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Abstract. In this paper, we investigate the modified Boussinesq equation

utt − uxx − εuxxxx − 3(u2)xx + 3(u2ux)x = 0.

Firstly, we give a property of the solutions of the equation, that is, if 1 + u(x, t) is a
solution, so is 1 − u(x, t). Secondly, by using the bifurcation method of dynamical sys-
tems we obtain some explicit expressions of solutions for the equation, which include
kink-shaped solutions, blow-up solutions, periodic blow-up solutions and solitary wave
solutions. Some previous results are extended.
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1 Introduction

In recent years, nonlinear phenomena have been studied in all fields of science and engi-
neering, such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics,
chemical kinematics, chemical physics, and so on. Many nonlinear evolution equations play
an important role in the analysis of these phenomena.

In order to find the traveling wave solutions of these nonlinear evolution equations, there
have been many methods, such as inverse scattering method [6], the Bäcklund transforma-
tion method [14], Jacobi elliptic function method [10], F-expansion and extended F-expansion
method [18, 19], (G′

G )-expansion method [16, 20], the bifurcation method of dynamical systems
[8, 9, 11, 12, 17], and so on.

The bad and good Boussinesq equations [13] are as follows

utt − uxx − uxxxx − 3(u2)xx = 0, (1.1)

and
utt − uxx + uxxxx − 3(u2)xx = 0, (1.2)
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which were introduced by the French scientist Joseph Boussinesq (1842–1929) to describe the
1870s model equation for the propagation of long waves on the surface of water with a small
amplitude. Equation (1.1) is used to describe the two-dimensional flow of shallow-water
waves having small amplitudes. There is a dense connection to the so-called Fermi–Pasta–
Ulam (FPU) problem. The existence of Lax pair, Bäcklund transformation and some soliton-
type solutions is known [13, 21]. Equation (1.2) describes the two-dimensional irrotational
flow of an inviscid liquid in a uniform rectangular channel. There are known results due to
local well-posedness, global existence and blow-up of some solutions [3]. The bad and good
Boussinesq equations have been studied by using the VIM, HPM, ADM, Exp-function method,
and F-expansion method [1, 2, 7, 15].

Dai et al. [4] studied the explicit homoclinic orbits solutions for the bad Boussinesq equa-
tion with periodic boundary condition and even constraint, and periodic soliton solutions for
the good Boussinesq equation with even constraint. G. Forozani and M. Ghorveei Nosrat [5],
by adding a nonlinear term of the form 3(u2ux)x to the bad and good Boussinesq equations,
studied the following modified bad and good Boussinesq equations

utt − uxx − uxxxx − 3(u2)xx + 3(u2ux)x = 0, (1.3)

and
utt − uxx + uxxxx − 3(u2)xx + 3(u2ux)x = 0. (1.4)

They obtained variant solutions such as kink, anti-kink, compacton and periodic solutions for
these equations by using the standard tanh, the extended tanh method and a mathematical
method based on the reduction of order.

In the present paper, combining the modified bad and good Boussinesq equations, we
consider the following modified Boussinesq equation

utt − uxx − εuxxxx − 3(u2)xx + 3(u2ux)x = 0, (1.5)

where ε is a nonzero constant. When ε = 1, equation (1.5) reduces to the modified bad Boussi-
nesq equation (1.3). When ε = −1, equation (1.5) reduces to the modified good Boussinesq
equation (1.4). In order to search for the traveling wave solutions of equation (1.5), here we
study equation (1.5) by using the bifurcation method mentioned above. Firstly, we give a
property of the solutions of equation (1.5), that is, if 1 + u(x, t) is a solution, so is 1 − u(x, t).
Secondly, we obtain some explicit expressions of solutions for equation (1.5), which include
kink-shaped solutions, blow-up solutions, periodic blow-up solutions and solitary wave solu-
tions. After checking over these solutions carefully, we find that some solutions are, in fact,
exactly the same as those solutions given in [5]. To our knowledge, many other solutions are
new.

This paper is organized as follows. In Section 2, we state our main results which are
included in three propositions. In Section 3, we give the theoretical derivations for the propo-
sitions respectively. A brief conclusion is given in Section 4.

