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Abstract. The main purpose of this paper is to provide the theory of differential inclu-
sions by new existence results of solutions for boundary value problems of differential
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1 Introduction

During the past two decades, fractional differential equations and fractional differential
inclusions have gained considerable importance due to their applications in various fields,
such as physics, mechanics and engineering. For some of these applications, one can see
[16, 22, 27, 33] and the references therein. El Sayed et al. [15] initiated the study of fractional
multivalued differential inclusions. For some recent development on initial value problems for
differential equations and inclusions of fractional order we refer the reader to the references
[1, 32, 34–38].

Some applied problems in physics require fractional differential equations and inclusions
with boundary conditions. Recently, many authors have studied differential inclusions with
various boundary conditions. Some of these works have been done in finite dimensional
spaces and of positive integer order, for example, Ibrahim et al. [25] and Gomma [17] consid-
ered a functional multivalued three-point boundary value problem of second-order. Gomma
[18] studied four-point boundary value problems for non-convex differential inclusions.

Several results have been obtained for fractional differential equations and inclusions with
various boundary value conditions in finite dimensional spaces. We refer, for example, to
Agarwal et al. [1] who established conditions for the existence of solutions for various classes
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of initial and boundary value problems for fractional differential equations and inclusions
involving the Caputo derivative, Ouahab [31] studied a fractional differential inclusion with
Dirichlet boundary conditions under both convexity and nonconvexity conditions on the mul-
tivalued right-hand side and Ntouyas et al. [30] discussed the existence of solutions for a
boundary value problem of fractional differential inclusions with three-point integral bound-
ary conditions involving convex and non-convex multivalued maps.

For some recent works on boundary value problems for fractional differential inclusions
in infinite dimensional spaces, we refer to Benchohra et al. [8] who established the existence of
solutions of nonlinear fractional differential inclusions with two point boundary conditions.

Anti-periodic boundary conditions appear in a variety of situation, see [2,3,12,13] and the
references therein.

Let 2 < α < 3 and E be a Banach space. In this paper we consider the following two
fractional boundary value problems :{

cDα x(t) = f (t, x(t)), a.e. on J = [0, b],

x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) = −x(2)(b),
(1.1)

and {
cDα−2

g x(2)(t) ∈ F(t, x(t)), a.e. on J = [0, b],

x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) = −x(2)(b),
(1.2)

where cDα is the Caputo derivative of order α with the lower limit zero, f : J × E → E is
a function, cDα

g is the Caputo derivative of order α in the generalized (weak) sense with the
lower limit zero, which is specified later, and F : J × E→ 2E is a multifunction.

Firstly, we shall prove that if h ∈ L1(J, E) and x ∈ AC3(J, E) is a solution of the fractional
boundary value problem{

cD αx(t) = h(t), a.e. on J = [0, b],

x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) = −x(2)(b),
(1.3)

then

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1h(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds, t ∈ J.

(1.4)

Moreover, if h ∈ AC(J, E) and x : J → E such that (1.4) holds, then x ∈ AC3(J, E) and
satisfies (1.3).

In [28], Lan et al. pointed out that we can neither prove that if h ∈ C([0, 1], R), then x given
in (1.4) is a solution of (1.3) nor show that if h ∈ C(J, R) satisfies (1.3), then x and h satisfy
(1.4) although these results have been widely used in some papers such as [2, Lemma 2.1],
[3, Lemma 1.2] and [12, Lemma 2.7]. Due to the requirement h ∈ AC(J, E), the continuity
assumption on f is not sufficient. To overcome this difficulty we shall impose a Lipschitz type
condition on f . Motivated by the work of Lan et al. [28] we introduce a correct formula of
solutions of (1.1).
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Also, due to the requirement h ∈ AC(J, E), a problem arises when we study the problem
(1.1) in the case when f is a multifunction. This problem arises because we do not know the
conditions that guarantee the closedness of the set of absolutely continuous selections for a
multifunction. To avoid this problem we consider the Caputo derivative in the generalized
sense when we study the problem (1.2). We shall show that if x ∈ AC3(J, E) is a solutions of
(1.2), then the following fractional boundary value problem{

cDαx(t) ∈ F(t, x(t)), a.e. on J = [0, b],

x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) = −x(2)(b)

holds. We note that Ahmed [2] considered (1.1) in infinite dimensional Banach spaces while
Cerna [12] considered (1.2) in finite dimensional spaces. It is important to note that, based
on the remark of Lan et al. [28], and mentioned in the preceding paragraph, the proofs in the
paper of both Ahmed [2] and Cerna [12] require additional assumptions.

The present paper is organized as follows: in Section 2 we collect some background ma-
terial and basic results from multivalued analysis and fractional calculus to be used later. In
Section 3 we prove an existence result for (1.1) and in Section 4 we establish various existence
results for (1.2) and we prove the compactness of the set of solutions. At the end of the paper
we give examples in order to illustrate the feasibility of our assumptions.

The proofs rely on the methods and results for boundary value fractional differential in-
clusions, the properties of noncompact measure and fixed point techniques.

2 Preliminaries and notation

Let C(J, E) be the space of E-valued continuous functions on J with the uniform norm
‖x‖ = sup{‖x(t)‖ , x ∈ J}, L1(J, E) be the quotient space of all E-valued Bochner integrable
functions on J with the norm ‖ f ‖L1(J,E) =

∫ b
0 ‖ f (t)‖ dt, Pb(E) = {B ⊆ E : B is nonempty and

bounded}, Pcl(E) = {B ⊆ E : B is nonempty and closed}, Pk(E) = {B ⊆ E : B is nonempty
and compact}, Pck(E) = {B ⊆ E : B is nonempty, convex and compact}, Pcl,cv(E) = {B ⊆
E : B is nonempty, closed and convex}, Conv(B) (respectively, Conv(B)) be the convex hull
(respectively, convex closed hull in E) of a subset B.

Let G : J → 2E be a multifunction. By S1
G we will denote the set of integrable selections

of G; i.e. S1
G = { f ∈ L1 (J, E) : f (t) ∈ G(t) a.e.}. This set may be empty. For Pcl(E)-valued

measurable multifunction, it is nonempty if and only if t → inf{‖x‖ : x ∈ G(t)} ∈ L1 (J, R+).
In particular, this is the case if t → sup{‖x‖ : x ∈ G(t)} ∈ L1 (J, R+) (such a multifunction is
said to be integrably bounded). Note that S1

G ⊆ L1 (J, E) is closed and it is convex if and only
if for almost all t ∈ J, G(t) is convex set in E.

Definition 2.1. Let X and Y be two topological spaces. A multifunction G : X → P(Y) is said
to be upper semicontinuous if G−1(V) = {x ∈ X : G(x) ⊆ V} is an open subset of X for every
open V ⊆ Y. G is called closed if its graph ΓG = {(x, y) ∈ X×Y : y ∈ G(x)} is closed subset
of the topological space X × Y. G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B of X.

If the multifunction G is completely continuous with nonempty compact values, then G
is u.s.c. if and only if G is closed.

Lemma 2.2 ([26, Theorem 1.3.5]). Let X0, X be (not necessarily separable) Banach spaces, and let
F : J × X0 → Pk(X) be such that
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(i) for every x ∈ X0 the multifunction F(·, x) has a strongly measurable selection;

(ii) for a.e. t ∈ J the multifunction F(t, ·) is upper semicontinuous.

Then for every strongly measurable function z : J → X0 there exists a strongly measurable function
f : J → X such that f (t) ∈ F(t, z(t)), a.e.

Remark 2.3 ([26, Theorem 1.3.1]). For single-valued or compact-valued multifunctions acting
on a separable Banach space the notions measurability and strongly measurable coincide. So,
if X0, X are separable Banach spaces we can replace strongly measurable with measurable in
the above lemma.

Definition 2.4. A sequence { fn : n ∈N} ⊂ L1(J, E) is said to be semi-compact if:

(i) it is integrably bounded , i.e. there is q ∈ L1 (J, R+) such that

‖ fn(t)‖ ≤ q(t) a.e. t ∈ J;

(ii) the set { fn(t) : n ∈N} is relatively compact in E a.e. t ∈ J.

Lemma 2.5 ([26]). Every semi-compact sequence in L1 (J, E) is weakly compact in L1 (J, E).

Definition 2.6. Let (X, d) be a metric space. A multifunction G : [a, b] → 2X is said to be
absolutely continuous if for any ε > 0 there is δ < 0 such that if {ai, bi}i=n

i=1 (with arbitrary n ∈
N), a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and ∑n

i=1(bi − ai) < δ, then ∑n
i=1 h(F(bi), F(ai)) < ε,

where h is the Hausdorff distance.

Lemma 2.7 ([7, Theorem 3]). Suppose that (X, d) is a metric space, G : [a, b] → 2X is absolutely
continuous with compact values, t0 ∈ [a, b] and x0 ∈ G(t0). Then G admits an absolutely continuous
selection g satisfying g(t0) = x0.

For more about multifunctions we refer to [4, 11, 23, 24, 26].
Let (A,≥) be a partially ordered set. A function γ : Pb(E) → A is called a measure of

noncompactness (MNC) in E if
γ(Conv B) = γ(B),

for every B ∈ Pb(E).
The Hausdorff measure of noncompactness is defined on Pb(E) as

χ (B) = inf{ε > 0 : B can be covered by finitely many balls of radius ≤ ε},

Lemma 2.8 (Generalized Cantor’s intersection [4]). If (Bn )n ≥1 is a decreasing sequence of nonempty
closed subsets of E and limn→∞ χ(Bn) = 0, then ∩∞

n=1Bn is nonempty and compact.

Lemma 2.9 ([10, p. 125])). Let B be a bounded set in E. Then for every ε > 0 there is a sequence
(xn)n≥1 in B such that

χ(B) ≤ 2χ{xn : n ≥ 1}+ ε.

Lemma 2.10 ([29]). Let χC(J,E) be the Hausdorff measure of noncompactness on C(J, E). If W ⊆
C(J, E) is bounded, then for every t ∈ J,

χ(W(t)) ≤ χC(J,E)(W),

where W(t) = {x(t) : x ∈W}. Furthermore, if W is equicontinuous on J, then the map t→ χ{x(t) :
x ∈W} is continuous on J and χC(J,E)(W) = supt∈J χ{x(t) : x ∈W}.
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Lemma 2.11 ([20]). Let C ⊆ L1(J, E) be countable with ‖u(t)‖ ≤ h(t) for a.e. t ∈ J, and every
u ∈ C, where h ∈ L1(J, R+). Then the function ϕ(t) = χ{u(t) : u ∈ C} belongs to L1(J, R+) and
satisfies

χ

{∫ b

0
u(s) ds : u ∈ C

}
≤ 2

∫ b

0
χ{u(s) : u ∈ C} ds.

