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LOCALIZED RADIAL SOLUTIONS FOR A NONLINEAR P-LAPLACIAN

EQUATION IN R
N

SRIDEVI PUDIPEDDI

Abstract. We establish the existence of radial solutions to the p-Laplacian equation ∆pu+f(u) = 0

in RN, where f behaves like |u|q−1u when u is large and f(u) < 0 for small positive u. We show that
for each nonnegative integer n, there is a localized solution u which has exactly n zeros.

1. Introduction

In this paper we look for solutions u : R
N → R of the nonlinear partial differential equation

(1.1) ∇ · (|∇u|p−2∇u) + f(u) = 0,

(1.2) lim
|x|→∞

u(x) = 0,

with 1 < p < N . We also assume f(u) behaves like |u|q−1u where u is large and f(u) < 0 for small
positive u.

Motivation: When p = 2 then (1.1) is

∆u + f(u) = 0.

McLeod, Troy and Weissler studied the radial solutions of the above mentioned equation in [5]. In this
paper they made a remark that their result could be extended to the p-Laplacian. In this paper we
show that their conjecture is true. Also, Castro and Kurepa studied

∆u + g(u) = q(x),

subject to Dirichlet boundary conditions on a ball in R
N, where g is superlinear and q ∈ L

2 in [1]. The
p-Laplacian equation has been studied in different settings. Gazzola, Serrin and Tang [9] have proved
existence of radial solutions to a p-Laplacian equation with Dirichlet and Neumann boundary conditions.
Calzolari, Filippucci and Pucci [8] have proved existence of radial solutions for the p-Laplacian with
weights.

We assume that the function f satisfies the following hypotheses:
(H1) f is an odd locally Lipschitz continuous function,
(H2) f(u) < 0 for 0 < u < ε1 for some ε1 > 0,

(H3) f(u) = |u|q−1u + g(u) with
g(|u|)
|u|q → 0 as |u| → ∞ where 1 < p < q + 1 < Np

N−p
.

From (H2) and (H3) we see that f(u) has at least one positive zero.
(H4) Let α be the least positive zero of f and β be the greatest positive zero of f,
(H5) Let F (u) ≡

∫ u

0
f(s)ds with exactly one positive zero γ, with γ > β,

(H6) If p > 2 we also assume for some ε2 > 0
∫ ε2

0

1
p
√

|F (u)|
du =∞.

We assume that u(x) = u(|x|) and let r = |x|. In this case (1.1)-(1.2) becomes the nonlinear ordinary
differential equation

(1.3)
1

rN−1
(rN−1|u′|p−2u′)′ + f(u) = |u′|p−2

(

(p− 1)u′′ +
N − 1

r
u′

)

+ f(u) = 0
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for 0 < r <∞, with

(1.4) lim
r→∞

u(r) = 0, lim
r→0+

u′(r) = 0.

We would like to find C2 solutions of (1.3)-(1.4) but we will see later that this is not always possible
(see the proof of Lemma 2.1). However multiplying (1.3) by rN−1 and integrating gives

(1.5) rN−1|u′|p−2u′ = −
∫ r

0

tN−1f(u)dt.

Instead of looking for solutions of (1.3)-(1.4) in C2 we look for solutions of (1.4)-(1.5) in C1.

Our Main Theorem is
Let the nonlinearity f have the properties (H1)-(H6), and let n be a nonnegative integer. Then

there is a solution u ∈ C1[0,∞) of (1.4)-(1.5) such that u has exactly n zeros.

The technique used to solve (1.4)-(1.5) is the shooting method. That is, we first solve the initial
value problem

rN−1|u′|p−2u′ = −
∫ r

0

sN−1f(u(s))ds

u(0) = d ≥ 0.

By varying d appropriately, we attempt to find a d such that u(r, d) has exactly n zeros and u satisfies
(1.4). In section 2, we establish the existence of solutions of this initial value problem by the contraction
mapping principle. In section 3, we see that after a rescaling of u we get a family of functions {uλ},
which converges to the solution of

−rN−1|v′|p−2v′ =

∫ r

0

sN−1|v|q−1v ds,

v(0) = 1, v′(0) = 0,

where 1 < p < q + 1 < Np
N−p

. We will then show that v has infinitely many zeros which will imply that

there are solutions, u, with any given number of zeros. In section 4, we prove our Main Theorem.
Note: From (H3) and (H5) we see that

(1.6) F (u) =
1

q + 1
|u|q+1 + G(u),

where G(u) =
∫ u

0 g(s)ds. Dividing both sides by |u|q+1 and taking the limit as |u| → ∞ gives

(1.7) lim
|u|→∞

F (u)

|u|q+1
= lim

|u|→∞

(

1

q + 1
+

G(u)

|u|q+1

)

.

