(0) — h(0, ¢).

Remark 1. It is clear that the operator I' is well defined, and the fixed

points of T' are mild solutions of the problem (1.1)-(1.2).
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The proof will be given in four steps.

Step 1. The multivalued operator I is closed.

3
The multivalued operator I' can be written in the form T' = > T
1

where the operators I';,7 = 1,2, 3 are defined as follows: the multival-

ued operator I'y : C([-r,T], E) — P(C([-r,T)], E)) by

t) — h(0,¢), te[-r0,
Tl(ff)(t):{ ﬁ((})(t),( 7 tE%O,T]] }

where f € Selp(z), the operator I'y : C([—r,T], E) — C([—r,T], E) by

h(0,p), te[-r0],
La(2)(t) = { hEt,;pt)), t 2 %O,T]]

and the operator I's : C([-r,T], E) — C([-r,T], E) by

0, te[—r0]
D3(z)(t) = { f(f AS(t — s)h(s,xs)ds, t€[0,T].

Let {z"}2,, {z"}2, 2" — 20, 2" € T((2"),n > 1, and 2" — 2°. Let

{f.}2, € LY([0,T], E) an arbitrary sequence such that, for n > 1
fn(t) € F(t,x}),a.e. t €[0,T],

and

o { (1), te[—r0l,
L T @) + At ap) + [ AS(t — s)h(s,a)ds, t e [0,T).

Since {S(t)}:>0 is a strongly continuous semigroup (see [3]), the op-
erator Y satisfies the properties (J;) and (J2) of Lemma 3, by using
hypothesis (£'3) we have that sequence {f,}2, is integrably bounded.
Hypothesis (F4) implies that

X{a®)}2) < sOx{a"(0)}2, =0

for a.e. t € [0,7], i.e., the set {f,(t)}>2, is relatively compact for
a.e. t € [0,T], thus {f,}>; is semicompact sequence. Consequently
{f.}2, is weakly compact in L'([0,T], E) so we can assume without
loss of generality, that f,, — fo.

By applying Lemma 3, Y(f,,) — Y(fo) in C([0,T], E). Moreover, by

using the fact that the operator selp is closed, we have fy € selp(z°).
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Consequently

n _ p(t) = h0,¢), te[-r0]
alt) = { T(£,)(0), te[0,7].
- Y (p(t) - h(07 90)7 te [—’I“, 0]7
o 0= S, 1Eb
in the space C([—r,T], E), with fo € selp(z"). On the other hand,
using (H) — (ii1), for ¢t € [0, T] we get

n—oo

e — b < A7 ARG a8) — (—A)hie, )|
< ¢ H A QH Hxs (S]HC([fr,O],E)
< 0 H<_A)_(XH Hxn - xOHC([fr,T],E) :

It results that

3.2) HFZ(‘” — Ta(z HC( T E) S 0 H aH Hxn - ‘TOHC([—T,T],E)

Using hypothesis (H)—(ii) and the estimate in the family {(—A)'~*S(¢)},~0.
for any ¢ € [0, 7] we have

/0 [AS(t — $)h(s,z2) — AS(t — s)h(s, :ES)} ds

< /Ot |AS(t = s)h(s,z2) — AS(t — s)h(s,2?)|| ds
< 0= " = Ny [ A= o) ds
< O~ g [ s
< 0 P o a0l
Then
I [
<0 (=) = o = Ol

From the inequalities (3.1)-(3.3) follows immediately that 2" — 2 in

the space C([—r,T], ), with

Y (fo)(t) + h(t,z}) + fo AS(t — s)h(s,2%)ds, t€0,T].
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and fy € selp(x?). Thus 2° € T'(2°) and hence T is closed. Now in the
space C([—r,T], E) we consider the measure of noncompactness © de-
fined in the following way: for every bounded subset Q@ C C([—r,T], E)

O(€) = (x(Q([=r, 0]), ¥(£2), mod £)

where

te[0,7 s€[0,t]

U(Q) = sup <e‘” sup X(Q(S))>

and mod, ) is the module of equicontinuity of the set Q@ ¢ C([-r,T], E)
given by:

4.0 = li t) — x(t
mo 51%§‘£|tf9$@5”x< 1) — z(t2)|

and L > 0 is chosen so that

t
M sup / e l=9)g(s)ds < ¢ <1
1J0

tel0,T

t
Cla
w sup / ﬁe’“t’s)ds < <l
tefo.r) Jo (=)

p /t efL(tfs) y - -1
1 sup T . C-a0S > @3
tefor) Jo (t—s)t7

t
M sup / e H=93(s)ds < gy < 1
te[0,T] J O

where M is the constant from the estimation in the family {S(¢)},-,
the constants d,dy from (H) — (i), the constant w from (H) — (i),
the function § from the hypothesis (F'3) and the function s from the
hypothesis (F'4). From the Arzeld-Ascoli theorem, the measure © give
a nonsingular and regular measure of noncompactness in C([—r, T, E).