Lemma 2.12 ([5, Lemma 4]). Let { fn : n ∈ N} ⊂ LP(J, E), P ≥ 1 be an integrably bounded
sequence such that

χ{ fn(t) : n ≥ 1} ≤ γ(t), a.e. t ∈ J,

where γ ∈ L1(J, R+). Then for each ε > 0 there exists a compact Kε ⊆ E, a measurable set Jε ⊂ J,
with measure less than ε, and a sequence of functions {gε

n} ⊂ LP(J, E) such that {gε
n(t) : n ≥ 1} ⊆

Kε, for all t ∈ J and

‖ fn(t)− gε
n(t)‖ < 2γ(t) + ε, for every n ≥ 1 and every t ∈ J − Jε.

We need the following lemma which is related to [4, Theorem 1.1.4].

Lemma 2.13. Let (Kn) be a sequence of subsets of E. Suppose there is a compact convex subset K ⊆ E
such that for any neighborhood U of K there is a natural number N so that for any m ≥ N : Km ⊆
U. Then ∩j≥1 Conv∪{Kj : n ≥ j} ⊆ K.

Definition 2.14 ([6]). The Riemann–Liouville fractional integral of order q > 0 with lower
limit zero for a function f ∈ LP(J, E), P ∈ [1, ∞) is defined as follows:

Iq f (t) = (gq ∗ f )(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s) ds, t ∈ J,

where the integration is in the sense of Bochner, Γ is the Euler gamma function defined by
Γ(q) =

∫ ∞
0 tq−1e−t dt, gq(t) = tq−1

Γ(q) , for t > 0, gq(t) = 0, for t ≤ 0 and ∗ denotes the convolution

of functions. For q = 0, we set I0 f (t) = f (t). It is known that Iq Iβ f (t) = Iq+β f (t), β, q ≥ 0.
Note that by applying the Young inequality, it follows that

‖I q f ‖LP(J,E) = ‖gq ∗ f ‖LP(J,E) ≤ ‖gq‖L1(J,R)‖ f ‖LP(J,E) = gq+1(b)‖ f ‖LP(J,E).

Then Iq maps LP(J, E) to LP(J, E).

Definition 2.15 ([6]). Let q > 0 and m the smallest integer greater than or equal to q. The
Riemann–Liouville fractional derivative of order q for a function f ∈ L1(J, E), gm−q ∗ f ∈
Wm,1(J, E) is defined by

Dq f (t) =
dm

dtm Im−q f (t) =
dm

dtm (gm−q ∗ f )(t)

=
1

Γ(m− q)
dm

dtm

∫ t

0
(t− s)m−q−1 f (s) ds, t ∈ J,

where

Wm,1(J, E) =

{
f : ∃ϕ ∈ L1(J, E) : f (t) =

m−1

∑
k=0

ck
tk

k!
+
∫ t

0

(t− s)m−1

(m− 1)!
ϕ(s) ds, t ∈ J

}
.

Note that ϕ(t) = f (m)(t) and ck = f (k)(0), k = 0, 1, . . . , m − 1. Let Wm,1
0 (J, E) = { f ∈

Wm,1(J, E) : f (k)(0) = 0, k = 0, 1, . . . , m− 1}.
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Lemma 2.16 ([6, Lemma 1.8]). Let q > 0, m be the smallest integer greater than or equal to q and
1 < P < ∞. Let Lq be an operator with domain LP(J, E), defined by Lq( f ) = Iq f = gq ∗ f and Lq

be an operator with domain Rm,P
0 (J, E) =

{
f ∈ LP(J, E) : gm−q ∗ f ∈ Wm,P

0 (J, E)
}

and defined by
Lq( f ) = Dq f . Then Lq = L−1

q .

To know more about fractional calculus see [7,27,33]. The proof of the following lemma is
the same way as in the scalar case (see [27, 33]).

Lemma 2.17. Let AC(J, E) be the space of absolutely continuous functions defined on J to E and q ∈
(0, 1).

(i) If f ∈ AC(J, E) and E is separable, then Iq(D q f (t)) = f (t), a.e. t ∈ J.

(ii) Iq maps AC(J, E) to AC(J, E).

Proof. (i) Let f ∈ AC(J, E). From Lemma 2.16, it suffices to show that g1−q ∗ f ∈ Wm,1
0 (J, E).

Since E is separable, f has a Bochner integrable derivative f (1) almost everywhere and

f (s) = f (0) +
∫ s

0
f (1)(x) dx.

Then

(g1−q ∗ f )(t) =
1

Γ(1− q)

∫ t

0
(t− s)−q f (s) ds

=
1

Γ(1− q)

∫ t

0
(t− s)−q

[
f (0) +

∫ s

0
f (1)(x) dx

]
ds

=
f (0)

Γ(1− q)

∫ t

0
(t− s)−q ds +

1
Γ(1− q)

∫ t

0
(t− s)−q

(∫ s

0
f (1)(x) dx

)
ds

=
f (0)

Γ(2− q)
t1−q +

1
Γ(1− q)

∫ t

0

(∫ s

0
(t− s)−q f (1)(x) dx

)
ds.

The first term is an absolutely continuous function because t1−q = (1− q)
∫ t

0 x−q dx. The
second term is also a primitive of a Bochner integrable function and hence it is absolutely
continuous. Moreover, (g1−q ∗ f )(0) = 0. So, g1−q ∗ f ∈Wm,1

0 (J, E).

(ii) Let f ∈ AC(J, E). By arguing as in (i), we get I1−q f ∈ AC(J, E). Again, since 0 < 1− q < 1,
then Iq f = I1−(1−q) f ∈ AC(J, E).

We denote by Cm(J, E) the Banach space of m times continuously differentiable functions
with the norm ‖ f ‖m = supt∈J ∑m

k=0 ‖ f (k)(t)‖ and

ACm(J, E) = { f ∈ Cm−1(J, E) : f (m−1) ∈ AC(J, E)}
= { f ∈ Cm−1(J, E) : f (m) ∈ L1(J, E)}.

Definition 2.18 ([6]). Let q > 0 and m be the smallest integer greater than or equal to q. The
Caputo derivative of order q for given function f ∈ ACm(J, E) is defined by

cDq f (t) = Im−q( f (m)(t)) =
1

Γ(m− q)

∫ t

0
(t− s)m−q−1 f (m)(s) ds, t ∈ J.
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We need the following lemma.

Lemma 2.19. Let E be a separable Banach space and f ∈ AC3(J, E). Then

Iα(cDα f (t)) = f (t) + b1 + tb2 + t2b3, a.e. t ∈ J,

where b1, b2 and b3 are elements in E.

Proof. In view of Definition 2.18 we have

Iα(cDα f (t)) = Iα(I3−α( f (3)(t)) = I3 f (3)(t) = f (t)−
k=2

∑
k=0

f (k)(0)
k!

tk.

The following lemma is essential and its proof is similar to the proofs of Theorems 2.4 and
2.7 in [28].

Lemma 2.20. Let E be a separable Banach space.

(1) If h ∈ L1(J, E) and x ∈ AC3(J, E) satisfy (1.3), then (1.4) holds.

(2) Let h ∈ AC(J, E) and x : J → E such that (1.4) holds. Then x ∈ AC3(J, E) and satisfies (1.3).

Proof. (1) Since x ∈ AC3(J, E), then by Lemma 2.19, there are b1, b2, b3 in E such that

Iα(cDαx(t)) = x(t) + b1 + t b2 + t2b3, a.e. t ∈ J .

Because x is a solution of (1.3)

Iαh(t) = x(t) + b1 + t b2 + t2b3, a.e. t ∈ J .

Therefore,

x(t) = Iαh(t)− b1 − tb2 − t2b3

=
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds− b1 − t b2 − t2b3, a.e. t ∈ J. (2.1)

Since h ∈ L1(J, E) and α− 1 > 1, then the function z defined by

z(s) := (b− s)α−1h(s)

belongs to L1(J, E). Then, Iαh ∈ AC(J, E). Hence, the two functions in both sides of (2.1)
are continuous and thus (2.1) holds for every t ∈ J.

Then for t ∈ J

x(1)(t) =
1

Γ(α− 1)

∫ t

0
(t− s)α−2h(s) ds− b2 − 2tb3, (2.2)

and

x(2)(t) =
1

Γ(α− 2)

∫ t

0
(t− s)α−3h(s) ds− 2b3. (2.3)
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By applying the boundary conditions x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) =

−x(2)(b) and (2.1)–(2.3) we find that

b1 =
1

2Γ(α)

∫ b

0
(b− s)α−1h(s) ds− b

4Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds,

b2 =
1

2Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds− b

4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds,

and

b3 =
1

4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds.

(2) Assume that h ∈ AC(J, E) and (1.4) holds. Since α− 1 > 1, the equation (1.4) gives us

x(1)(t) =
1

Γ(α− 1)

∫ t

0
(t− s)α−2h(s) ds− 1

2Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds

+
(b− 2t)

4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds.

(2.4)

Since for each t ∈ J ∫ t

0
(t− s)α−3h(s) ds < ∞,

then (2.4) implies

x(2) (t) =
1

Γ(α− 2)

∫ t

0
(t− s)α−3h(s) ds− 1

2Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds

= Iα−2h(t)− 1
2Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds. (2.5)

Because h ∈ AC(J, E) and α − 2 ∈ (0, 1), then Lemma 2.17(ii) implies Iα−2h(t) ∈
AC(J, E) and thus x(2) ∈ AC(J, E), which means that x ∈ AC3(J, E). Moreover, because
3− α ∈ (0, 1), then from the definition of the Riemann–Liouville fractional derivative of
order 3− α and (2.5) we get

D3−αh(t) =
1

Γ(α− 2)
d
dt

∫ t

0
(t− s)α−3h(s) ds

=
d
dt
(Iα−2h(t)) = x(3)(t), t ∈ J.

Again, since h ∈ AC(J, E) and 3− α ∈ (0, 1), then by Lemma 2.17 (i) and the last equality
we get for a.e. t ∈ J

cDαx(t) = I3−αx(3)(t) = I3−αD3−αh(t) = h(t).

We need also to the following auxiliary results:

Lemma 2.21 (Kakutani–Glicksberg–Fan theorem [19]). Let W be a nonempty compact and convex
subset of a locally convex topological vector space. If R : W → PPcl,cv (W) is an u.s.c. multifunction,
then it has a fixed point.
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Lemma 2.22 ([26, Prop. 3.5.1]). Let W be a closed subset of a Banach space X and R : W → Pk (X)
be a closed multifunction which is γ-condensing on every bounded subset of W, where γ is a monotone
measure of noncompactness defined on X. If the set of fixed points for R is a bounded subset of X then
it is compact.