Using L’Hopital’s rule and (H3) we see that

(1.8) lim
u→∞

G(u)

|u|q+1
= 0.

Thus, we have

lim
|u|→∞

F (u)

|u|q+1
=

1

q + 1
.

This implies that F (u) ≥ 0 for |u| sufficiently large, so F (u) ≥ 0 for |u| ≥M . Also since F is continuous
on the compact set [−M, M ] we see that F is bounded below and there is a −L < 0 such that

(1.9) F (u) ≥ −L

for all u.
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Note: When 1 < p ≤ 2, then assumption (H6) also holds. This follows from (H1). The details of
this are as follows: since f is locally Lipschitz and since f(0) = 0 we have

|f(u)| = |f(u)− f(0)| ≤ c|u− 0| = c|u|
for |u| < ε2 for some ε2 > 0, and where c > 0 is a Lipschitz constant for f . Integrating on (0, u) where
0 ≤ u ≤ ε2 gives:

−
∫ u

0

c t dt ≤
∫ u

0

f(t) dt ≤
∫ u

0

c t dt.

Thus,
−cu2

2
≤ F (u) ≤ cu2

2

for |u| < ε2. So, |F (u)| ≤ cu2

2
for |u| ≤ ε2. Thus, |F (u)| 1p ≤

( c

2

)
1
p

u
2
p for |u| < ε2. Hence,

∫ ε2

0

1

|F (u)| 1p
du ≥

(

2

c

)
1
p

∫ ε2

0

1

u
2
p

du =∞, if 1 < p ≤ 2.

2. Existence of solutions of the initial value problem

Now let us consider the initial value problem

(2.1) rN−1|u′|p−2u′ = −
∫ r

0

sN−1f(u(s))ds,

with

(2.2) u(0) = d ≥ 0.

The local existence of solutions of (2.1) and (2.2) is well known, see [6] and [7], so u ∈ C1[0, ε] for
ε > 0 and small.

We define Φp(x) = |x|p−2x for x ∈ R and p > 1. Note that the inverse of Φp(x) is Φp′(x) where
1
p

+ 1
p′

= 1, that is p′ = p
p−1 . Note that both Φp and Φp′ are odd for every p. Now dividing (2.1) by

rN−1, gives

(2.3) |u′|p−2u′ =
−1

rN−1

∫ r

0

sN−1f(u(s))ds.

Using the definition of Φp, we get

Φp(u
′) =

−1

rN−1

∫ r

0

sN−1f(u(s))ds.

Now applying Φp′ on both sides, leads to

(2.4) u′ = −Φp′

(

1

rN−1

∫ r

0

sN−1f(u(s))ds

)

.

Note that if f(d) = 0, then u ≡ d is a solution of (2.1)-(2.2). So, we now assume that

(2.5) f(d) 6= 0.

Now we explain why we aim at solutions of (1.4)-(1.5) instead of solutions of (1.3)-(1.4).

Lemma 2.1.
u ∈ C2[0, ε)

if 1 < p ≤ 2 and
u ∈ C2{r ∈ [0, ε) | u′(r) 6= 0}

if p > 2.
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Proof. Now let us consider equation (2.4) which is

−u′ = Φp′

(

1

rN−1

∫ r

0

tN−1f(u) dt

)

.

Since Φp′(x) = |x|p′−2x, so Φ′
p′ = (p′ − 1)|x|p′−2. Since p′ − 2 =

2− p

p− 1
, we see that Φ′

p′ is continuous

for all x, if 1 < p ≤ 2 and Φ′
p′ is continuous at all x 6= 0, if p > 2.

Let

k(r) =
1

rN−1

∫ r

0

tN−1f(u) dt.

