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Abstract

The ”freezing” method for ordinary differential equations is extended to the Volterra
integral equations in a Banach space of the type

x(t) — /0 K(t,t —s)xz(s)ds = f(t) (t > 0),

where K (t,s) is an operator valued function "slowly” varying in the first argument. Be-
sides, sharp explicit stability conditions are derived.
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1 Introduction and statement of the basic lemma

Stability and boundedness of Volterra integral and integrodifferential equations have been ex-
tensively considered for a long time (see the well-known books [1, 4], recent papers [5, 8, 15, 16]
and papers listed below). The basic method in the theory of stability and boundedness of
Volterra integral equations is the direct Liapunov method. But finding the Liapunov function-
als is a difficult mathematical problem. The other approach is connected with an interpretation
of the Volterra equations as operator equations in appropriate spaces. Such an approach was
used in many papers, cf. [3, 6, 7, 12, 14, 16] and references therein. In this paper, for a class of
Volterra equations in a Banach space we establish explicit sufficient stability conditions which
are also necessary stability conditions when the integral operator is a convolution. Our results
improve the well known ones in the case of the considered equations.
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The approach suggested below is based on the extension of the ”freezing” method which
was introduced by V.M. Alekseev for linear ordinary differential equations cf. [2] (see also [9,
Section 3.2]). That method was already extended to difference equations [11].

Let X be a Banach space with a norm ||.|| and the unit operator I, R, := [0,00), and
C(w, X) is the space of continuous functions defined on a set w C R with values in X and
equipped with the sup-norm |.|c(w) = |-|ow,x). LF(w, X) (1 < p < 00) is the space of functions
defined on w with values in X and equipped with the

[l = | / o

Consider in X the equation

(1.1) x(t) — /OtK(t,t— s)x(s)ds = f(t) (f € C(R+, X), t >0),

where K(t,s) is a functions defined on [0 < s < ¢ < o0], whose values are bounded operators
in X, and for any fixed 7 > 0, K(7,.) is integrable and bounded on R,. In addition,

t
(1.2) / |K(t,s) — K(7,9)||ds < q|t — 7| (¢ =const; t,7 >0).
0

A solution of Equation (1.1) is a continuous function defined on Ry and satisfying (1.1) for all
finite ¢ > 0. The existence of solutions under consideration is checked below.
Note that the approach suggested below enables us to consider also the equation

x(t) — /0 K(t—s,s)x(s)ds = f(t) (t > 0)

under condition (1.2). It is clear that under (1.2) the function K(7,s), for a fixed 7, admits
the Laplace transform

K.(z):= / e *K(t,s)ds (Rez > ¢y = const).
0

Besides, it is assumed that the operator W,(z) := I — K,(z) is invertible for all z € C = {z €
C: Re z> 0} and W '(iy) € L*(R). Introduce the ”local Green function”

Go(t) = 2 / T (i) dy.

:% n

We will say that Equation (1.1) is stable, if for any f € C(Ry, X) a solution x of (1.1) satisfies
the inequality

(1.3) Zlors) < aolflery)
where the constant ay does not depend on f.

Lemma 1.1 Under condition (1.2), let

(1.4) q/ s sup |G- (s)||ds < 1.
0 7>0

Then Equation (1.1) is stable. Moreover, constant ay in (1.3) is explicitly pointed below.

This lemma is proved in the next section.
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2 Proof of Lemma 1.1

Consider the equation

t
(2.1) x(t) — / K(r,t —s)x(s)ds = f(t) (t>0)
0
with a fixed 7 > 0. Applying to (2.1) the Laplace transform, we have

2(2) — K (2)2(2) = [ (2),

where Z(z) and f(z) are the Laplace transforms to x(t) and f(t), respectively, z is the dual
variable. Hence,

#(2) = W (2)f(2).

S0

(2.2) () = /0 Gt — 5)f(s)ds.

Now rewrite (1.1) in the form

(2.3) 2(t) — /0 K(r,t — s)a(s)ds = fo(t, ™) + f(t) (t>0).
with

fo(t,T) = /0 (K(t,t —s) — K(1,t —s))z(s)ds.
So according to (2.2),
(2.4) z(t) = /0 G (t—3s)(f(s)+ fo(s,7))ds = F(t) +/0 G, (t — s)fo(s,T)ds,

where

With the notation
w(t) := sup ||G-(t)]|

7>0

we thus get
t
|Flowry) < |f|C(R+)Slip/ w(t = s)ds = |wlpiry) [ flowy)-
0
Due to (1.3)