The following fixed point theorem for contraction multivalued is proved by Govitz and
Nadler [14].

Lemma 2.23. Let (X, d) be a complete metric space. If R : X → Pcl (X) is contraction, then R has a
fixed point.

3 Existence of solutions for the problem (1.1)

In the rest of the paper, E will denote a separable Banach space. In this section, we give an
existence result of solutions of (1.1).

Theorem 3.1. Let E be a separable Banach space, f : J × E → E be a function. We assume the
following hypothesis:

(H1) For each ρ > 0, there exists Lρ > 0 such that for all s, t ∈ J and x, y ∈ E with ‖x‖ ≤ ρ,
‖y‖ ≤ ρ we have

‖ f (s, x)− f (t, y)‖ ≤ Lρ max{|s− t|, ‖x− y‖}.

Then, the problem (1.1) has a solution provided that there is a positive real number r such that

(Lr max{b, r}+ ‖ f (0, 0)‖) (2α2 − α + 6)bα

2Γ(α + 1)
< r. (3.1)

Proof. According to condition (H1), there exists Lr > 0 such that for all s, t ∈ J and x, y ∈ E
with ‖x‖ ≤ r, ‖y‖ ≤ r we have

‖ f (s, x)− f (t, y)‖ ≤ Lr max{|s− t|, ‖x− y‖}. (3.2)

Let us introduce a function T : C(J, E)→ C(J, E) defined by

(Tx)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, x(s)) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s, x(s)) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s, x(s)) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s, x(s)) ds, t ∈ J.

(3.3)

Firstly we prove, by using Schauder’s fixed point theorem, that T has a fixed point. The
proof will be given in several steps.
Step 1. Let B0 = {x ∈ C(J, E) : ‖x‖ ≤ r}. Obviously, B0 is a bounded, closed and convex
subset of C(J, E). We claim that T(B0) ⊆ B0. Let x ∈ B0. We note that, by (3.2), for t ∈ J

‖ f (t, x(t))‖ ≤ ‖ f (t, x(t))− f (0, 0)‖+ ‖ f (0, 0)‖
≤ Lr max{b, r}+ ‖ f (0, 0)‖ (3.4)
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Let y = T(x). Then (3.3) and (3.4) imply that for t ∈ J

‖y(t)‖ ≤ (Lr max{b, r}+ ‖ f (0, 0)‖)

×
[

1
Γ(α)

∫ t

0
(t− s)α−1 ds +

1
2Γ(α)

∫ b

0
(b− s)α−1 ds

+
|b− 2t|

4Γ(α− 1)

∫ b

0
(b− s)α−2 ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 ds

]
≤ (Lr max{b, r}+ ‖ f (0, 0)‖)

×
[

bα

Γ(α + 1)
+

bα

2Γ(α + 1)
+

bα

4Γ(α)
+

bα

4Γ(α− 1)

]
≤ (Lr max{b, r}+ ‖ f (0, 0)‖)

[
3bα

2Γ(α + 1)
+

bα

4Γ(α)
+

bα

4Γ(α− 1)

]
= (Lr max{b, r}+ ‖ f (0, 0)‖) (α

2 + 6)bα

4Γ(α + 1)

≤ (Lr max{b, r}+ ‖ f (0, 0)‖) (2α2 − α + 6)bα

2Γ(α + 1)

≤ r.

Therefore, T(B0) ⊆ B0.
Step 2. Let Z = T(B0). We claim that Z is equicontinuous. Let y ∈ Z. Then there is x ∈ Br with
y = T(x). Therefore, for t, t + λ ∈ J we have

‖y(t + λ)− y(t)‖ ≤ 1
Γ(α)

∥∥∥∥∫ t

0

[
(t + λ− s)α−1 − (t− s)α−1

]
f (s, x(s)) ds

∥∥∥∥
+

1
Γ(α)

∥∥∥∥∫ t+λ

t
(t + λ− s)α−1 f (s, x(s)) ds

∥∥∥∥
+

2λ

4Γ(α− 1)

∫ b

0
(b− s)α−2‖ f (s, x(s))‖ ds

+
|λb− 2tλ− λ2|

4Γ(α− 2)

∫ b

0
(b− s)α−3‖ f (s, x(s))‖ ds

≤ Lr max{b, r}+ ‖ f (0, 0)‖
Γ(α)

∫ t

0

[
(t + λ− s)α−1 − (t− s)α−1

]
ds

+
Lr max{b, r}+ ‖ f (0, 0)‖

Γ(α)

∫ t+λ

t
(t + λ− s)α−1 ds

+
2λ(Lr max{b, r}+ ‖ f (0, 0)‖)

4Γ(α− 1)

∫ b

0
(b− s)α−2 ds

+
(Lr max{b, r}+ ‖ f (0, 0)‖)(|λb− 2tλ− λ2|)

4Γ(α− 2)

∫ b

0
(b− s)α−3 ds.

This inequality implies ‖y(t+ λ)− y(t)‖ → 0 as λ→ 0, independently of x. Therefore Z =

T(B0) is equicontinuous.
Now for every n ≥ 1, set Bn = Conv T(Bn−1). From Step 1, B1 = Conv T(B0) ⊆ B0. Also

B2 = Conv T(B1) ⊆ Conv T(B0) ⊆ B1. By induction, the sequence (Bn), n ≥ 1 is a decreasing
sequence of nonempty, closed convex and bounded subsets of C(J, E). Our goal is to show
that the subset B = ∩∞

n=1Bn is nonempty and compact in C(J, E). By Lemma 2.8, it is enough
to show that

lim
n→∞

χC(J,E)(Bn) = 0, (3.5)
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where χC(J,E) is the Hausdorff measure of noncompactness on C(J, E).
Step 3. Our aim in this step is to show that the relation (3.5) is satisfied. Let n ≥ 1 be a
fixed natural number and ε > 0. In view of Lemma 2.9, there exists a sequence (yk), k ≥ 1
in T(Bn−1) such that

χC(J,E)(Bn) = χC(J,E)T(Bn−1) ≤ 2χC(J,E){yk : k ≥ 1}+ ε.

From Step 2, Bn−1 is equicontinuous. This together with Lemma 2.10 and by using the
nonsingularity of χ, the above inequality becomes

χC(J,E)(Bn) ≤ 2 sup
t∈J

χ{yk(t) : k ≥ 1}+ ε. (3.6)

Because yk = T(Bn−1), k ≥ 1 there is xk ∈ Bn−1 such that yk = T(xk), k ≥ 1. Let t ∈ J be
fixed. Note that from (3.2) for every natural number m, n we have

‖ f (t, xm(t))− f (t, xn(t))‖ ≤ Lr‖xm(t)− xn(t)‖.

Then

χ{ f (t, xk(t)) : k ≥ 1} ≤ Lrχ{xk(t) : k ≥ 1}
≤ LrχC(J,E)(Bn−1). (3.7)

From (3.7) and the properties of χ, for t ∈ J we get

χ{yk(t) : k ≥ 1} ≤ Lr

Γ(α)

∫ t

0
(t− s)α−1χ{xk(s) : k ≥ 1} ds

+
Lr

2Γ(α)

∫ b

0
(b− s)α−1χ{xk(s)) : k ≥ 1} ds

+
Lrb

4Γ(α− 1)

∫ b

0
(b− s)α−2χ{xk(s)) : k ≥ 1} ds

+
b2

4Γ(α− 2)
χ

{∫ b

0
(b− s)α−3 f (s, xk(s)) ds : k ≥ 1

}
.

Therefore,

χ{yk(t) : k ≥ 1} ≤ Lrχ(Bn−1)

[
1

Γ(α)

∫ t

0
(t− s)α−1 ds

+
1

2Γ(α)

∫ b

0
(b− s)α−1 ds

+
b

4Γ(α− 1)

∫ b

0
(b− s)α−2 ds

]
+

b2

4Γ(α− 2)
χ

{∫ b

0
(b− s)α−3 f (s, xk(s)) ds : k ≥ 1

}
.

(3.8)

Now in order to estimate the quantity χ
{ ∫ b

0 (b− s)α−3 f (s, xk(s)) ds : k ≥ 1
}

, we note that
(3.4) implies for any k ≥ 1 and for t ∈ J

‖ f (s, xk(s))‖ ≤ Lr max{b, r}+ ‖ f (0, 0)‖. (3.9)
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Then, by (3.7), (3.9) and Lemma 2.12, there exist a compact Kε ⊆ E, a measurable set
Jε ⊂ J with measure less than ε, and a sequence of functions {zε

k} ⊂ L1(J, E) such that for
all s ∈ J, {zε

k(s) : k ≥ 1} ⊆ Kε and

‖ f (s, xk(s))− zε
k(s)‖ < 2LrχC(J,E)(Bn−1) + ε,

for every k ≥ 1 and every s ∈ J − Jε. Therefore, for any k ≥ 1∥∥∥∥∫J−Jε

(b− s)α−3( f (s, xk(s))− zε
k(s)) ds

∥∥∥∥
≤ (2LrχC(J,E)(Bn−1) + ε)

bα−2

α− 2
.

(3.10)

Also, for any k ≥ 1∥∥∥∥∫Jε

(b− s)α−3 f (s, xk(s) ds
∥∥∥∥

≤ (Lr max{b, r}+ ‖ f (0, 0)‖)
∫

Jε

(b− s)α−3 ds.
(3.11)

This together with (3.10) we have

χ

{∫ b

0
(b− s)α−3 f (s, xk(s)) ds : k ≥ 1

}
≤ χ

{∫
J−Jε

(b− s)α−3( f (s, xk(s))− zε
k(s)) ds : k ≥ 1

}
+ χ

{∫
J−Jε

(b− s)α−3zε
k(s) ds : k ≥ 1

}
+ χ

{∫
Jε

(b− s)α−3 f (s, xk(s) ds : k ≥ 1
}

≤ (2LrχC(J,E)(Bn−1) + ε)
bα−2

α− 2
.

+ (Lr max{b, r}+ ‖ f (0, 0)‖)
∫

Jε

(b− s)α−3 ds.

From this inequality and by taking into account that ε is arbitrary, we get

χC(J,E)(Bn) ≤ 2LrχC(J,E)(Bn−1)

[
3bα

2Γ(α + 1)
+

bα

4Γ(α)

]
+ LrχC(J,E)(Bn−1)

bα

Γ(α− 1)

= ζχC(J,E)(Bn−1), (3.12)

where

ζ = 2Lr

[
3bα

2Γ(α + 1)
+

bα

4Γ(α)
+

bα

2Γ(α− 1)

]
= Lr

(2α2 − α + 6)bα

2Γ(α + 1)
.