2 Main results

In this section we list our main results. To relate conveniently, for given constant wave speed
c, let

ξ = x − ct, (2.1)



Application of the bifurcation method to the modified Boussinesq equation 3

g0 =
2

3
√

3
(4 − c2)3/2. (2.2)

Using the notations above, our main results are stated in Proposition 2.1 (the property
of the solutions of equation (1.5)) and Propositions 2.2, 2.3 (the exact explicit expressions of
solutions for equation (1.5)).

Proposition 2.1. There exists a property of the solutions of equation (1.5), that is, if 1 + u(x, t) is a
solution of equation (1.5), so is 1 − u(x, t).

Proposition 2.2. When ε > 0, equation (1.5) has the following exact solutions.

(1) Let g denote the integral constant in equation (3.3). If g = 0, we obtain two kink-shaped solutions

u1±(x, t) = 1 ±
√

4 − c2 tanh

(√
4 − c2

2ε
ξ

)
, (2.3)

two blow-up solutions

u2±(x, t) = 1 ±
√

4 − c2 coth

(√
4 − c2

2ε
ξ

)
, (2.4)

and four periodic blow-up solutions

u3±(x, t) = 1 ±
√

2(4 − c2) sec

(√
4 − c2

2ε
ξ

)
, (2.5)

u4±(x, t) = 1 ±
√

2(4 − c2) csc

(√
4 − c2

2ε
ξ

)
. (2.6)

(2) If 0 < g < g0, we obtain two solitary wave solutions

u5±(x, t) = 1 ± 2(1 − 2α)
√

4 − c2 +
√

2α(1 − α)(4 − c2) cosh(η1ξ)

2
√

α +
√

2(1 − α) cosh(η1ξ)
, (2.7)

two blow-up solutions

u6±(x, t) = 1 ±
√

4 − c2(
√

2α(3α − 1) sinh(η1ξ) + 2α cosh(η1ξ) + 2(2α − 1))√
2(3α − 1) sinh(η1ξ) + 2

√
α cosh(η1ξ)− 2

√
α

, (2.8)

and two periodic blow-up solutions

u7±(x, t) = 1 ±

√
2(4 − c2 − 2φ2

2)− φ2

√
4 − c2 − φ2

2 cos(η2ξ)
√

2φ2 −
√

4 − c2 − φ2
2 cos(η2ξ)

, (2.9)

where α depends on g, it is such that
√

α(4 − c2)
3
+(c2 − 4)

√
α(4 − c2)+ g = 0, and 1

3 < α < 1

η1 =

√
(4 − c2)(3α − 1)

ε
, (2.10)

η2 =

√
4 − c2 − 3φ2

2
ε

, (2.11)

φ2 =
1
2

(√
(4 − c2)(4 − 3α)−

√
α(4 − c2)

)
.
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(3) If g = g0, we obtain six blow-up solutions

u8±(x, t) = 1 ± (4 − c2)ξ2 −
√

6(4 − c2)εξ + 6ε√
3(4 − c2)ξ2 − 3

√
2εξ

, (2.12)

u9±(x, t) = 1 ± (4 − c2)ξ2 +
√

6(4 − c2)εξ + 6ε√
3(4 − c2)ξ2 + 3

√
2εξ

, (2.13)

and

u10±(x, t) = 1 ±
√

4 − c2

3
2(4 − c2)ξ2 + 9ε

2(4 − c2)ξ2 − 3ε
. (2.14)

Proposition 2.3. When ε < 0, equation (1.5) has the following exact solutions

(1◦) If g = 0, we obtain two solitary wave solutions

u11±(x, t) = 1 ±
√

2(4 − c2) sech

(√
c2 − 4

ε
ξ

)
. (2.15)

(2◦) If 0 < g < g0, we obtain four solitary wave solutions

u12±(x, t) = 1 ± 2(1 − 2α)
√

4 − c2 −
√

2α(1 − α)(4 − c2) cosh(η1ξ)

2
√

α −
√

2(1 − α) cosh(η1ξ)
, (2.16)

u13±(x, t) = 1 ± 2(1 − 2α)
√

4 − c2 +
√

2α(1 − α)(4 − c2) cosh(η1ξ)