1fo(t, )|l < /0 I(K (7t = 5) = K(t,t = s))x(s)||ds < [x|o@nalt = 7]

Now (2.4) implies
t
le@I < [wleia,) [fler) +61/ w(t = s)|z|oq,s)s = 7lds.
0

EJQTDE, 2008 No. 17, p. 3



Take ¢t = 7. Then

(DI < Jwlpy gy [ flow,) + Q/ w(T = 8)|x|2c@.s (T — 5)ds.
0

Hence,

[z < lwlwrray [flom,) + |33\0(o,T>/0 (T = s)w(r = s)ds; <

(Wl ry | flers) + 12lcon©,
where

0= q/ sw(s)ds.
0

Therefore, for any tq > 0,

sup [|z(7)|| < [wl|ri k) | flers) + sup [z]con)O-
T<to T7<to
Now condition (1.4) implies
(Wl gy | flowrs)
1-0

|7|c(0,t0) <

Since the right hand part does not depend on ty, inequality (1.3) follows. Besides,

_ vl
1-0

The existence of solutions is due to the Neumann series

T = ika7
k=0

where V' is the Volterra integral operator defined in (1.1). The lemma is proved. [

3 The main result

First, note that

. 1 o0 zt -1 o 1 e zt
tG.(t) = t27ri . W (2)dz = omi | T (2)dz,
where p 1( ) W (2)
Wz W_(z
T = _7'7 g -1 ; -1 .
(2) = ) S )

For a number b > 0 and Re z > —b, let T(z) be regular and

1
1 — sup —
(3.1) Uy Sup o

/Hﬂw—M@<w
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Then .
tG (B < e —
G- )] < e

/ tsup ||G-(t)||dt < ?/fb/ e Mdt = %
0 T 0

Now Lemma 1.1 implies our main result.

/ \T(iy — B)lldy = e,

Theorem 3.1 Under condition (1.2), for a positive b and all z with Re z > —b, let T,(z) be
regular, and the conditions (3.1) and g, < b hold. Then Equation (1.1) is stable.

To illustrate this result, consider in X the equation

(3.2) x(t) — A(t) /Ot ~=9hy(s)ds = f(t) (h = const > 0, t > 0),

where A(t) is a variable bounded operator in X satisfying

(3.3) IA(t) = ATl < qu|t = 7] (t,7 2 0).

Take K(t,s) = A(t)e *". Then

(3.4) / 1K (L, s) — K(r, )||lds < q]|A(t) — A(7)] /Ot e~shds < q—hl\t 7| (t, 7 > 0).

So (1.2) holds with ¢ = ¢;/h. We also have

K, () = A() /0 T eeteds = ff})l
and ey A
)
Hence,
T(2) = (I = 00 2 = A + W) = A(r)
So
(35) T2 < 1A@] 1+ B~ AR (72 0).

Note that some estimates for resolvents of nonselfadjoint operators can be found in [10]. For
instance, take X = L%(0,1) and

A@M@%=Mt@[:mwwmdmﬂm(yémﬂh

where a(t,.) for all £ > 0 is a scalar measurable function satisfying the conditions

sup a(t,y)| < oo
t>0,y€[0,1]
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and
(3.6) la(t,y) —a(T,y)| < @lt — 7| (y €[0,1]; t,7 > 0).

In addition, the scalar function m(.,.) satisfies the condition

1 1
Novs= 1 [ i) Py ] < o
0 0

That is, we consider the equation

t 1
(3.7)  wult,y) = f(t,y) + a(t,y)/ e‘h(t‘s)/ m(y, y1)u(s, y1)dyrds (0 <y <1;t>0),
0 0

where f(t,.) € L*(0,1). By the Schwarz inequaliy, for any w € L?*(0,1) we get

I(A(t) — A(r)yu]? = / (at, y) — a(r. 1)) / m(y, 2 )wly)dulPdy < (@olt — 7|N)? ]

That is, (3.3) holds with ¢; = ¢o/N,,. So according to (3.4), condition (1.2) is valid with
q = qoN,,/h. Furthermore, clearly,

A < ela,m) = Sup |a(7, y)| Ny (72 0).

Assume that
(3.8) 2¢(a,m) < h
and take b = h/2. Then by (3.5),

c(a,m)
(Vy? + h2/4 = c(a,m))?

[T7(=b+ )| < (r=0).

So we have the inequality v, < ¥, where

D = c(a,m) /°° dy

YT (VR A cla,m))?

< 0Q.

Thus under conditions (3.6) and (3.8), thanks to Theorem 3.1, Equation (3.7) is stable provided
2qoNimthn < h*.
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