By means of a finite number of steps, we obtain from (3.12) for every n ∈N,

χC(J,E)(Bn) ≤ ζn−1χC(J,E)(Bn−1). (3.13)
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Observe that (3.1) implies

rζ = rLr
(2α2 − α + 6)bα

2Γ(α + 1)

≤ (Lr max{b, r}+ ‖ f (0, 0)‖) (2α2 − α + 6)bα

2Γ(α + 1)

< r.

Then ζ < 1. By passing to the limit as n → +∞ in (3.13) we obtain (3.5) and so our aim
in this step is verified. Therefore, the set B = ∩∞

n=1Bn is a nonempty and compact subset of
C(J, E). Moreover, every Bn being bounded, closed and convex, B is also bounded closed and
convex.
Step 4. Let us verify that T(B) ⊆ B.

Indeed, T (B) ⊆ T(Bn) ⊆ Conv T(Bn) = Bn+1, for every n ≥ 1. Therefore, T(B) ⊂ ∩∞
n=2Bn.

On the other hand, Bn ⊂ B1 for every n ≥ 1. So, T(B) ⊂ ∩∞
n=2Bn = ∩∞

n=1Bn = B.
Step 5. The function T|B : B → 2B is continuous. Consider a sequence {xn}n≥1 in B with
xn → x in B and let yn = T(xn). We have to show that limn→∞yn = T(x). For any n ≥ 1 and
t ∈ J

yn(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, xn(s)) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s, xn(s)) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s, xn(s)) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s, xn(s)) ds.

(3.14)

Note that for every t ∈ J

‖ f (t, xn(t))(t)‖ ≤ Lr max{b, r}+ ‖ f (0, 0)‖.

Furthermore,
lim
n→∞
‖ f (t, xn(t))− f (t, x(t))‖ = 0.

Therefore, by passing to the limit as n→ ∞ in (3.14) we get limn→∞yn = T(x).
As a consequence of Steps 1–5 and Schauder’s fixed point theorem, there is x ∈ B such

that x = T(x). That is, for any t ∈ J

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1h(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds,

where h(t) = f (t, x(t)). Obviously h is continuous, and hence x(1)(t) exists. Then there is a
positive number η such that ‖x(1)(t)‖ ≤ η, t ∈ J.

Thus, by (H1) for t, s ∈ J

‖h(t)− h(s)‖ ≤ Lr max{|t− s|, η|t− s|}
≤ |t− s|Lr max{1, η}.
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This means that h ∈ AC(J, E) and hence by Lemma 2.20(2) the function x is a solution for
(1.1).

In the following corollary we simplify the condition (3.1).

Corollary 3.2. Assume that the assumption (H1) is satisfied with Lρ ≤ σ, for any ρ > 0 then the
problem (1.1) has a solution provided that

σ(2α2 − α + 6)bα

2Γ(α + 1)
< 1. (3.15)

Proof. From (3.15) we can take r such that

max

b,
‖ f (0, 0)‖ (2α2−α+6)bα

2Γ(α+1)

1− σ(2α2−α+6)bα

2Γ(α+1)

 < r. (3.16)

We need only to check that T(B0) ⊆ B0. As in Step 1, let x ∈ B0 and y = T(x). Then by (3.16)
for any t ∈ J

‖y(t)‖ ≤ (σr + ‖ f (0, 0)‖) (2α2 − α + 6)bα

2Γ(α + 1)
< r.

Theorem 3.3. Let G : J → Pk(E) be an absolutely continuous multifunction. Then the fractional
boundary value problem{

cD α
w x(t) ∈ G(t), a.e. on J = [0, b],

x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) = −x(2)(b),
(3.17)

has a solution.

Proof. In virtue of Lemma 2.7 there is h ∈ AC(J, E) such that h(t) ∈ G(t), a.e. We define
x : J → E, by

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1h(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds.

By Lemma 2.20 (2), x ∈ AC3(J, E) and satisfies (3.17).

4 Existence of solutions for the problem (1.2)

To give existence results of solutions for the problem (1.2) we present the definition of the
Caputo derivative in the generalized sense [27, Sec. 2.4].
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Definition 4.1. Let q > 0 and m the smallest integer greater than or equal to q. The generalized
or weak Caputo derivative of order q with lower limit zero for a function f ∈ J → E is defined
by

cDq
g f (t) = Dq

[
f (t)−

m−1

∑
k=0

f (k)(0)tk

k!

]
.

So, the generalized or weak Caputo derivative cDq
g f (t) is defined for function f for which

the Riemann–Liouville fractional derivative exists. In particular, when q ∈ (0, 1), we have

cDq
g f (t) = Dq[ f (t)− f (0)] =

1
Γ(1− q)

∫ t

0
(t− s)−q( f (t)− f (0)) ds. (4.1)

As in the scalar case (see Theorems 2.1 and 2.2 [27]) if f ∈ Cm(J, E) then cDq
g f (t) =

cDq f (t). But it is enough that f ∈ ACm(J, E).

Lemma 4.2. Let q > 0 and m be the smallest integer greater than or equal to q. If f ∈ ACm(J, E), then
cDq

g f (t) exists almost everywhere on J and if q is not natural number, then

cDq
g f (t) =c Dq f (t), a.e.

Also, if f ∈ Cm(J, E), then cDq
g f (t) is continuous and if q is not natural number, then

cDq
g f (t) =c Dq f (t), ∀t ∈ J.

Next, we need the following auxiliary lemma.

Lemma 4.3. (1) Let z ∈ C(J, E) and x ∈ C2(J, E) such that x(0) = −x(b), x(1)(0) = −x(1)(b). If
x is a solution to the fractional boundary value problem{

cDα−2
g x(2)(t) = z(t), a.e. t ∈ J,

x(2)(0) = −x(2)(b),
(4.2)

then

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1z(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1z(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2z(s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds, t ∈ J.

(4.3)

(2) Let z ∈ C(J, E) and x : J → E such that (4.3) holds. Then x ∈ C2(J, E), x(0) = −x(b), x(1)(0) =
−x(1)(b) and satisfies (4.2).

Proof. (1) Since x is a solution of (4.2), then

Dα−2(x(2)(t)− x(2)(0)) = z(t), a.e. t ∈ J.

This equation implies

Iα−2Dα−2(x(2)(t)− x(2)(0)) = Iα−2z(t), a.e. t ∈ J.
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Therefore,
x(2)(t) = Iα−2z(t) + x(2)(0).

From this equation together the condition x(2)(0) = −x(2)(b) we get

x(2)(t) = Iα−2z(t)− 1
2

Iα−2z(b).

By integrating both sides in this equation we get for a.e. t ∈ J

x(1)(t) = Iα−1z(t)− t
2

Iα−2z(b) + c1.

By using the condition x(1)(0) = −x(1)(b), we obtain for a.e. t ∈ J

x(1)(t) = Iα−1z(t)− t
2

Iα−2z(b)− 1
2

Iα−1z(b) +
b
4

Iα−2z(b).

Again, by integrating both sides in this equation we have for a.e. t ∈ J

x(t) = Iαz(t)− t2

4
Iα−2z(b)− t

2
Iα−1z(b) +

tb
4

Iα−2z(b) + c2.

Applying the condition x(0) = −x(b) we get for a.e. t ∈ J

x(t) = Iαz(t)− t2

4
Iα−2z(b)− t

2
Iα−1z(b) +

tb
4

Iα−2z(b)

− 1
2

Iαz(b) +
b2

8
Iα−2z(b) +

b
4

Iα−1z(b)− b2

8
Iα−2z(b)

= Iαz(t)− 1
2

Iαz(b) +
b− 2t

4
Iα−1z(b) +

t(b− t)
4

Iα−2z(b).

The two functions on both sides of this equation are continuous, thus it holds for
every t ∈ J.

(2) Clearly x(0) = −x(b). Since α− 1 > 1, the equation (4.3) gives us

x(1)(t) =
1

Γ(α− 1)

∫ t

0
(t− s)α−2z(s) ds− 1

2Γ(α− 1)

∫ b

0
(b− s)α−2z(s) ds

+
(b− 2t)

4Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds.

(4.4)

Note that x(1)(0) = −x(1)(b). Moreover, since for each t ∈ J∫ t

0
(t− s)α−3z(s) ds < ∞,

then the equation (4.4) implies

x(2)(t) =
1

Γ(α− 2)

∫ t

0
(t− s)α−3z(s) ds− 1

2Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds

=
1

Γ(α− 2)

∫ t

0
(t− s)α−3z(s) ds

− 1
2Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds

= Iα−2z(t)− 1
2Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds. (4.5)
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One can easily check that

x(2)(0) = −x(2)(b) =
−1

2Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds.

Now, let q = α− 2. Then q ∈ (0, 1). In virtue of the equation (4.5) we get

Iα−2z(t) = x(2)(t)− x(2)(0), t ∈ J.

This equation together with (4.1) implies

cDq
gx(2)(t) = Dq[x(2)(t)− x(2)(0)]

= Dq Iqz(t) = z(t), a.e. t ∈ J.

Then, x(2)satisfies the fractional boundary value problem
cDq

gx(2)(t) = z(t), a.e. t ∈ J

x(2)(0) = −x(2)(b) =
−1

2Γ(α− 2)

∫ b

0
(b− s)α−3z(s) ds.

Therefore, the function x given by (4.3) is a solution for (4.2).

Remark 4.4. If x ∈ AC3(J, E), then by Lemma 4.2, for almost every t ∈ J

cDα−2
g x(2)(t) = cDα−2 x(2)(t)

=
1

Γ(3− α)

∫ t

0
(t− s)2−αx(3)(s) ds

= cDαx(t).

This means that if z ∈ AC(J, E), then the function x given by (4.3) is a solution for the
fractional boundary value problem{

cDαx(t) = z(t), a.e. t ∈ J,

x(0) = −x(b), x(1)(0) = −x(1)(b), x(2)(0) = −x(2)(b).

As a result of Lemma 4.3 we can give the concept of solutions for (1.2) in the following
definition.

Definition 4.5. A function x ∈ C2(J, E) is said to be a solution of (1.2) if there is f ∈ L1(J, E)
with f (t) ∈ F(t, x(t)), a.e. t ∈ J such that

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s) ds.

(4.6)

Now we are in position to give existence results of solutions of (1.2). We consider first the
case when the values of the multifunction F are convex.
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4.1 Convex case

Theorem 4.6. Let α ∈ (2, 3], F : J × E → Pck(E) be a multifunction. We assume the following
hypotheses:

(H2) For every x ∈ E, t −→ F(t, x) is measurable, for every t ∈ J, x −→ F(t, x) is upper semicon-
tinuous.