Remark 2. If £ € LY([0,T], E), it is clear that

t
sup / e t9e(s)ds — 0.
1J0

tE[O7T L—+00
Step 2. The miltioperator I' is © condensing on every bounded
subset of C([—r,T1, E).
Let Q € C([-r,T], E) be a bounded subset such that

(3.4) O(I'(2)) > 6(),
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where the inequality is taking in the sense of the order in R3 induced
by the positive cone R?. We will show that (3.4) implies that Q is
relatively compact in C([—r,T], E'). From the inequality (3.4) follows
immediately that

(3.5) A(Q[=r,0])) = 0.

Indeed, we have

X [=r,0]) = x{e([=r,0)} = 0 = x(Q[=r,0]) = 0.
Remark that from (3.5) it follows that
sup y((a)) = 0.
a€[—r,0]
Therefore, for s € [0, 7]
sup X(Qe)) < sup x(Q(a)) + sup x((ar))
a€[s—r,s] a€g—r,0] a€l0,s]

(3.6) < sup x((a)).

a€l0,s]

We give now an upper estimate for x({f(s), f € selr(Q)}, for s € [0, ],
t <T. By using (3.6) and the assumption (F'4) we have

X({f(s), f € selp(Q)} X(F(s,€))
e r(s)e es[gpo]x(ﬁs(a))

eEr(s)e™™ sup v(Qa)

a€[s—r,s]

IA - IA A

IA

P r(s)e sup x(2(a))
a€(0,s]

e"k(s) sup e % sup x(Q(a)).
s€[0,t] a€l0,s]

IA

< e"r(s) sup e sup x(«))
s€[0,T] «€[0,s]

< e r(s)T(Q)
Using Lemma 2 with D = M, we get

VAT (s), f € selp(Q)} < MU(Q) /0 T B dA

Therefore,

sup x({Y(f)(s), f € selp(Q)} < MY(Q) /t e (N dA.
e EJQTD%, 2008 No. 9, p. 11



L

By multiplying both sides with e~** and bearing in mind the definition

of ¢, we get

sup e~ sup X({Y(f)(s). f € selp(Q)})

t€[0,T] s€[0,4]
= Y{T(/f), [ € selp(2)})
< U(Q)M sup / €7L(t7/\)/<0()\)d)‘
tel0,7] Jo
(3.7) < qV(Q)

Since the measure y is monotone, by using (H;) — (i7i) and Lemma 1,
we obtain for s € [0,¢], t < T

x(h(s,€s)) e X ((A)™ (= A)h(s, Q)
eMwl|(=A)7| e*”asél[lfs}x(ﬁ(a))

eltw H(—A)’O‘H e It sup X(Q())
a€(0,t]

eHw H(—A)_O‘H sup e sup x(Q(a))
te[0,7) a€l0,t]

eHw H(—A)_O‘H U(9).

VAN VAR VAN

IA

VAN

Then,

sup x(h(s, Q) < .eHw H(—A)_O‘H U(Q)

s€[0,t]
By multiplying both sides with e~ we have
(3.8) sup e sup x(h(s, Q) < .w [[(—A)7]| T().

t€[0,T] s€[0,t]

The multifunction G : s — AS(t — s)h(s,€), s € [0,t) is integrable
and integrably bounded. Indeed for any z € 2 we have:

[(=A)S(t = s)h(s,z.)| = |[(=A)'T*S(t = s)(=A)*)h(s, )|
lea
< m(dl 125l 10, 1) T d2)
lea
< W(dl 1]l ¢ (7, + o)
< G

(t— ;Cifa (dli‘ég 2]l (=1, ) + d2)
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Using the assumption (H) — (i) and Lemma 1, we get

X (AS(t = s)h(s,z5)) = x ((=A)7*(=A)*S(t — s)h(s, )