2
√

α +
√

2(1 − α) cosh(η1ξ)
, (2.17)

and four periodic wave solutions

u14±(x, t) = 1 ±

√
2(4 − c2 − 2φ2

2) + φ2

√
4 − c2 − φ2

2 cos(η2ξ)
√

2φ2 +
√

4 − c2 − φ2
2 cos(η2ξ)

, (2.18)

u15±(x, t) = 1 ±

√
2(4 − c2 − 2φ2

2)− φ2

√
4 − c2 − φ2

2 cos(η2ξ)
√

2φ2 −
√

4 − c2 − φ2
2 cos(η2ξ)

, (2.19)

where 0 < α < 1
3 .

(3◦) If g = g0, we obtain two solitary wave solutions

u16±(x, t) = 1 ±
√

4 − c2

3
2(4 − c2)ξ2 + 9ε

2(4 − c2)ξ2 − 3ε
. (2.20)

Remark 2.4. If we check the above solutions carefully, we can discover an interesting fact,
that is, (2.9) and (2.19) have the same expressions, so do (2.14) and (2.20). However, they
are different kinds of solutions under corresponding parametric conditions. In fact, (2.9) are
periodic blow-up wave solutions, while (2.19) are periodic solutions. Meanwhile, (2.14) are
blow-up solutions, while (2.20) are solitary wave solutions. On the other hand, (2.7) and (2.17),
which have the same expressions, are both solitary wave solutions.
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3 The theoretic derivations for main results

In this section, we will give the derivations for our main results. Firstly we derive Proposition
2.1, the property of the solutions of equation (1.5). If 1 + u(x, t) is a solution of equation (1.5),
that is 1 + u(x, t) satisfies equation (1.5), then we have

(1 + u)tt − (1 + u)xx − ε(1 + u)xxxx − 3((1 + u)2)xx + 3((1 + u)2(1 + u)x)x

= utt − uxx − εuxxxx − 3(1 + 2u + u2)xx + 3((1 + u)2ux)x

= utt − uxx − εuxxxx − 6((1 + u)uxx + (ux)
2) + 6(1 + u)(ux)

2 + 3(1 + u)2uxx

= utt − εuxxxx + (3u2 − 4)uxx + 6u(ux)
2 = 0. (3.1)

On the other hand, substituting 1 − u(x, t) into the left side of equation (1.5), we have

(1 − u)tt − (1 − u)xx − ε(1 − u)xxxx − 3((1 − u)2)xx + 3((1 − u)2(1 − u)x)x

= −utt + uxx + εuxxxx − 3(1 − 2u + u2)xx − 3((1 − u)2ux)x

= −utt + uxx + εuxxxx − 6((u − 1)uxx + (ux)
2) + 6(1 − u)(ux)

2 − 3(1 − u)2uxx

= −utt + εuxxxx − (3u2 − 4)uxx − 6u(ux)
2

= −(utt − εuxxxx + (3u2 − 4)uxx + 6u(ux)
2) = 0, (according to (3.1))

thus 1 − u(x, t) is a solution of equation (1.5).
Secondly we derive Propositions 2.2 and 2.3, the explicit expressions of solutions for equa-

tion (1.5). We look for the traveling wave solutions of equation (1.5) in the form of

u(x, t) = 1 + φ(ξ), (3.2)

where ξ was given in (2.1). Substituting (3.2) into equation (1.5) and integrating twice with
respect to ξ, we get

φ′′ =
1
ε
(φ3 + (c2 − 4)φ + g + g∗ξ), (3.3)

where g and g∗ are two integral constants. In order to use the bifurcation method of dynamical
systems, we consider the case g∗ = 0.