(H3) There exists a function ϕ ∈ L
3
q (J, R+), 0 < q < 3α − 6, and a nondecreasing continuous

function Ω : [0, ∞)→ (0, ∞) such that for any x ∈ E

‖F(t, x)‖ ≤ ϕ(t) Ω(‖x‖), a.e. t ∈ J. (4.7)

(H4) There exists a function β ∈ L
3
q
(J, R+), 0 < q < 3α− 6, satisfying

δ =
bα−1(α + 4)

Γ(α)
‖β‖L1

(J, R+)
+

b2

Γ(α− 2)
ρ‖β‖

L
3
q (J, R+)

< 1, (4.8)

and for every bounded subset D ⊆ E , χ(F(t, D)) ≤ β(t)χ(D), for a.e. t ∈ J, where ρ =

bα−2− q
3 /η1− q

3 and η = 3(α− 3)/(3− q) + 1.

Then the problem (1.2) has a solution provided that there is r > 0 such that

(α + 5)Ω(r)bα−1

4Γ(α)
‖ϕ‖L1(J,R+) +

Ω(r)
4Γ(α− 2)

‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3
≤ r. (4.9)

Proof. At first, in view of (H2), Lemma 2.2 and Remark 2.3, for every x ∈ C(J, E), the mul-
tifunction t → F(t, x(t)) has a measurable selection and by (H3) this selection belongs to
S1

F(·,x(·)). So, we can introduce the multifunction R : C(J, E) → 2C(J,E) which is defined as: let
x ∈ C(J, E). A function y ∈ R(x) if and only if there is f ∈ S1

F(·,x(·)) such that for each t ∈ J

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s) ds.

It is easy to see that any fixed point for R is a mild solution for (1.2). So our goal is to
prove, by using Lemma 2.21, that R has a fixed point. The proof will be given in several steps.
Step 1. Let D0 = {x ∈ C(J, E) : ‖x‖ ≤ r}. We claim that R(D0) ⊆ D0. To prove that, let x ∈ B0

and y ∈ R(x). By recalling the definition of R, using (4.9) and applying Hölder’s inequality,
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there is f ∈ S1
F(·,x(·)) such that for every t ∈ J

‖y(t)‖ ≤ Ω(r)
Γ(α)

∫ t

0
(t− s)α−1ϕ(s)ds +

Ω(r)
2Γ(α)

∫ b

0
(b− s)α−1ϕ(s) ds

+
|b− 2t|Ω(r)

4Γ(α− 1)

∫ b

0
(b− s)α−2ϕ(s) ds +

t(b− t)Ω(r)
4Γ(α− 2)

∫ b

0
(b− s)α−3ϕ(s) ds

≤ Ω(r)bα−1

Γ(α)
‖ϕ‖L1(J,R+) +

Ω(r)bα−1

2Γ(α)
‖ϕ‖L1(J,R+) +

Ω(r)bα−1

4Γ(α− 1)
‖ϕ‖L1(J,R+)

+
b2Ω(r)

4Γ(α− 2)
‖ϕ‖

L
3
q (J,R+)

(∫ b

0
(b− s)

3(α−3)
3−q ds

) 3−q
3

≤ Ω(r)bα−1

Γ(α)
‖ϕ‖L1(J,R+)(

3
2
+

α− 1
4

) +
b2Ω(r)

4Γ(α− 2)
‖ϕ‖

L
3
q (J,R+)

bα−2− q
3

η1− q
3

≤ (α + 5)Ω(r)bα−1

4Γ(α)
‖ϕ‖L1(J,R+) +

Ω(r)
4Γ(α− 2)

‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3

≤ r.

Therefore, R(D0) ⊆ D0.
Step 2. Let M = R(D0). We claim that M is equicontinuous. Let y ∈ M. Then there is
x ∈ D0 with y ∈ R(x). By recalling the definition of R, there is f ∈ S1

F(·,x(·)) such that

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s) ds.

By arguing as in Step 2 in the proof of Theorem 3.1, for any t, t + λ ∈ J we have

‖y(t + λ)− y(t)‖ ≤ 1
Γ(α)

∥∥∥∥∫ t

0

[
(t + λ− s)α−1 − (t− s)α−1

]
f (s) ds

∥∥∥∥
+

1
Γ(α)

∥∥∥∥∫ t+λ

t
(t + λ− s)α−1 f (s) ds

∥∥∥∥
+

2λ

4Γ(α− 1)

∫ b

0
(b− s)α−2‖ f (s)‖ ds

+
|λb− 2tλ− λ2|

4Γ(α− 2)

∫ b

0
(b− s)α−3‖ f (s)‖ ds.

Not that by the Hölder’s inequality we have∥∥∥∥∫ t+λ

t
(t + λ− s)α−1 f (s) ds

∥∥∥∥ ≤ Ω(r)‖ϕ‖
L

3
q (J,R+)

λ1− q
3

η1− q
3

.

The previous two inequalities imply that ‖y(t + λ)− y(t)‖ → 0 as λ → 0, independently
of x. Therefore M = R(D0) is equicontinuous.

Now for every n ≥ 1, set Dn = Conv R(Dn−1) and D = ∩∞
n=1Dn. Clearly the sequence

(Dn), n ≥ 1 is a decreasing sequence of nonempty, closed, convex and bounded subsets of
C(J, E). Our goal is to use Lemma 2.8 to show that D is nonempty and compact in C(J, E). So
we show that

lim
n→∞

χ(Bn) = 0, (4.10)
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where χC(J,E) is the Hausdorff measure of noncompactness on C(J, E).
Step 3. Our aim in this step is to show that the relation (4.10) is satisfied. Let n ≥ 1 be a
fixed natural number and ε > 0. In view of Lemma 2.9, there exists a sequence (yk), k ≥ 1
in R(Dn−1) such that

χC(J,E)(Dn) = χC(J,E)R(Dn−1) ≤ 2χC(J,E){yk : k ≥ 1}+ ε.

By applying Lemma 2.10 and by using the nonsingularity of χ, the above inequality be-
comes

χC(J,E)(Dn) ≤ 2 sup
t∈J

χ{yk(t) : k ≥ 1}+ ε. (4.11)

Now, since yk ∈ R(Dn−1), k ≥ 1 there is xk ∈ Dn−1 such that yk ∈ R(xk), k ≥ 1. By recalling
the definition of R, repeating the same procedure as in Step 3 in the proof of Theorem 3.1,
applying Lemma 2.11 and using (H4), for every k ≥ 1 there is fk ∈ S1

F(·,xk(·))
such that for every

t ∈ J

χ{yk(t) : k ≥ 1} ≤ bα−1(α + 4)
2Γ(α)

∫ b

0
β(s)χ{xk(s) : k ≥ 1} ds

+
b2

4Γ(α− 2)
χ

{∫ b

0
(b− s)α−3 fk(s) ds : k ≥ 1

}
≤ bα−1(α + 4)

2Γ(α)
χC(J,E)(Dn−1) ‖β‖L1

(J, R+)

+
b2

4Γ(α− 2)
χ

{∫ b

0
(b− s)α−3 fk(s) ds : k ≥ 1

}
. (4.12)

Now, we use the same procedure as in Step 3 in the proof of Theorem 3.1, to estimate the
quantity χ

{ ∫ b
0 (b− s)α−3 fk(s) ds : k ≥ 1

}
. We note that from (H2), for any k ≥ 1 and for a.e.

t ∈ J, ‖ fk(t)‖ ≤ ϕ(t) Ω(r). Consequently, fk ∈ L
3
q (J, E), k ≥ 1. Furthermore, from (H4) it

holds that for a.e. t ∈ J

χ({ fk(t) : k ≥ 1} ≤ χ{F(s, xk(t)) : k ≥ 1}
≤ β(t) χ{xk(t) : k ≥ 1}
≤ β(t) χ(Dn−1(t)) = β(t) χC(J,E)(Dn−1) = γ(t). (4.13)

Note that γ ∈ L
3
q (J, R+). Then, by virtue of Lemma 2.12, there exists a compact Kε ⊆ E, a

measurable set Jε ⊂ J, with measure less than ε, and a sequence of functions {gε
k} ⊂ L

2
q (J, E)

such that for all s ∈ J, {gε
k(s) : k ≥ 1} ⊆ K and

‖ fk(s)− gε
k(s)‖ < 2γ(s) + ε, for every k ≥ 1 and every s ∈ J − Jε.

Then, using Hölder’s inequality we obtain∥∥∥∥∫J−Jε

(b− s)α−3( fk(s)− gε
k(s)) ds

∥∥∥∥
≤ ‖ fk − gε

k‖L
3
q (J−Jε, E)

(∫
J−Jε

(b− s)
3(α−3)

3−q ds
) 3−q

3

≤
(

2‖γ‖
L

2
q (J−Jε, R+)

+ εb
q
3

)
bα−2− q

3

η1− q
3

. (4.14)
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Also, by Hölder’s inequality we get for any k ≥ 1∥∥∥∥∫Jε

(b− s)α−3 fk(s) ds
∥∥∥∥

≤ Ω(r)
∫

Jε

(b− s)α−3ϕ(s) ds

≤ Ω(r)‖ϕk‖
L

3
q (Jε, R+)

(∫
Jε

(b− s)
3(α−3)

3−q ds
) 3−q

3

≤ Ω(r)‖ϕk‖
L

3
q (Jε, R+)

bα−2− q
3

η1− q
3

. (4.15)

By (4.14) and (4.15), we have

χ

{∫ b

0
(b− s)α−3 fk(s) ds : k ≥ 1

}
≤ χ

{∫
J−Jε

(b− s)α−3( fk(s)− gε
k(s)) ds : k ≥ 1

}
+ χ

{∫
J−Jε

(b− s)α−3gε
k(s) ds : k ≥ 1

}
+ χ

{∫
Jε

(b− s)α−3 fk(s) ds : k ≥ 1
}

≤
(

2‖γ‖
L

3
q (J−Jε,R+)

+ εb
q
3

)
bα−2− q

3

η1− q
3

+ Ω(r)‖ϕk‖
L

3
q (Jε,R+)

bα−2− q
3

η1− q
3

.

From this inequality with (4.13) and by taking into account that ε is arbitrary, we get

χ

{∫ b

0
(b− s)α−3 fk(s) ds : k ≥ 1

}
≤ 2‖γ‖

L
3
q (Jp−Jε, R+)

bα−2− q
3

η1− q
3

≤ 2‖β‖
L

3
q (J, R+)

χC(J,E)(Dn−1)
bα−2− q

3

η1− q
3

.