Then using the fact that f is bounded, it is straight forward to show that k is continuous on [0, ε). Now,

k′(r) =

[−(N − 1)

rN

∫ r

0

tN−1 f(u) dt + f(u)

]

so k′ continuous on (0, ε).
Claim: k′ is continuous on [0, ε).
Proof of the Claim: We do this in two steps:

Step 1: We show k′(0) = f(d)
N

.
By definition

k′(0) = lim
r→0

k(r)− k(0)

r − 0

= lim
r→0

1
rN−1

∫ r

0
tN−1 f(u) dt− 0

r − 0

= lim
r→0

∫ r

0 tN−1f(u) dt

rN
.

Applying L’Hopital’s rule gives k′(0) =
f(d)

N
.

Step 2: We show lim
r→0

k′(r) = k′(0) =
f(d)

N
.

Differentiating k(r) and taking the limit as r → 0 gives

lim
r→0

k′(r) = lim
r→0

−(N − 1)

rN

∫ r

0

tN−1 f(u) dt + f(u)

=
−(N − 1)

N
f(d) + f(d)

=
f(d)

N
.

We get the second equality by using L’Hopital’s rule.
Steps 1 and 2 imply that k′ is continuous on [0, ε).
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Finally, by the chain rule and (2.1) we see u′ is differentiable and that

−u′′ = Φ′
p′

(

1

rN−1

∫ r

0

tN−1 f(u) dt

)

k′(r)

= (p′ − 1)

∣

∣

∣

∣

1

rN−1

∫ r

0

tN−1 f(u) dt

∣

∣

∣

∣

p′−2 [−(N − 1)

rN

∫ r

0

tN−1 f(u) dt + f(u)

]

=
1

p− 1

∣

∣

∣

∣

1

rN−1

∫ r

0

tN−1 f(u) dt

∣

∣

∣

∣

2−p

p−1
[−(N − 1)

rN

∫ r

0

tN−1 f(u) dt + f(u)

]

=
1

p− 1
|u′|2−p

[−(N − 1)

rN

∫ r

0

tN−1 f(u) dt + f(u)

]

.

By the previous claim, k′ is continuous. Note that |u′|2−p is continuous for 1 < p ≤ 2 and |u′|2−p is
continuous at all points where u′ 6= 0 for p > 2 and hence the lemma follows. �

Remark: If p > 2, u′(r0) = 0, and f(u(r0)) 6= 0, then u′′(r0) is undefined.
To see this, suppose on the contrary that u′′(r0) is defined. Using the fact that u′(r0) = 0, (2.1)

becomes

−rN−1|u′|p−2u′ =

∫ r

r0

tN−1f(u)dt.

Dividing by (r − r0) and taking the limit as r → r0 gives

lim
r→r0

−rN−1|u′|p−2

(

u′

r − r0

)

= lim
r→r0

∫ r

r0
tN−1f(u(t))dt

(r − r0)
.

Using L’ Hopital’s rule we obtain

0 = −|u′(r0)|p−2u′′(r0) = f(u(r0)).

Thus, |f(u(r0))| = 0 which is a contradiction to our assumption that f(u(r0)) 6= 0. Thus, u′′(r0) is
undefined.

Remark: If p > 2, u′(r0) = 0, and f(u(r0)) = 0, then it is not clear whether u is C2 in a neighborhood
of r0 when u′(r0) = 0. However, for the purposes of this paper a more detailed analysis of this situation
is not needed.

To prove the following two lemmas, let [0, R) be the maximal interval of existence for which u is a
solution for (2.1)-(2.2).

Our goal is to show that u solves (2.1)-(2.2) on [0,∞). So, we aim at proving R =∞, and we will do
this in two lemmas. In the first lemma we show that if R < ∞ then the limits of u and u′ as r → R−

are defined. Once the limits exist then in the second lemma, we establish that R =∞.

Lemma 2.2. Suppose u solves (2.1)-(2.2) on [0, R) with R <∞, then there exists u0, u
′
0 ∈ R such that

lim
r→R−

u(r) = u0,

lim
r→R−

u′(r) = u′
0.

Proof. The following is the energy equation for (2.1)-(2.2)

(2.6) E(r) =
(p− 1)|u′|p

p
+ F (u).

Using (2.1) we see that

(2.7) E′(r) =
−(N − 1)|u′|p

r
≤ 0.
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Note that E′(r) ≤ 0, so E is decreasing, and so E(r) ≤ E(0) which is

(p− 1)|u′|p
p

+ F (u) ≤ E(0) = F (d).