Letting y = φ′, we obtain the following planar system
dφ

dξ
= y,

dy
dξ

=
1
ε
(φ3 + (c2 − 4)φ + g),

(3.4)

which has the first integral

H(φ, y) = y2 − 1
ε

(
1
2

φ4 + (c2 − 4)φ2 + 2gφ

)
= h,

where h is an integral constant.
Now we consider the phase portraits of system (3.4). Set

f0(φ) = φ3 + (c2 − 4)φ,

and
f (φ) = φ3 + (c2 − 4)φ + g.
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It is easy to obtain the two extreme points of f0(φ) as follows

φ∗
± = ±

√
4 − c2

3
,

where |c| < 2. Let g0 = | f0(φ∗
±)| = 2

3
√

3
(4 − c2)3/2, which is in (2.2).

Let (φ∗, 0) be one of the singular points of system (3.4). Then the characteristic values of
the linearized system of system (3.4) at the singular point (φ∗, 0) are

λ± = ±
√

f ′(φ∗)

ε
.
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Figure 3.1: The phase portraits of system (3.4) when ε > 0.
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Figure 3.2: The phase portraits of system (3.4) when ε < 0.

According to the qualitative theory of dynamical systems, we therefore know the following
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(i) If f ′(φ∗)
ε > 0, (φ∗, 0) is a saddle point.

(ii) If f ′(φ∗)
ε < 0, (φ∗, 0) is a center point.

(iii) If f ′(φ∗)
ε = 0, (φ∗, 0) is a degenerate saddle point.

From the analysis above, we obtain the phase portraits of system (3.4) in Figure 3.1 (when
ε > 0) and Figure 3.2 (when ε < 0).

Now we will obtain the explicit expressions of solutions for equation (1.5) when ε > 0.
(1) If g = 0, we consider two kinds of orbits.
(i) Firstly, we see that there are two heteroclinic orbits Γ+

1 and Γ−
1 connected at saddle

points (−φ0, 0) and (φ0, 0). On the (φ, y)-plane the expressions of the heteroclinic orbits are
given as

y = ± 1√
2ε
(φ2

0 − φ2), (3.5)

where φ0 =
√

4 − c2. Substituting (3.5) into dφ/dξ = y and integrating them along the
heteroclinic orbits Γ+

1 and Γ−
1 . Meanwhile for simplicity, we assume that φ(ξ) → 0 and ∞

respectively as ξ → 0, then it follows that

±
∫ φ

0

√
2ε ds

φ2
0 − s2

=
∫ ξ

0
ds,

and

±
∫ ∞

φ

√
2ε ds

s2 − φ2
0
=
∫ 0

ξ
ds.

Computing the integrals above, we have

φ(ξ) = ±
√

4 − c2 tanh

(√
4 − c2

2ε
ξ

)
,

and

φ(ξ) = ±
√

4 − c2 coth

(√
4 − c2

2ε
ξ

)
.

Noting that u(x, t) = 1 + φ(ξ) with ξ = x − ct, we get two kink-shaped solutions u1±(x, t)
and two blow-up solutions u2±(x, t) as (2.3) and (2.4).

(ii) Secondly, from the phase portrait, we note that there are two special orbits Γl
2 and Γr

2,
which have the same Hamiltonian as that of the center point (0, 0). On the (φ, y)-plane the
expressions of the two orbits are given as

y = ± 1√
2ε

φ
√

φ2 − 2(4 − c2). (3.6)

Substituting (3.6) into dφ/dξ = y and integrating them along the two orbits Γl
2 and Γr

2, it
follows that

±
∫ ∞

φ

√
2ε ds

s
√

s2 − 2(4 − c2)
=
∫ 0

ξ
ds.

Computing the integrals above, we have

φ(ξ) = ±
√

2(4 − c2) sec

(√
4 − c2

ε
ξ

)
.
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At the same time, we note that if φ(ξ) is a solution of system (3.4), then φ(ξ + κ) is also a
solution of system (3.4). Specially, taking κ = π

2 , we get another two solutions

φ(ξ) = ±
√

2(4 − c2) csc

(√
4 − c2

ε
ξ

)
.

Noting that u(x, t) = 1 + φ(ξ) with ξ = x − ct, we get four periodic blow-up solutions
u3±(x, t) and u4±(x, t) as (2.5) and (2.6).