Again from the fact that ε is arbitrary, this inequality with (4.12) and (4.13) gives us

χC(J,E)(Dn) ≤
bα−1(α + 4)

Γ(α)
χC(J,E)(Dn−1)‖β‖L1

(J,R+)

+
b2

Γ(α− 2)
ρχC(J,E)(Dn−1)‖β‖

L
3
q (J,R+)

= δχC(J,E)(Dn−1),

where

δ =
bα−1(α + 4)

Γ(α)
‖β‖L1

(J,, R+)
+

b2

Γ(α− 2)
ρ‖β‖

L
3
q (J , R+)

.

By means of a finite number of steps, we can write

0 ≤ χC(J,E)(Dn) ≤ δn−1χC(J,E)(D1), ∀ n ≥ 1.
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Since this inequality is true for every n ∈ N, by (4.8) and by passing to the limit as
n→ +∞, we obtain (4.10) and so our aim in this step is verified. Hence, D is a nonempty and
compact subset of C(J, E). Moreover, it is convex. Note that R(D) ⊆ D.
Step 4. The graph of the multivalued function R|D : D → 2D is closed. Consider a sequence
{xn}n≥1 in D with xn → x in B and let yn ∈ R(xn) with yn → y in C(J, E). We have to show
that y ∈ R(x). By recalling the definition of R, for any n ≥ 1, there is fn ∈ S1

F(·,xn(·)) such that

yn(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 fn(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 fn(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 fn(s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 fn(s) ds.

Observe that for every n ≥ 1 and for a.e. t ∈ J

‖ fn(t)‖ ≤ ϕ(t)Ω(‖xn(t)‖)
≤ ϕ(t) Ω(‖xn‖C(J,E))

≤ ϕ(t)Ω(r).

This shows that the set { fn : n ≥ 1} is integrably bounded. In addition, the set { fn(t) : n ≥
1} is relatively compact for a.e. t ∈ J because assumption (H3) together with the convergence
of {xn}n≥1 implies that

χ{ fn(t) : n ≥ 1} ≤ χ{F(t, {xn(t) : n ≥ 1})} ≤ β(t)χ{xn(t) : n ≥ 1} = 0.

Hence, the sequence{ fn}n≥1 is semicompact, therefore, by Lemma 2.5, it is weakly compact
in L1(J, E). So, without loss of generality we can assume that fn converges weakly to a function
f ∈ L1(J, E). From Mazur’s theorem, there is a sequence (zn), n ≥ 1 of convex combinations
of fn such that for a.e. t ∈ J

f (t) ∈ ∩
j ≥1
{zn(t) : n ≥ j} ⊆ ∩

j ≥1
Conv{ fn (t) : n ≥ j},

and zn converges strongly to f ∈ L1(J, E). Then, for a.e. t ∈ J

f (t) ∈ ∩
j≥1
{zn(t) : n ≥ j} ⊆ ∩

j≥1
Conv{ fn(t) : n ≥ j} ⊆ ∩

j≥1
Conv∪{F(t, xn(t)) : n ≥ j}.

But from the upper semicontinuity of F(t, ·) with Lemma 2.12, we get

∩
j≥1

Conv∪{F(t, xn(t)) : n ≥ j} ⊆ F(t, x(t)).

Then f (t) ∈ F(t, x(t)) for a.e. t ∈ J. Now, for any n ≥ 1 we define

gn(t) =
1

Γ(α)

∫ t

0
(t− s)zn(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1zn(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2zn(s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3zn(s) ds.

(4.16)
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Obviously, for a.e. t ∈ J, the sequence gn(t) converges to y(t). Since F takes convex values,
zj(t) ∈ F(t, x(t)), for a.e. t ∈ J. So, for every n ≥ 1

‖zn(t)‖ ≤ ϕ(t)Ω(‖x(t)‖
≤ ϕ(t)Ω(‖x‖

C(J,E)
), for a.e. t ∈ J.

Hence, for every t ∈ J and for a.e. s ∈ (0, t]

‖(t− s)α−1zn(s)‖ ≤ |t− s|α−1ϕ(t)Ω(‖x‖C(J,E)).

Therefore, by passing to the limit as n → ∞ in (4.16),we obtain from the Lebesgue domi-
nated convergence theorem that, for every t ∈ J

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s) ds.

This shows that the graph of R is closed.
Observe that, by repeating the same procedure in the previous step we can deduce that

the values of R is closed.
As a result of the Steps 1–4, the multivalued R|D : D → 2D is an u.s.c. multifunction with

nonempty convex compact values. By applying Lemma 2.21 there is x ∈ D and x ∈ R(x).

Remark 4.7. The preceding theorem extends Theorem 3.2 in [12] to infinite dimensional
spaces. Moreover, it gives a correct formula for the solutions.

In the following corollary we simplify the condition (4.9).

Corollary 4.8. Assume that the assumptions (H2)–(H4) are satisfied. If the function ϕ in (H2) is
constant, that is, there exists a positive constant µ such that ϕ(t) = µ for all t ∈ J, then the problem
(1.2) has a solution provided that there is an r > 0 such that

µΩ(r)bα

2Γ(α + 1)

[
3 +

α2

2

]
≤ r. (4.17)

Proof. We need only to check that R(D0) ⊆ D0. Let x ∈ D0 and y ∈ R(x). As in Step 2 of
Theorem 4.6, for any t ∈ J

‖y(t)‖ ≤ µΩ(r)
Γ(α)

∫ t

0
(t− s)α−1 ds +

µΩ(r)
2Γ(α)

∫ b

0
(b− s)α−1 ds

+
µb Ω(r)

4Γ(α− 1)

∫ b

0
(b− s)α−2ds +

µb2Ω(r)
4Γ(α− 2)

∫ b

0
(b− s)α−3 ds

≤ µΩ(r)bα

Γ(α + 1)
+

µΩ(r)bα

2Γ(α + 1)
+

µΩ(r)bα

4Γ(α)
+

µΩ(r)bα

4Γ(α− 1)

≤ µΩ(r)bα

Γ(α + 1)

[
3
2
+

α

4
+

α(α− 1)
4

]
≤ µΩ(r)bα

2Γ(α + 1)
[3 +

α2

2
]

≤ r.
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In the following theorem the compactness of the solution set of (1.2) is established.

Theorem 4.9. If the function Ω in (H3) is given of the form Ω(t) = t+ 1, then under the assumptions
of Theorem 4.6 the set of solutions of (1.2) is compact in C(J, E) provided that

(α + 5)bα−1

4Γ(α)
‖ϕ‖L1(J,R+) +

1
4Γ(α− 2)

‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3
< 1. (4.18)

Proof. Note that by Theorem 4.6 the set of solutions of (1.1) is nonempty. In fact, by (4.18) we
can take

r =

(α+5)bα−1

4Γ(α) ‖ϕ‖L1(J,R+) +
1

4Γ(α−2)‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3

1−
[
(α+5)bα−1

4Γ(α) ‖ϕ‖L1(J,R+) +
1

4Γ(α−2)‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3

]
in (4.9). So we have a solution in D0. Note that, from Steps 2 and 3 of the proof of Theorem
4.6, the multivalued function R is completely continuous. According to Lemma 2.22 , in order
to show that the set of solutions of (1.2) is compact, it suffices to prove that the set of fixed
points of the multivalued function R is bounded. So, let x be a mild solution for (1.2). Then
there is an integrable selection f for F(·, x(·)) such that for every t ∈ J

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f (s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f (s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 f (s) ds.

By arguing as in Step 1 of Theorem 4.6 we get

‖x(t)‖ ≤ (1 + ‖x‖)
[
(α + 5)bα−1

4Γ(α)
‖ϕ‖L1(J,R+) +

1
4Γ(α− 2)

‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3

]
.

Therefore,

‖x‖C(J,E) ≤

(α+5)bα−1

4Γ(α) ‖ϕ‖L1(J,R+) +
1

4Γ(α−2)‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3

1−
[
(α+5)bα−1

4Γ(α) ‖ϕ‖L1(J,R+) +
1

4Γ(α−2)‖ϕ‖
L

3
q (J,R+)

bα− q
3

η1− q
3

] = r.

Then, the set of fixed points of the multivalued function R is bounded of C(J, E). Hence,
by Lemma 2.22, the set of mild solutions of (1.2) is compact.

In the following theorem we give another version for Theorem 4.6.

Theorem 4.10. Let F : J × E→ Pck(E) be a multifunction. We suppose the following assumptions:

(H5) For every x ∈ E, t −→ F(t, x) is measurable.

(H6) There is a function ς ∈ L
3
q (J, R+), (0 < q < 3α− 6) such that for every x, y ∈ E

h(F(t, x), F(t, y)) ≤ ς(t) ‖x− y‖ , for a.e. t ∈ J,

and
sup{‖x‖ : x ∈ F(t, 0)} ≤ ς(t), for a.e. t ∈ J.
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Then the problem (1.2) has a solution provided that

(α + 5)bα−1

4Γ(α)
‖ς‖L1(J,R+) +

bα− q
3

4Γ(α− 2)η1− q
3
‖ς‖

L
3
q (J,R+)

< 1. (4.19)

Proof. By(H5) and (H6) we conclude, from Lemma 2.2, that for any x ∈ C(J, E) the set S1
F(·,x(·))

is nonempty. Then we can consider a multifunction map R : C(J, E) → 2C(J,E) defined as in
Theorem 4.6. We shall show that R satisfies the assumptions of Lemma 2.23. The proof will
be given in two steps.
Step 1. The values of R are nonempty and closed. Since S1

F(·,x(·)) is nonempty, the values of
R are nonempty. In order to prove the values of R are closed, let x ∈ C(J, E) and (yn), n ≥ 1 be
a sequence in R(x) such that yn → y in C(J, E). Then, according to the definition of R, there
is a sequence ( fn), n ≥ 1 in S1

F(·,x(·)) such that for any t ∈ J

yn(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 fn(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 fn(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 fn(s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 fn(s) ds.

Let t ∈ J be a fixed. In view of (H5), for every n ≥ 1, and for a.e. t ∈ J

‖F(t, x)‖ = H(F(t, x(t)), {0})
≤ H(F(t, x(t)), F(t, 0)) + H(F(t, 0), {0})
≤ ς(t)‖x(t)‖+ ς(t)

≤ ς(t)
(

1 + ‖x‖
C(J,E)

)
.

Then, for every n ≥ 1, and for a.e. t ∈ J, ‖ fn(t)‖ ≤ ς(t)(1 + ‖x‖
C(J,E)

). This shows that the
set { fn : n ≥ 1} is integrably bounded. Arguing as in Step 4 in the proof of Theorem 4.6, we
can show that the values of R are closed.
Step 2. R is a contraction.