Then by (1.9)
(p− 1)|u′|p

p
− L ≤ F (d).

Further simplification gives

|u′|p ≤ p(F (d) + L)

p− 1
.

Then |u′| ≤M where M =
[

p(F (d)+L)
p−1

]
1
p

. So, by the mean value theorem we have

|u(x)− u(y)| ≤M|x− y|
for all x, y ∈ [0, R). This implies that u has a limit as x → R−. So, there exists a u0 ∈ R such that
lim

r→R−

u(r) = u0. Taking the limit as r → R− on both sides of (2.1), we see that lim
r→R−

u′(r) exists, and

we call it u′
0. �

Lemma 2.3. A solution exists for (2.1)-(2.2) on [0,∞).

Proof. If R =∞, we are done. Suppose R <∞.

Case(i): If u′(R) 6= 0, then by Lemma 2.1, u ∈ C2 in a neighborhood of R, so differentiating (1.5)
and then dividing by |u′|p−2, we have

(p− 1)u′′ +
N − 1

r
u′ + |u′|2−pf(u) = 0.

Since u′(R) 6= 0, then by the standard existence theorem for ordinary differential equations there exists
a solution for the differential equation on [R, R + ε) for some ε > 0 with u(R) = u0 and u′(R) = u′

0.
This contradicts the definition of R, hence, R =∞.

Case(ii): If u′(R) = 0 and f(u(R)) 6= 0, then we can use the contraction mapping principle and
extend our solution u to [R, R + ε) for some ε > 0. This contradicts the definition of R.

Case(iii): If u′(R) = 0 and f(u(R)) = 0 we can extend u ≡ u(R) for r > R. Again this contradicts
the definition of R. �

Lemma 2.4. Let d > β, then |u(r)| < d for 0 < r <∞ and f(d) 6= 0.

Proof. From (2.6)-(2.7) it follows that

(p− 1)|u′|p
p

+ F (u) +

∫ r

0

N − 1

t
|u′|pdt = F (d).

If there exists a r0 > 0 such that |u(r0)| = d, then
∫ r0

0

N − 1

t
|u′|pdt = 0.

This implies |u′| = 0 on [0, r0]. Hence, u(r) ≡ d on [0, r0]. Then by (1.5), f(d) = 0, but this contradicts
our assumption that f(d) 6= 0. �

Lemma 2.5. If z1 < z2, with u(z1) = u(z2) = 0, and |u| > 0 on (z1, z2), then there is exactly one
extremum, m, between (z1, z2) and also |u(m)| > γ.
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Proof. Suppose without loss of generality that u > 0 on (z1, z2). Then there exists an extremum, m,
such that u′(m) = 0. And

F (u(m)) = E(m) ≥ E(z2) =
p− 1

p
|u′(z2)|p ≥ 0.

Thus |u(m)| ≥ γ for any extremum. Suppose there exists consecutive extrema m1 < m2 < m3 such
that at m1 and m3 we have local maxima and m2 is a local minimum with u′ < 0 on (m1, m2) and
u′ > 0 on (m2, m3). We have z1 < m1 < m2 < m3 < z2 and since the energy is decreasing we obtain
E(m2) ≥ E(m3) ≥ E(z2). Since u′(m2) = u′(m3) = 0 and since F (u(z2)) = 0 this gives

(2.8) F (u(m2)) ≥ F (u(m3)) ≥
p− 1

p
|u′(z2)|p ≥ 0.

And by (H5) it follows that u(m2) ≥ γ and u(m3) ≥ γ. Also, since m2 is a local minimum and m3 is a
local maximum we have γ ≤ u(m2) < u(m3). But by (H5), F is increasing for u > γ and this implies
F (u(m2)) < F (u(m3)) which is a contradiction to (2.8). �

Lemma 2.6. If u(r0) = u′(r0) = 0 then u ≡ 0.

Proof. Suppose u(r0) = 0 and u′(r0) = 0. First we will do the easy case, and show that u ≡ 0 on
(r0,∞). Since E′ ≤ 0 and E(r0) = 0 then either E < 0 for r > r0 or E ≡ 0 on (r0, r0 + ε) for some
ε > 0. We will show E ≡ 0 on (r0, r0 + ε). For suppose E < 0 for r > r0. Then we see that |u| > 0 for
r > r0, for if there exists an r1 > r0 such that u(r1) = 0 then

0 ≤ p− 1

p
|u′(r1)|p = E(r1) < 0.