(2) If 0 < g < g0, we set the largest root of f (φ) = 0 be φ1 =
√

α(4 − c2) ( 1
3 < α < 1), then

we can get another two roots as follows

φ2 =
1
2

(
−
√

α(4 − c2) +
√
(4 − c2)(4 − 3α)

)
, (3.7)

φ3 =
1
2

(
−
√

α(4 − c2)−
√
(4 − c2)(4 − 3α)

)
. (3.8)

(i) Firstly, from the phase portrait, we note that there are a heteroclinic orbit Γ3 and two
special orbits Γl

3, Γr
3, which have the same Hamiltonian as that of the saddle point (φ1, 0). On

the (φ, y)-plane the expressions of these orbits are given as

y = ± 1√
2ε

√
(φ − φ1)2(φ − φl

1)(φ − φr
1), (3.9)

where
φl

1 = −
√

α(4 − c2)−
√

2(1 − α)(4 − c2), (3.10)

φr
1 = −

√
α(4 − c2) +

√
2(1 − α)(4 − c2). (3.11)

Substituting (3.9) into dφ/dξ = y and integrating them along the orbits Γ3, Γl
3 and Γr

3, it
follows that

±
∫ φ

φr
1

√
2ε ds

(φ1 − s)
√
(s − φl

1)(s − φr
1)

=
∫ ξ

0
ds.

and

±
∫ ∞

φ

√
2ε ds

(s − φ1)
√
(s − φl

1)(s − φr
1)

=
∫ 0

ξ
ds.

Computing the integrals above, we have

φ(ξ) = ±2(1 − 2α)
√

4 − c2 +
√

2α(1 − α)(4 − c2) cosh(η1ξ)

2
√

α +
√

2(1 − α) cosh(η1ξ)
,

and

φ(ξ) = ±
√

4 − c2(
√

2α(3α − 1) sinh(η1ξ) + 2α cosh(η1ξ) + 2(2α − 1))√
2(3α − 1) sinh(η1ξ) + 2

√
α cosh(η1ξ)− 2

√
α

,

where η1 is given in (2.10). Noting that u(x, t) = 1 + φ(ξ) with ξ = x − ct, we get two solitary
wave solutions u5±(x, t) and two blow-up solutions u6±(x, t) as (2.7) and (2.8).
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(ii) Secondly, from the phase portrait, we note that there are two special orbits Γl
4 and Γr

4,
which have the same Hamiltonian as that of the center point (φ2, 0). On the (φ, y)-plane the
expressions of these orbits are given as

y = ± 1√
2ε

√
(φ − φ2)2(φ − φl

2)(φ − φr
2), (3.12)

where
φl

2 = −φ2 −
√

2(4 − c2 − φ2
2), (3.13)

φr
2 = −φ2 +

√
2(4 − c2 − φ2

2). (3.14)

Substituting (3.12) into dφ/dξ = y and integrating them along the orbits Γl
4 and Γr

4, it
follows that

±
∫ ∞

φ

√
2ε ds

(s − φ2)
√
(s − φl

2)(s − φr
2)

=
∫ 0

ξ
ds.

Computing the integrals above, we have

φ(ξ) = ±

√
2(4 − c2 − 2φ2

2)− φ2

√
4 − c2 − φ2

2 cos(η2ξ)
√

2φ2 −
√

4 − c2 − φ2
2 cos(η2ξ)

,

where η2 is given in (2.11). Noting that u(x, t) = 1+ φ(ξ) with ξ = x − ct, we get two periodic
blow-up solutions u7±(x, t) as (2.9).

(3) If g = g0, from the phase portrait, we see that there are two orbits Γl
5 and Γr

5, which
have the same Hamiltonian with the degenerate saddle point (φ4, 0). On the (φ, y)-plane the
expressions of these orbits are given as

y = ± 1√
2ε

√
(φ − φ4)3(φ − φ∗

4), (3.15)

where

φ4 =

√
1
3
(4 − c2), (3.16)

φ∗
4 = −3φ4 = −

√
3(4 − c2). (3.17)

Substituting (3.15) into dφ/dξ = y and integrating them along the orbits Γl
5 and Γr

5, it
follows that

±
∫ +∞

φ

√
2ε ds

(s − φ4)
√
(s − φ4)(s − φ∗

4)
=
∫ 0

ξ
ds,

and

±
∫ φ∗

4

φ

√
2ε ds

(φ4 − s)
√
(s − φ4)(s − φ∗

4)
=
∫ 0

ξ
ds.