Let z1, z2 ∈ C(J, E) and y1 ∈ R(z1). Then there is f ∈ S1
F(·,z1(·)) such that for any t ∈ J

y1(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f1(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1 f1(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2 f1(s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 f1(s) ds.

Consider the multifunction Z : J → 2E defined by

Z(t) = {u ∈ E : ‖ f (t)− u‖ ≤ ς(t) ‖z1(t)− z2(t)‖}.

For each t ∈ J, Z(t) ∩ F(t, z2(t)) is nonempty. Indeed, let t ∈ J. From (H6), we have
h(F(t, z2(t)), F(t, z1(t))) ≤ ς(t) ‖z1(t)− z2(t)‖. Hence, there exists ut ∈ F(t, z2(t)) such that

‖ut − f (t)‖ ≤ ς(t) ‖z1(t)− z2(t)‖ .

Moreover, since the functions ς, z1, z2 and f are measurable [11, Proposition III. 4], the
multifunction V : t→ Z(t) ∩ F(t, z1(t)) is measurable. Then there is h ∈ S1

F(·,z2(·)) with

‖h(t)− f (t)‖ ≤ ς(t) ‖z1(t)− z2(t)‖ , a.e. t ∈ J. (4.20)
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Let us define

y2(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds− 1

2Γ(α)

∫ b

0
(b− s)α−1h(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2h(s) ds +

t(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3h(s) ds.

Obviously y2 ∈ R(z2). Furthermore, we get from the definitions of y1 and y2, (4.19), (4.20)
and Hölder’s inequality

‖y2(t)− y1(t)‖ ≤
1

Γ(α)

∫ t

0
(t− s)α−1ς(s)‖z1(s)− z2(s)‖ ds

+
1

2Γ(α)

∫ b

0
(b− s)α−1ς(s) ‖z1(s)− z2(s)‖ ds

+
|b− 2t|

4Γ(α− 1)

∫ b

0
(b− s)α−2ς(s)‖z1(s)− z2(s)‖ ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3ς(s)‖z1(s)− z2(s)‖ ds

≤
(

3bα−1

2Γ(α)
+

bα−1

4Γ(α− 1)

)
‖z1 − z2‖C(J,E) ‖ς‖L1(J,R+)

+
bα− q

3

4Γ(α− 2)η1− q
3
‖ς‖

L
3
q (J,R+)

‖z1 − z2‖C(J,E)

≤ ‖z1 − z2‖C(J,E)

[(
3
2
+

α− 1
4

)
bα−1

Γ(α)
‖ς‖L1(J,R+)

+
bα− q

3

4Γ(α− 2)η1− q
3
‖ς‖

L
3
q (J,R+)

]
< ‖z1 − z2‖C(J,E) .

By interchanging the role of y2 and y1 we obtain

‖R(z1)− R(z2)‖ ≤ ‖z1 − z2‖
C(J,E)

.

Therefore, the multivalued function R is a contraction and thus, by Lemma 2.23, R has a
fixed point which is a solution for (1.2).

In the following corollary we simplify the condition (4.19).

Remark 4.11. The previous corollary extends Theorem 3.1 in [2] to a multivalued version
and Theorem 3.7 in [12] to infinite dimensional Banach spaces. In addition, it gives a correct
formula for the solutions.

Corollary 4.12. Assume that the assumptions (H5) and (H6) are satisfied. If there exists a positive
constant ν such that ς(t) = ν, for all t ∈ J, then the problem (1.2) has a solution provided that

υbα

2Γ(α + 1)

(
3 +

α2

2

)
< 1. (4.21)
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Proof. Let t ∈ J, we get from (4.19), (4.20) and (4.21)

‖y2(t)− y1(t)‖ ≤
ν

Γ(α)

∫ t

0
(t− s)α−1‖z1(s)− z2(s)‖ ds

+
υ

2Γ(α)

∫ b

0
(b− s)α−1‖z1(s)− z2(s)‖ ds

+
υ|b− 2t|
4Γ(α− 1)

∫ b

0
(b− s)α−2 ‖z1(s)− z2(s)‖ ds

+
νt(b− t)
4Γ(α− 2)

∫ b

0
(b− s)α−3 ‖z1(s)− z2(s)‖ ds

≤ υ

(
3bα

2Γ(α + 1)
+

bα

4Γ(α)
+

bα

4Γ(α− 1)

)
‖z1 − z2‖C(J,E)

≤ υ

(
3bα

2Γ(α + 1)
+

αbα

4Γ(α + 1)
+

bαα(α− 1)
4Γ(α + 1)

)
‖z1 − z2‖C(J,E)

≤ υbα

2Γ(α + 1)

(
3 +

α

2
+

α(α− 1)
2

)
‖z1 − z2‖C(J,E)

≤ υbα

2Γ(α + 1)

(
3 +

α2

2

)
‖z1 − z2‖C(J,E)

< ‖z1 − z2‖C(J,E) .

Then R is a contraction.

4.2 Nonconvex case

Now we present an existence result for the problem (1.1) when the values of the multivalued
function are not necessarily convex. The proof is based on a selection theorem due to Bressan
and Colombo [9] for lower semicontinuous maps with decomposable values. Our hypothesis
on the orient field is the following:

(H7) F : J × E→ Pcl (E) is a multifunction such that

(i) (t, x)→ F(t, x) is graph measurable and x → F(t, x) is lower semicontinuous.

(ii) There exists a function ϕ ∈ L1(J, R+), such that for any x ∈ E

‖F(t, x)‖ ≤ ϕ(t), a.e. t ∈ J.

Theorem 4.13. If the hypotheses (H4), (H5) and (H7) hold, then the problem (1.2) has a solution
provided that there is r > 0 such that the condition (4.9) is satisfied.

Proof. Consider the multivalued Nemitsky operator N : C(J, E)→ 2L1(J,E), defined by

N(x) = S1
F(·,x(·)) =

{
f ∈ L1(J, E) : f (t) ∈ F(t, x(t))), a.e. t ∈ J

}
.

We will prove that N has a nonempty closed decomposable value and l.s.c. Since F has
closed values, S1

F is closed. Because F is integrably bounded, S1
F is nonempty. It is readily

verified, S1
F is decomposable. To check the lower semicontinuity of N, we need to show that,
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for every u ∈ L1(J, E), x → d(u, N(x)) is upper semicontinuous. To this end from Theorem
2.2 [21] we have

d(u, N(x)) = inf
v∈N(x)

‖u− v‖L1

= inf
v ∈N(x)

∫ b

0
‖u(t)− v(t)‖ dt

=
∫ b

0
inf

z ∈F(t,x(t))
‖u(t)− z‖ dt

=
∫ b

0
d(u(t), F(t, x(t)) dt. (4.22)

We shall show that, for any λ ≥ 0, the set

u
λ
= {x ∈ C(J, E) : d(u, N(x)) ≥ λ}

is closed. For this purpose, let (xn) be a sequence in u
λ

such that xn → x in C(J, E). Then,
for all t ∈ J, xn(t) → x(t) in E. By virtue of (H7)(i) the function z → d(u(t), F(t, z)) is upper
semicontinuous. So, via Fatou’s lemma and (4.22) we have

λ ≤ lim sup
n→∞

d(u, N(xn))

= lim sup
n→∞

∫ b

0
d(u(t), F(t, xn(t)) dt

≤
∫ b

0
lim sup

n→∞
d(u(t), F(t, xn(t)) dt

≤
∫ b

0
d(u(t), F(t, x(t)) dt

= d(u, N(x)).

Therefore x ∈ u
λ

and hence N is lower semicontinuous. By applying Theorem 3 of [9],
there is a continuous map Z : C(J, E)→ L1(J, E) such that Z(x) ∈ N(x), for every x ∈ C(J, E).
Then, Z(x)(s) ∈ F(s, x(s)), a.e. s ∈ J. Consider a map π : C(J, E)→ C(J, E) defined by

(πx)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Z(x)(s) ds− 1

2Γ(α)

∫ b

0
(b− s)α−1Z(x)(s) ds

+
(b− 2t)

4Γ(α− 1)

∫ b

0
(b− s)α−2Z(x)(s) ds

+
t(b− t)

4Γ(α− 2)

∫ b

0
(b− s)α−3Z(x)(s) ds.

Arguing as in the proof of Theorem 4.6, we can show that π satisfies all the conditions
of Schauder’s fixed point theorem. Thus, there is x ∈ C(J, E) such that x(t) = (πx)(t). This
means that x is a solution for (1.2).



Fractional differential inclusions with anti-periodic boundary conditions 29

5 Examples

The following examples illustrate the feasibility of our assumptions.

Example 5.1. Let E be a separable Banach space and f : [0, 1]× E → E, be a function defined
by

f (t, x) =
t x0

20‖x0‖
+

x
20

, (5.1)

where x0 ∈ E \ {0}. Clearly

‖ f (t, x)− f (s, y)‖ ≤ 1
20

max{|t− s|, ‖x− y‖}.

Moreover, the inequality
(2α2 − α + 6)

Γ(α + 1)
< 40

is always true for any α ∈ (2, 3). Then, by Corollary 3.2, the problem (1.1), where f is given
by (5.1), has a solution.

Example 5.2. Let J = [0, 1], E be a separable Banach space and K a nonempty convex compact
subset of E. Let F : J × E→ Pck(E) be a multivalued function defined by

F(t, x) =
‖x‖

λ(10 + et)(1 + ‖x‖)K, (5.2)

where λ is a positive constant such that sup{‖z‖ : z ∈ K} ≤ λ.
Our aim is to prove the assumptions of Corollary 4.12 are satisfied. Obviously the as-

sumption (H5) is satisfied. In order to show that (H6) is satisfied. Furthermore, for t ∈ J, we
have

h(F(t, x), F(t, y)) ≤ 1
(10 + et)

∣∣∣∣ ‖x‖
(1 + ‖x‖) −

‖y‖
(1 + ‖y‖)

∣∣∣∣
≤ 1

(10 + et)
‖x− y‖

≤ 1
10
‖x− y‖.

Note that F(t, 0) = {0}. Hence, the assumption (H6) holds with ς(t) = v = 1
10 . We shall

check that condition (4.21) is satisfied with ν = 1
10 and b = 1. Indeed, it is easy to show that

the inequality
1

20Γ(α + 1)

(
3 +

α2

2

)
< 1

is verified for any α ∈ (2, 3). Therefore the condition (4.21) is satisfied. Then by Corollary
4.12, the problem (1.2), where F is given by (5.2), has a solution.