This is a contradiction. So suppose without loss of generality that u > 0 for r > r0. Then for r > r0

and r close to r0 and by (H2), f(u) < 0 so

−rN−1|u′|p−2u′ =

∫ r

r0

tN−1f(u)dt < 0.

Thus u is increasing on (r0, r0 + ε) for some ε > 0. Now since E(r) < 0 on (r0, r0 + ε) therefore

p− 1

p
|u′|p + F (u) < 0,

and so

|u′| <
(

p

p− 1

)
1
p

|F (u)| 1p .

Therefore,

∞ =

∫ u(r0+ε)

0

ds
p
√

|F (s)|
=

∫ r0+ε

r0

|u′|
|F (u)| 1p

dt <

∫ r0+ε

r0

(

p

p− 1

)
1
p

dt <∞.

This is a contradiction to (H6) and to the note at the end of the introduction. Then E ≡ 0 on [r0, r0+ε)
and so

−(N − 1)

r
|u′|p = E′ ≡ 0

on [r0, r0 + ε) and thus u ≡ 0 on [r0, r0 + ε). Denote [r0, r1) as the maximal half open interval for which
u ≡ 0. If r1 < ∞, again we can show that u ≡ 0 on [r1, r1 + ε), but this will contradict the definition
of r1. Thus, E ≡ 0 on (r0,∞). Hence u ≡ 0 on [r0,∞).

Now we will prove that u ≡ 0 on (0, r0). To prove this we use the idea from [2] and do the required
modifications to fit our case. We will use hypothesis (H6). Let

r1 = inf
r>0
{r | u(r) = 0, u′(r) = 0}.
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If r1 = 0 then u ≡ 0 on (0,∞) and then by continuity u ≡ 0 on [0,∞) and we are done. So suppose by
the way of contradiction that r1 > 0. Let r1

2 < r < r1, so 2
r1

> 1
r
. Now consider the derivative of the

energy function given in equation (2.7) and then integrate it between r and r1 to obtain

E(r1, d)− E(r, d) = −
∫ r1

r

(N − 1)|u′|p
r

dt.

Since u(r1) = 0, so F (u(r1)) = 0 and u′(r1) = 0, we get

(2.9)
(p− 1)|u′|p

p
+ F (u) =

∫ r1

r

(N − 1)|u′|p
t

dt.

Now let

w =

∫ r1

r

(N − 1)|u′|p
t

dt.

Differentiating we get

w′ = − (N − 1)|u′(r)|p
r

.

Solving this for |u′|p, gives

|u′(r)|p =
−rw′

N − 1
.

Substituting this in (2.9) gives

(2.10)
−(p− 1)rw′

p(N − 1)
+ F (u) = w

and rearranging terms, we get
(p− 1)rw′

p(N − 1)
+ w = F (u).

Letting η = (N−1)p
p−1 then we have

w′ +
ηw

r
=

ηF (u)

r
.

Multiplying both sides by rη, gives

(rηw)′ = ηrη−1F (u).

Integrating between r and r1 for r sufficiently close to r1, gives

rη
1w(r1)− rηw =

∫ r1

r

ηtη−1F (u)dt.

Since w(r1) = 0, and by (H2), F (u(t)) ≤ 0 for t sufficiently close to r1 we obtain

w =
−η

rη

∫ r1

r

tη−1F (u(t))dt =
η

rη

∫ r1

r

tη−1|F (u(t))|dt.

Now plugging w and w′ in (2.10) we have

(p− 1)|u′|p
p

+ F (u) =
η

rη

∫ r1

r

tη−1|F (u(t))|dt.

Solving this for |u′|p gives (for r close to r1)

(2.11) |u′|p =
p

p− 1

[

η

rη

∫ r1

r

tη−1|F (u(t))|dt + |F (u(r))|
]

.

Observe next that for r < r1 and r sufficiently close to r1 that u′(r) 6= 0; for if there exists r2 < r1 such
that u′(r2) = 0 then from (2.11), u ≡ 0 on (r2, r1), this contradicts the definition of r1. Hence without
loss of generality assume that u′(r) < 0 for r < r1 and r sufficiently close to r1. Now for r < t < r1, u
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is decreasing so u(r) > u(t) > 0 which implies F (u(r)) < F (u(t)) < 0 and so |F (u(r))| > |F (u(t))| > 0,
which leads to the following

|u′|p ≤ p

p− 1

[

|F (u(r))| + η

rη
|F (u(r))|

∫ r1

r

tη−1dt

]

=
p

p− 1

[

|F (u(r))| + η

rη

|F (u(r))|
η

(rη
1 − rη)

]

=
p|F (u(r))|rη

1

(p− 1)rη

≤ p2η|F (u(r))|
p− 1

.