Computing the integrals above, we have

φ(ξ) = ± (4 − c2)ξ2 −
√

6(4 − c2)εξ + 6ε√
3(4 − c2)ξ2 − 3

√
2εξ

,
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φ(ξ) = ± (4 − c2)ξ2 +
√

6(4 − c2)εξ + 6ε√
3(4 − c2)ξ2 + 3

√
2εξ

,

and

φ(ξ) = ±
√

4 − c2

3
2(4 − c2)ξ2 + 9ε

2(4 − c2)ξ2 − 3ε
.

Noting that u(x, t) = 1 + φ(ξ) with ξ = x − ct, we get six blow-up solutions u8±(x, t),
u9±(x, t) and u10±(x, t) as (2.12)–(2.14).

Heretofore, we have completed the derivations for the Proposition 2.2. Now we will obtain
the explicit expressions of solutions for equation (1.5) when ε < 0.

(1◦) If g = 0, from the phase portrait, we see that there are two symmetric homoclinic
orbits Γl

6 and Γr
6 connected at the saddle point (0, 0). On the (φ, y)-plane the expressions of

these orbits are given as

y = ± 1√
−2ε

√
φ2(2(4 − c2)− φ2). (3.18)

Substituting (3.18) into dφ/dξ = y and integrating them along the orbits Γl
6 and Γr

6, it
follows that

±
∫ φ

−φ◦
0

√
−2εds

s
√

2(4 − c2)− s2
=
∫ ξ

0
ds,

and

±
∫ φ◦

0

φ

√
−2εds

s
√

2(4 − c2)− s2
=
∫ 0

ξ
ds,

where φ◦
0 =

√
2(4 − c2). Computing the integrals above, we have

φ(ξ) = ±
√

2(4 − c2)sech

(√
c2 − 4

ε
ξ

)
.

Noting that u(x, t) = 1+ φ(ξ) with ξ = x− ct, we get two solitary wave solutions u11±(x, t)
as (2.15).

(2◦) If 0 < g < g0, we set the middle root of f (φ) = 0 be φ1 =
√

α(4 − c2) (0 < α < 1
3 ),

then we can get another two roots φ2 and φ3 as (3.7) and (3.8).
(i) Firstly, from the phase portrait, we note that there are two homoclinic orbits Γl

7 and Γr
7

connected at the saddle point (φ1, 0). On the (φ, y)-plane the expressions of these orbits are
given as

y = ± 1√
−2ε

√
(φ − φ1)2(φ − φl

1)(φ − φr
1), (3.19)

where φl
1 and φr

1 are given in (3.10) and (3.11). Substituting (3.19) into dφ/dξ = y and
integrating them along the orbits Γl

7 and Γr
7, it follows that

±
∫ φ

φl
1

√
−2ε ds

(φ1 − s)
√
(s − φl

1)(φr
1 − s)

=
∫ ξ

0
ds,

and

±
∫ φr

1

φ

√
−2ε ds

(s − φ1)
√
(s − φl

1)(φr
1 − s)

=
∫ 0

ξ
ds.
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Computing the integrals above, we have

φ(ξ) = ±2(1 − 2α)
√

4 − c2 −
√

2α(1 − α)(4 − c2) cosh(η1ξ)

2
√

α −
√

2(1 − α) cosh(η1ξ)
,

and

φ(ξ) = ±2(1 − 2α)
√

4 − c2 +
√

2α(1 − α)(4 − c2) cosh(η1ξ)

2
√

α +
√

2(1 − α) cosh(η1ξ)
,

where η1 is given in (2.10). Noting that u(x, t) = 1+ φ(ξ) with ξ = x − ct, we get four solitary
wave solutions u12±(x, t) and u13±(x, t) as (2.16) and (2.17).