< (=478t = )] x (—A)*h(s, z))
lea
< ———wsu QA
< e s ()
wCl*CV Ls —Ls
< ——— e sup e sup x(QN))
(t=s)17 o] aclo.s]
wcl—a L
U (Q
st Y@
By lemma 2, we get for every s € [0, ]
X (/ (—A)S(t — )\)h(A,xA)d)\) < \I/(Q)/ Ll*f:e%m
0 o (=AMt
t
< Q) / Lﬁ‘iemdx.
o (E=A)t
Thus,
s t WC1—a n
sup x (=A)S(Et = Nh(A zp)dN ) S U(Q) | ———e"dA
s€[0,4] 0 o (t—=A)t

L

By multiplying both sides with e~** and bearing in mind the definition

of qo, we get

sup e~ sup y ( /0 (—A)S(E = Mh(), xk)d)\)

te[0,7 s€[0,t]

t CL)Cl,
(0 _lma LA g
() sup / =

te[0,7

(3.9) < @U(Q).

IN
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From the inequalities (3.7)-(3.9), remark 2 and the fact that w || (—A)?|| <
1, we get

U(I'(Q) = supe “supy {T(f)(s) + h(s, §2) +/ AS(t — s)h(A, Q,\)d)\}
te[0,7 s€[0,t] 0
t
< \1/(9[ sup M | e L9 (s)ds + [|(—A)*]| w
te[0,7 0
t LL)Cl, I
+ su Y L=y,
te[o,%/o (= sy |
< V() [g+ g +wl(=A4)]]
< Y(Q).

Using the inequality (3.4), the last inequality implies that
(3.10) T (Q) =0.

We shall give now an upper estimate for mod.I'(€2). We have shown
that

XA{Y(f)(t), f € selp(x),x € Q} =0, for any ¢t € [0,T]. From the con-
ditions (F'3) and (F'4) follows that the sequence {f € selp(x),z € Q}
is semicompact in L*([0, 7], F'), and hence the set

{y;y(t) =Tf(t),t €[0,T], f € selp(z),r € Q}

is relatively compact in C'([0,T], E) (see [3]). Therefore, the set

Q) = {y®) = »(t) =m0, ), t € [-r,0]
y(t) ="T(f)(t),t €[0,T], f € selp(x),z € Q}

is relatively compact in C'([—r,T], E). Consequently

(3.11) mod.I'1(€2) = 0.
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Let § > 0, and ¢,t' € [0, 7], such that For 0 < ¢ —t < §, and let z € Q,
we have

ITo(2)(t) — To(x) ()| = [[h(t,zr) — h(',20)|| <
< (AT (=A)h(t, xp) — (—A) " (—A)*h(t', zv)||
< (=) O llee = 2ol ooy + sup 9 1)
i ' —t<s
< H(—A)’QH 0 sup ||z(t+a) —z(t' + a)|| + sup It —t)
a€—r,0] t'—t<d
| v—t<s
< H(—A)_O‘H 0 sup |x(s) —a(s)|| + sup I —t)
s,8’€[t—r,t'] t'—t<6
| |s—s’|<d
< |[(=A)7]| [0 sup [lx(s) —x(s)|| + sup I(t' —1)
s,s'€[—r,T] t'—t<6
|s—s'|<0

Since

lim sup 9(¢' —¢) = 9(0) =0

5—>Ot/_t<6

It results that
(3.12) mod I'5(2) < 6 |(—=A)~|| mod Q2

Now we will show that the set

_ . _ O’ te [_T7 0]7
T5() = {y,y(t) N { fot AeAt=3)h(s, x,)ds, t €0,T],
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where x € Q, is equicontinuous on C'([—r,T|,E). Let 0 <t <t < T,
and z € €. We have

[ st = omis. [ s nis,o] as

IA

(S(H =) — 1) / CAS(t— $)h(s,z0)ds|| + /t " AS( (s, w)ds

0

IA

(SW —1) - 1) / CAS(t— $)h(s, .)ds

0

(t — 1)

+C1—a(d151615 12\l oy, ) + d2)

Since x (f(f AS(t — s)h(s, Qs)ds> =0, i.e., theset {fot AS(t — s)h(s, Qs)ds}
is relatively compact for every ¢ € [0, T'], the first term on the right hand

side converge to zero when ¢’ — ¢ uniformly on = € . As consequence
we get

(3.13) mod.I'3(2) = 0.