The last inequality follows as 2
r1

> 1
r
, so

|u′|p ≤ p2η|F (u(r))|
p− 1

.

Solving this for |u′|, we get

|u′| ≤ p

√

p2η

p− 1
p
√

|F (u(r))|.

Dividing by p
√

|F (u(r))|, integrating on (r, r1) and using (H6) and the remark following (H6) we obtain

∞ =

∫ u(r)

0

1
p
√

|F (s)|
ds =

∫ r1

r

|u′|
p
√

|F (u)|
dt

≤ p

√

p2η

p− 1

∫ r1

r

dt

= p

√

p2η

p− 1
(r1 − r)

<∞.

Thus we get a contradiction and so r1 = 0 and hence u ≡ 0. �

3. Solutions with a prescribed number of zeros

In this section we show that there are solutions for (2.1)-(2.2) with a large number of zeros. For this
we study the behavior of solutions as d grows large. We consider the idea from [5], page 371 and we
do the required modifications to fit our case. Given λ > 0, let u(r) be the solution of (2.1)-(2.2) with

d = λ
p

q−p+1 . Define

(3.1) uλ = λ
−p

q−p+1 u(
r

λ
).

Then uλ satisfies

(3.2) rN−1|u′
λ|p−2u′

λ = −
∫ r

0

sN−1λ
−pq

q−p+1 f(λ
p

q−p+1 uλ(s))ds,

and

(3.3) uλ(0) = 1.
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Lemma 3.1. As λ→∞, uλ → v, uniformly on compact subsets of [0,∞), where v is a solution of

(3.4) rN−1|v′|p−2v′ = −
∫ r

0

sN−1|v(s)|q−1v(s)ds,

(3.5) v(0) = 1.

Proof. Let

E(r, λ) =
(p− 1)|u′

λ|p
p

+ λ
−pq

q−p+1 F (λ
p

q−p+1 uλ)

then
∂

∂r
E(r, λ) ≡ E′(r, λ) = − (N − 1)|u′

λ|p
r

.

This implies E(r, λ) is decreasing in r. So for λ > 0

E(r, λ) ≤ E(0, λ)

= λ
−pq

q−p+1 F (λ
p

q−p+1 )

Using (1.6) to simplify the right hand side, gives the following:

λ
−p(q+1)
q−p+1 F (λ

p

q−p+1 ) = λ
−p(q+1)
q−p+1

λ
p(q+1)
q−p+1

q + 1
+ λ

−p(q+1)
q−p+1 G(λ

p

q−p+1 )

(3.6) λ
−p(q+1)
q−p+1 F (λ

p

q−p+1 ) =
1

q + 1
+ λ

−p(q+1)
q−p+1 G(λ

p

q−p+1 ).

Then by (1.8)

(3.7)
G(λ

p

q−p+1 )

(λ
p

q−p+1 )q+1
→ 0,

as λ→∞. Thus, E(r, λ) < 2
q+1 for large λ. Moreover E(r, λ) is bounded above independently of r and

for large λ.

The usual trick to show the convergence of uλ is to use Arzela-Ascoli’s Theorem. For this it suffices
to show uλ and u′

λ are bounded.

Claim: uλ(r) and u′
λ(r) are bounded.

Proof of Claim: By Lemma 2.4, |u(r)| ≤ d = λ
p

q−p+1 . Thus, by (3.1), |uλ(r)| ≤ 1. Also, since
E(r, λ) ≤ E(0, λ) we have

(p− 1)|u′
λ|p

p
+ λ

−pq
q−p+1 F (λ

p
q−p+1 uλ) ≤ λ

−pq
q−p+1 F (λ

p
q−p+1 ).

Since F (u) ≥ −L (proved in introduction) then we get

(p− 1)|u′
λ|p

p
≤ 1

q + 1
+ λ

−p(q+1)
q−p+1 G(λ

p

q−p+1 ) + Lλ
−pq

q−p+1 .