(ii) Secondly, from the phase portrait, we note that there is a special periodic orbit Γ8,
which has the same Hamiltonian as that of the center point (φ2, 0). On the (φ, y)-plane the
expressions of this orbit are given as

y = ± 1√
−2ε

√
(φ2 − φ)2(φ − φl

2)(φr
2 − φ), (3.20)

where φl
2 and φr

2 are given in (3.13) and (3.14). Substituting (3.20) into dφ/dξ = y and
integrating them along the orbit Γ8, it follows that

±
∫ φr

2

φ

√
−2ε ds

(φ2 − s)
√
(s − φl

2)(φr
2 − s)

=
∫ 0

ξ
ds,

and

±
∫ φ

φl
2

√
−2ε ds

(φ2 − s)
√
(s − φl

2)(φr
2 − s)

=
∫ ξ

0
ds.

Computing the integrals above, we have

φ(ξ) = ±

√
2(4 − c2 − 2φ2

2) + φ2

√
4 − c2 − φ2

2 cos(η2ξ)
√

2φ2 +
√

4 − c2 − φ2
2 cos(η2ξ)

,

and

φ(ξ) = ±

√
2(4 − c2 − 2φ2

2)− φ2

√
4 − c2 − φ2

2 cos(η2ξ)
√

2φ2 −
√

4 − c2 − φ2
2 cos(η2ξ)

,

where η2 is given in (2.11). Noting that u(x, t) = 1+ φ(ξ) with ξ = x − ct, we get four periodic
wave solutions u14±(x, t) and u15±(x, t) as (2.18) and (2.19).

(3◦) If g = g0, from the phase portrait, we see that there is a homoclinic orbit Γ9, which
passes the degenerate saddle point (φ4, 0). On the (φ, y)-plane the expressions of the homo-
clinic orbit are given as

y = ± 1√
−2ε

√
(φ4 − φ)3(φ∗

4 − φ), (3.21)

where φ4 and φ∗
4 are given in (3.16) and (3.17). Substituting (3.21) into dφ/dξ = y and

integrating them along the orbit Γ9, it follows that

±
∫ φ

φ∗
4

√
−2ε ds

(φ4 − s)
√
(φ4 − s)(s − φ∗

4)
=
∫ ξ

0
ds.
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ing the integrals above, we have

φ(ξ) = ±
√

4 − c2

3
2(4 − c2)ξ2 + 9ε

2(4 − c2)ξ2 − 3ε
.

Noting that u(x, t) = 1+ φ(ξ) with ξ = x− ct, we get two solitary wave solutions u16±(x, t)
as (2.20).

Heretofore, we have completed the derivations for the Proposition 2.3.

Remark 3.1. One may find that we only consider the case when g ≥ 0 in Propositions 2.2 and
2.3. In fact, we can get exactly the same solutions in the opposite case. Meanwhile, we assume
that 4 − c2 > 0 in our studies. For 4 − c2 < 0, these solutions also satisfy equation (1.5) but
are complex forms.

Remark 3.2. We have also tested the correctness of these solutions by using the software
Mathematica. Here, we list a testing order, the other testing orders are similar. For instance,
the orders for testing u16(x, t) are as follows:

ξ = x − ct;

u = 1 +
√

4−c2

3
2(4−c2)ξ2+9ε
2(4−c2)ξ2−3ε

;

utt = D[u, {t, 2}];
uxx = D[u, {x, 2}];
uxxx = D[u, {x, 3}];
(u2)xx = D[u2, {x, 2}];
(u2ux)x = D[u2D[u, x], x];

Simplify[utt − uxx − εuxxx − 3(u2)xx + 3(u2ux)x]

0

4 Conclusion

In this paper, we investigated the modified Boussinesq equation (1.5) by using the bifurcation
method of dynamical systems. We gave a property of the solutions of the equation (see Propo-
sition 2.1). We obtained some precise explicit expressions of traveling wave solutions ui(x, t)
(i = 8–14, 18–26) (see Propositions 2.2 and 2.3), which include kink-shaped solutions, blow-
up solutions, periodic blow-up solutions and solitary wave solutions. Our work extended
some previous results [2, 5, 7]. The method can be applied to many other nonlinear evolution
equations and we believe that many new results wait for further discovery by this method.
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