Since

3
mod () < Zmodcfi(Q)
i=1

From the inequalities (3.11)-(3.13), we obtain

mod.I'(Q) < 6 ||(—A)~*|| mod .
Since 0 ||(—A)~¢|| < 1, from the inequality (3.4) follows

(3.14) mod.(2) = 0.
Finally from the inequalities (3.5), (3.10) and (3.14) we get
e(Q2) = (0,0,0).

This shows that the subset 2 is relatively compact, concluding the
proof of Step 2.

Now in the space C([—r,T], E) we introduce the equivalent norm,
given by
Izl = sup [lz(t)]| + sup e sup [Jz(s)]
te[—r,0] t€[0,T] s€[0,t]
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Consider the ball
B,.(0) = {z € C([-r,T], E); |=|l, <7}
where r is a constant chosen so that
s el eqronm + 1RO, )l + M ([zoll + 18] 1) + d2Cra’s
- L—dy[[(=A)

where zg = ©(0) — h(0, ¢). Since d; ||(—A)~|| < 1, the last inequality
implies

(e

Y T
di[[(=A) [+l el oy 170, @) I+M (2ol + 18]l ) +d2Cra— < 7.

Step 3. The multioperator I' maps the ball B,.(0) into itself.
Let x € B,.(0) and y € I'(z),

o) = S0m+ tn) + S(t = ) f(s)ds

ﬁ/Aﬂpwm@%M&temj]

y(t) = ¢(t),t € [-r,0]
where f € selp(z). Remark first that
Y=y +y2tys

where
(t) = 1(0,¢), t€[-r0]
yi(t) = { g(t) - Tf(tf, € [0, 7] }’
n(0,¢), te[-r0

ya(t) :{ hgt,;?) t {O,T]] ’

and
(o, t € [-r,0],
ya(t) —{ [T AS(t — s)h(s,x5)ds, t€[0,T].

Therefore,

Iyl < llyall + lyall, + llysll,
Let give an upper estimate for each [|y;|| ;i =1,2,3. For s € [-r,0],

we have
(3.15)

uw ly1(s)Il = sup_ le(t) = h(0, D) < Nl —roy,m) + 70, 0)I-
se|—r, se|—r,
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For s € [0,t], t < T, using the hypothesis (F3), we have

Iy ()]l < IIS(S)%IH/OSIIS(S—T)H ()l dr

< Mol + M|Bl. + M / B(r) |z, ||, dr
< Mol + M|Bl,. + M / 87) s ()l dr
0 pue|r—r,T
< Mol + M8l
Y / T B(r) et sup Jx(o)l| + e sup ()| dr
0 i peE[—7,0] nel0,7]
< Mol + M8l

+ M/ "7 B(r) | sup |lz(p)ll + sup e sup ch(u)H] dr
0

| ne[-r0] 7€[0,T] nel0,7]

IA

M ([l + IIﬁHLl)HWIIJJH*/0 e p(r)dr

Thus,
t
Lt
u [y ()l < M (|lzoll + (18]l 1) + MHxH*/O e B(r)dr
s€|0,

L

By multiplying both sides with e~** and bearing in mind the definition

of g4, we obtain

t
sup e sup [y (s)| < M (o]l + [18]0) + |z, M sup / e M B(r)dr
t€[0,T] s€[0,t] te[0,7] Jo

(3.16) < M (flzoll + 181l 1) + g [l]l,.-
From inequalities (3.15) and (3.16), we get
(317) llalls < llelloro.m + 170, @)1+ M (ol + 151 L1) + ga |2l
Let now give an upper estimate fore ||y||,. For s € [—r, 0], we have

(3.18) s [y2()Il, = sup 1700, @) || = [|n(0, )
s€[—r, se|—r,
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For s € [0,t], t < T, using the hypothesis (H) — (i), we have

[y2(s)l < IA(t, z0)]]
< || (=A) T +d [ (AT sl oo,z
< do||(=A) [+ d |[(=A) T | sup [lx(p)]| + sup Hx(u)H]
pE[—r,0] H€0,s]
< do||(=A) [+ du |[(=A) T e | sup o (p)]| + e sup Hx(u)H]

_ME [_7”0} S [Ovt]

< do|[(=A) |+ di || (=A) | e | sup flx(p)]| + sup e sup Hx(u)H]
_ue[—r,o} t€[0,T] nel0,¢]