By (3.7) we see that

(3.8)
(p− 1)|u′

λ|p
p

≤ 2

q + 1

for large λ. Hence, |u′
λ| is bounded independent of r and for large λ. By Arzela-Ascoli’s theorem and

by a standard diagonal argument there is a subsequence of uλ(r), denoted by uλk
(r), such that

lim
k→∞

uλk
(r) = v(r)
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uniformly on compact subsets of R and v is continuous. End of proof of Claim.

We have

(3.9) rN−1|u′
λ|p−2u′

λ = −
∫ r

0

sN−1λ
−pq

q−p+1 f(λ
p

q−p+1 uλ(s))ds

rN−1|u′
λ|p−2u′

λ = −
∫ r

0

sN−1
[

|uλ|q−1uλ + λ
−pq

q−p+1 g(λ
p

q−p+1 uλ(s))
]

ds

also,

(3.10) u′
λk

= −Φp′

(

1

rN−1

∫ r

0

sN−1

[

|uλk
|q−1uλk

+ λ
−pq

q−p+1

k g(λ
p

q−p+1

k )uλk

]

ds

)

.

Since uλk
(r)→ v(r) uniformly on compact subsets of R and using (H3), gives

lim
k→∞

u′
λk

= −Φp′

(

1

rN−1

∫ r

0

sN−1|v|q−1vds

)

≡ φ.

Hence, u′
λk
→ φ (pointwise) and since v is continuous it follows that φ is continuous. We also have

uλk
= 1 +

∫ r

0

u′
λk

ds.

Since uλk
→ v uniformly, and u′

λk
→ φ pointwise, and by (3.8), u′

λk
is uniformly bounded say by, M,

applying dominated convergence theorem we get

v(r) = 1 +

∫ r

0

φ(s) ds.

So,

v′ = φ.

Thus, from (3.10) we see that

v′ = −Φp′

(

1

rN−1

∫ r

0

sN−1 |v|q−1 v ds

)

.

Hence,

−rN−1|v′|p−2v′ =

∫ r

0

sN−1|v|q−1v ds.

Note that v(0) = 1, v′(0) = 0. Hence, v ∈ C1[0,∞) and v satisfies (3.4)-(3.5) for 1 < p < q + 1 <
Np

N−p
. �

As uλk
converges to v uniformly on compact subsets of R, so now we look for zeros of v. This is done

in two steps. In step one we show v has a zero and in step two we show v has infinitely many zeros.
The following lemma is technical and we use the result in the subsequent lemma.

Lemma 3.2. Let v solve (3.4)-(3.5). If 1 < p < q + 1 < Np
N−p

and if v > 0, then

∫ ∞

0

sN−1vq+1ds <∞.
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Proof. By Lemma 3.1, we know that v is continuous and hence bounded on any compact set so to prove
this lemma it is sufficient to show

∫ ∞

1 sN−1vq+1ds <∞. We have

−rN−1|v′|p−2v′ =

∫ r

0

sN−1|v|q−1v ds

and v > 0. So v′ < 0 and so v is decreasing. Therefore,

rN−1|v′|p−1 =

∫ r

0

sN−1vqds

≥ v(r)q

∫ r

0

sN−1ds

=
vqrN

N
.

Thus,

|v′|p−1 ≥ vqr

N

−v′ = |v′| ≥ r
1

p−1 v
q

p−1

N
1

p−1

−v′

v
q

p−1

≥ r
1

p−1

N
1

p−1

.

Integrating this on (0, r), gives
[

−v
−q

p−1+1

−q
p−1 + 1

]r

0

≥
∫ r

0

s
1

p−1

N
1

p−1

ds

further simplification gives
[

(p− 1)v
p−q−1

p−1

q − p + 1

]r

0

≥ (p− 1)r
p

p−1

pN
1

p−1

.

Since by assumption q−p+1
p−1 > 0, multiplying both sides with q−p+1

p−1 leads to

[v
p−1−q

p−1 ]r0 ≥
(q − p + 1)r

p
p−1

pN
1

p−1

.

Thus,

v(r)
p−1−q

p−1 − 1 ≥ C r
p

p−1 ,

where C =
q − p + 1

pN
1

p−1

. So,

1

v
q+1−p

p−1

= v
p−1−q

p−1 ≥ 1 + C r
p

p−1 ≥ C r
p

p−1 .