6 Conclusion

In this paper, existence problems for fractional differential inclusions with anti-periodic bound-
ary conditions have been considered in infinite dimensional Banach spaces. Some sufficient
conditions have been obtained, as pointed in the first section, these conditions are strictly
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weaker than the most of the existing ones. We have considered the convex as well as the
nonconvex case. The obtained results extend those of [3, 12] to infinite dimensional Banach
spaces. Moreover, our technique allows to consider many boundary value problems in infinite
dimensional Banach spaces.

Acknowledgements

The author gratefully acknowledges the Deanship of Scientific Research, King Faisal Uni-
versity of Saudi Arabia, for their financial support the research project No. 140200. Also, the
author highly appreciates the valuable comments and suggestions of the referee which helped
to considerably improve the quality of the manuscript. We would also like to acknowledge
the valuable comments and suggestions from the editors.

References

[1] R. P. Agarwal, M. Benchohra, S. Hamani, Survey on existence results for boundary
value problems of nonlinear fractional differential equations and inclusions, Acta Appl.
Math. 109(2010), 973–1033. MR2596185; url

[2] B. Ahmed, Existence of solutions for fractional differential inclusions of order q ∈ (2, 3]
with anti-periodic boundary conditions, J. Applied Math. Comput. 34(2010), 385–391.
MR3075765; url

[3] B. Ahmed, J. J. Nieto, Existence of solutions for anti-periodic boundary value problems
involving fractional differential equations via Leray–Schauder theory, Topol. Methods Non-
linear Anal. 35(2010), 295–304. MR2676818

[4] J. P. Aubin, H. Frankoeska, Set-valued analysis, Birkhäuser, Boston, Basel, Berlin 1990.
MR2458436

[5] R. Bader, M. Kamenskii, V. Obukhowskii, On some classes of operator inclusions
with lower semicontinuous nonlinearity, Topol. Methods Nonlinear Anal. 17(2001), 143–156.
MR1846984

[6] E. G. Bajlekova, Fractional evolution equations in Banach spaces, Eindhoven University of
Technology, 2001. MR1868564

[7] S. A. Belov, V. V. Chistyakov, A selection principle for mappings of bounded variation,
J. Math. Anal. Appl. 249(2000), 351–366. MR1781229; url

[8] M. Benchohra, J. Henderson, D. Seba, Boundary value problems for fractional differ-
ential inclusions in Banach spaces. Fract. Diff. Cal. 2(2012), 99–108. MR3003005

[9] A. Bressan, G. Colombo, Extensions and selections of maps with decomposable values,
Studia Math. 90(1988), 69–86. MR0947921

[10] D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Israel J. Math.
108(1998), 109–138. MR1669396; url

[11] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes
in Mathematics, Vol. 580, Springer Verlag, Berlin–New York, 1977. MR0467310

http://www.ams.org/mathscinet-getitem?mr=2596185
http://dx.doi.org/10.1007/s10440-008-9356-6
http://www.ams.org/mathscinet-getitem?mr=3075765
http://dx.doi.org/10.1007/s12190-009-0328-4
http://www.ams.org/mathscinet-getitem?mr=2676818
http://www.ams.org/mathscinet-getitem?mr=2458436
http://www.ams.org/mathscinet-getitem?mr=1846984
http://www.ams.org/mathscinet-getitem?mr=1868564 
http://www.ams.org/mathscinet-getitem?mr=1781229
http://dx.doi.org/10.1016/S0022-247X(02)00519-X
http://www.ams.org/mathscinet-getitem?mr=3003005
http://www.ams.org/mathscinet-getitem?mr=0947921
http://www.ams.org/mathscinet-getitem?mr=1669396
http://dx.doi.org/10.1007/BF02783044
http://www.ams.org/mathscinet-getitem?mr=0467310


Fractional differential inclusions with anti-periodic boundary conditions 31

[12] A. Cernea, On the existence of solutions for fractional differential inclusions with anti-
periodic boundary conditions, J. Applied Math. Comput. 38(2012), 133–143. MR2886671;
url

[13] Y. Chen, J. J. Nieto, D. O’Regan, Antiperiodic solutions for fully nonlinear first-order
differential equations, Math. Comput. Model. 46(2007), 1183–1190. url

[14] H. Covitz, S. B. Nadler, Multivalued contraction mapping in generalized metric space,
Israel J. Math. 8(1970), 5–11. MR0263062; url

[15] A. M. A. El-Sayed, A. G. Ibrahim, Multi-valued fractional differential equations, Appl.
Math. Comput. 68(1995), 15–25. MR1320806; url

[16] W. H. Glocke, T. F. Nonnemacher, A fractional calculus approach of self-similar protein
dynamics, Biophys. J. 68(1995), 46–53. url

[17] A. M. Gomaa, On the solutions sets of three-point boundary value problems for noncon-
vex differential inclusions, J. Egyptian Math. Soc. 12(2004), 155–168. MR2101529

[18] A. M. Gomaa, On the solutions sets of four-point boundary value problems for noncon-
vex differential inclusions, Int. J. Geom. Methods Mod. Phys. 8(2011), 23–37. MR2782872;
url

[19] A. Granas, J. Dugundji, Fixed point theory, Springer, 2006. MR1987179

[20] H. R. Heinz, On the behavior of measure of noncompactness with respect to differen-
tiation and integration of vector-valued functions, Nonlinear Anal. 7(1983), 1351–1371.
MR0726478 ; url

[21] F. Hiai, H. Umegaki, Integrals, conditional expectation, and martingales of multivalued
functions, J. Multivariate Anal. 7(1977), 149–182. MR0507504; url

[22] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 1999.
MR1890104

[23] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Theory, Mathematics
and its Applications, Vol. 419, Kluwer Academic Publisher, Dordrecht, 1979. MR1485775

[24] S Hu, N. S. Papageorgiou, Handbook of multivalued analysis. Vol. II. Applications, Math-
ematics and its Applications, Vol. 500, Kluwer Academic Publisher, Dordrecht, 2000.
MR1741926

[25] A. G. Ibrahim, A. M. Gomaa, Existence theorems for functional multivalued three-
point boundary value problem of second order, J. Egyptian Math. Soc. 8(2000), 155–168.
MR1798938

[26] M. Kamenskii, V. Obukhowskii, P. Zecca, Condensing multivalued maps and semilinear
differential inclusions in Banach spaces, De Gruyter Series in Nonlinear Analysis and Appli-
cations, Vol. 7, Walter de Gruyter & Co., Berlin, 2001. MR1831201

[27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional dif-
ferential equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V.,
Amsterdam, 2006. MR2218073

http://www.ams.org/mathscinet-getitem?mr=2886671
http://dx.doi.org/10.1007/s12190-010-0468-6
http://dx.doi.org/10.1016/j.mcm.2006.12.006
http://www.ams.org/mathscinet-getitem?mr=0263062
http://dx.doi.org/10.1007/BF02771543
http://www.ams.org/mathscinet-getitem?mr=1320806
http://dx.doi.org/10.1016/0096-3003(94)00080-N
http://dx.doi.org/10.1016/S0006-3495(95)80157-8
http://www.ams.org/mathscinet-getitem?mr=2101529
http://www.ams.org/mathscinet-getitem?mr=2782872
http://dx.doi.org/10.1142/S021988781100494X
http://www.ams.org/mathscinet-getitem?mr=1987179 
http://www.ams.org/mathscinet-getitem?mr=0726478 
http://dx.doi.org/10.1016/0362-546X(83)90006-8
http://www.ams.org/mathscinet-getitem?mr=0507504
http://dx.doi.org/10.1016/0047-259X(77)90037-9
http://www.ams.org/mathscinet-getitem?mr=1890104
http://www.ams.org/mathscinet-getitem?mr=1485775
http://www.ams.org/mathscinet-getitem?mr=1741926
http://www.ams.org/mathscinet-getitem?mr=1798938
http://www.ams.org/mathscinet-getitem?mr=1831201
http://www.ams.org/mathscinet-getitem?mr=2218073


32 A. G. Ibrahim

[28] Q. A. Lan, W. Lin, Positive solutions of systems of Caputo fractional differential equa-
tions, Commun. Appl. Anal. 17(2013), No. 1, 61–86. MR3075769

[29] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of
second order in Banach spaces, Nonlinear Anal. 4(1980), 985–999. MR0586861; url

[30] S. K. Ntouyas, B. Ahmed, Existence results for boundary value problem for fractional
differential inclusions with three point integral boundary conditions, ENOC, July 2011,
Rome, Italy (2011).

[31] A. Ouahab, Some results for fractional boundary value problem of differential inclusions,
Nonlinear Anal. 69(2008), 3877–3896. MR2463341; url

[32] A. Ouahab, Fractional semilinear differential inclusions, Comput. Math. Appl. 64(2012),
3235–3252. MR2989352; url

[33] I. Podlubny, Geometric and physical interpretation of fractional integration and frac-
tional differentiation, Fract. Calc. Appl. Anal. 5(2002), 367–386. MR1967839

[34] J. Wang, A. G. Ibrahim, Existence and controllability results for nonlocal fractional im-
pulsive differential inclusions in Banach spaces, J. Funct. Spaces Appl. 2013, Art. ID 518306,
16 pp. MR3125085; url

[35] J. R. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differ-
ential inclusions, Nonlinear Anal. Real World Appl. 12(2011), 3642–3653. MR2832998; url

[36] Z. Zhang, B. Liu, Existence of mild solutions for fractional evolutions equations, J. of
fractional Calculus and Applications 2(2012), No. 10, 1–10.

[37] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear
Anal. Real World Applications 11(2010), 4465–4475. MR2683890; url

[38] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations,
Comput. Math. Appl., 59(2010), 1063–1077.

http://www.ams.org/mathscinet-getitem?mr=3075769
http://www.ams.org/mathscinet-getitem?mr=0586861
http://dx.doi.org/10.1016/0362-546X(80)90010-3
http://www.ams.org/mathscinet-getitem?mr=2463341
http://dx.doi.org/10.1016/j.na.2007.10.021
http://www.ams.org/mathscinet-getitem?mr=2989352
http://dx.doi.org/10.1016/j.camwa.2012.03.039
http://www.ams.org/mathscinet-getitem?mr=1967839
http://www.ams.org/mathscinet-getitem?mr=3125085
http://dx.doi.org/10.1155/2013/518306
http://www.ams.org/mathscinet-getitem?mr=2832998
http://dx.doi.org/10.1016/j.nonrwa.2011.06.021
http://www.ams.org/mathscinet-getitem?mr=2683890
http://dx.doi.org/10.1016/j.nonrwa.2010.05.029

	Introduction
	Preliminaries and notation
	Existence of solutions for the problem (1.1)
	Existence of solutions for the problem (1.2)
	Convex case
	Nonconvex case

	Examples
	Conclusion