< dy || (=)0 + da [[(=A) || "
It follows that

s o (6)1 < da (=) |+ e | (=) e,

L

By multiplying both sides with e * we get

(3.19)  sup ™™ ur ly2(s)II < da || (=A) | + o [[(=A) = |,

t€[0,T] s€[0,t
From the inequalities (3.18) and (3.19), it follows that

lyall, < R0, )] +da ||(=A) ||
(3.20) +dy || (=A)7 (|l

It remains to give an upper estimate for ||ys||,. For s € [—r, 0], we have

(3.21) sup_ lys(s)[| = 0.
s€[—r,0
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For s € [0,t], t < T, by using (H) — (i), we have

@) = | [ AS(s = (i )ar
0
° Cl*a B lea
< d1/ ——————— sup ||x(,u)||d7‘+d2/ ——dr
o (8= 7)) uelr—rn] o (s=7)t7
s lea T lea
< [ O] s el + sup (ol |dr s [ S
' o (s—7) Le[r,o] pelo,r] o (T'—7)t-=
t C,a B T
< i [ O | s (o)l + sup e sup fa()]| +daCroa
0 (t - 5) pe[—r,0] r€[0,T] pel0,7] Q
< d ——ed doCh_f—
N 1/0 (t—S)lfae T||x||*+ 21 Q
Therefore
t
Cl—a L T
sup |lys(s)]| < ||z, d / —————e"TdT + dyCy_—.
SeMH s(s)ll < Nzl da e 201-a—

By multiplying both sides with e~** and bearing in mind the definition
of g3, we get

sup e " sup ||ys(s)||

te[0,7 s€[0,t]
¢
lea T
< ||z dy sup / it Ly + doCi_q—
| H*< te[0,7] Jo (t—7)l-« «a

T
(322) < q3 ”SL’H* + dQCl—aE

From the inequalities (3.21) and (3.22), it follows that

TCV
(3.23) lysll, < g llzll, + dzleaE

Finally from (3.17), (3.20) , (3.23) and Remark 2, we get

1yl < Nyl + vzl + lysll,

[e7

T
< llelleqroz + 1RO, )l + M ([lzoll + 15l 1) + d2Cr-a——

+ [di || (=A) || + s + as] ll=]l,
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[e7

T
< llellog-rom + 1RO, @) + M (lzoll + 5]l 1) + d2Cioa—

+ [ (A + @ +as] 7

According to Lemma 4, the problem (1.1)-(1.2) has at least one mild
solution.

Step 4. The solutions set is compact.

The solution set is a priori bounded. In fact, if x is a mild solution
of the problem (1.1)-(1.2), and the function v(.) : [0,7] — R* is such
that v(t) = sup ||z(p)|| then as above for ¢ € [0,T] we have

1e(0,¢]
v(t) = sup [[z(u)
1e(0,¢]
t
< M(!\fﬁo!\+!\ﬁ|!L1)+M/ B(r) | sup |lz(p)ll+ sup [lz(p)[|dr
0 uE[—r,0] 1elo,7]
Hdy [|(=A) | 4+ da [|(=4) | [ sup ||93 I+ Sup | (p )||]
t t
Cl—a Cl—a
+d/7d7' sup ||z(p)|| + sup ||z(p +d/7d7'
1 0 (t_s)l_a [pe[r,O}H ( )H pel0r] || ( )H 2 o (t_s)l_a
< M ([Jxoll + 1811 ) + da || (=A4) 7]

T
+ lMHﬁHLl +di ||(—A)*|| + d2Ci—s ] el oqrop.m)

| sup ||x(s t T i sup ||z T
=) s fa)+ [ [ar00r) + D] sup el
M (||zoll + 11811 0) + da || (—A4) =

T
+meﬁ+mw Y| + daC e }wm(m>

v Ay ot + [ Mo+ D

IN

] o(r)dr

it results that

u(t) < ;_ [E—l—/t [Mﬁ( )+d1 Cl —< U(T)dT]
dy [[(=A)~]] 0
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where

€=M (llzoll + 18l ,1) + da || (—=A) ||

Ta
+ M| Bl + do [[(=A) || + dzgl—a;} el oero,m)

Applying Gromwall-Bellmann type inequality, we get

e
IOl = T=g==1°

where,
1 d101—a]
= M|B|. +T———| .
V= T [+ TG
therefore,
§
v(T) = sup |z(p)| < e’
(T) ME[MH S A
Consequently

el oy < sup el + sup [lz(u)]
}LE[*T,O] :U'E[(LT]
§

lelloro.e) + -
C=r0l®) T T =g [(=A) |

e

<

To complete the proof it remains to apply Lemma 5.
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