Thus,

v
q+1−p

p−1 ≤ C1 r
−p

p−1 .

So,

v ≤ C1 r
−p

q+1−p .

Thus we see that
∫ ∞

1

sN−1vq+1ds ≤ Cq+1
1

∫ ∞

1

sN−1− p(q+1)
q+1−p ds <∞.

The last inequality is due to our assumption that 1 < p < q + 1 < Np
N−p

. �

Lemma 3.3. Let v be a solution of (3.4)-(3.5). Then v has a zero.
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Proof. To prove this lemma, we use an idea of paper [3]. Suppose v > 0 for all r, and consider integrating

(rN−1vv′|v′|p−2)′ = rN−1|v′|p − rN−1vq+1

on (0, r), which leads to

rN−1vv′|v′|p−2 =

∫ r

0

sN−1|v′|pds−
∫ r

0

sN−1 vq+1 ds.

After rearranging terms, we have

(3.11) −rN−1vv′|v′|p−2 +

∫ r

0

sN−1|v′|p ds =

∫ r

0

sN−1 vq+1 ds.

Since v > 0, v′ < 0, and since p < q + 1, it follows from (3.11) and Lemma 3.2 that

(3.12)

∫ ∞

0

sN−1|v′|p ≤
∫ ∞

0

sN−1vq+1ds <∞.

Then using (3.12) in (3.11) and taking the limit as r →∞, gives

(3.13) − lim
r→∞

rN−1vv′|v′|p−2 exists and is finite.

Now integrating the following identity
(

(p− 1) rN |v′|p
p

+
rNvq+1

q + 1

)′

=
−(N − p)|v′|p rN−1

p
+

NrN−1 vq+1

q + 1

on (0, r), gives

(3.14)

(

(p− 1) rN |v′|p
p

+
rNvq+1

q + 1

)

=

∫ r

0

−(N − p)|v′|psN−1

p
ds +

∫ r

0

NsN−1vq+1

q + 1
ds.

Then by (3.12), both the integrals on the right hand side of (3.14) converge, hence

lim
r→∞

(p− 1) rN |v′|p
p

+
rNvq+1

q + 1

exists. Denote

h(r) =
(p− 1) rN |v′|p

p
+

rNvq+1

q + 1
.

We have shown that lim
r→∞

h(r) = l for some l ≥ 0. Then by (3.12),

∫ ∞

0

h(s)

s
ds <∞.

Thus, it follows that l = 0, so that

lim
r→∞

(p− 1) rN |v′|p
p

+
rNvq+1

q + 1
= 0.

Then taking the limit as r →∞ in (3.14) gives

0 =

∫ ∞

0

−(N − p)|v′|psN−1

p
ds +

∫ ∞

0

NsN−1vq+1

q + 1
ds.

So,
∫ ∞

0

sN−1|v′|pds =
Np

(N − p)(q + 1)

∫ ∞

0

sN−1vq+1ds.

But by (3.12) we have
∫ ∞

0

sN−1|v′|p ≤
∫ ∞

0

sN−1vq+1ds.
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So it follows that
Np

(N − p)(q + 1)
≤ 1.

This contradicts our assumption that q + 1 < Np
N−p

. So, v is not positive for all r. Hence, v has a

zero. �

Lemma 3.4. Let v be the solution of (3.4)-(3.5). Then v has infinitely many zeros.

Proof. We have from the above lemma that there exists a z1 such that v > 0 on [0, z1) and v(z1) = 0.
So after z1 we have two cases, Case(i): v has a first local minimum call it m1 > z1, or Case (ii):
v′ < 0 for all r > z1. We want to show that the Case(ii) is not possible. Suppose v′ < 0 for all r > 0.
Then

E ≡ (p− 1)|v′|p
p

+
1

q + 1
|v|q+1 ≥ 0

and E′ ≤ 0 so
1

q + 1
|v|q+1 ≤ E(r, d) ≤ E(0, d) =

1

q + 1
.

Thus |v| ≤ 1. So v is bounded and v′ < 0 and thus lim
r→∞

v = J. Also since E is bounded and since

E′ ≤ 0, so lim
r→∞

E(r, d) exists and thus lim
r→∞

v′(r) exists.

Claim: lim
r→∞

v′(r) = 0.

Proof of Claim: Suppose not, which means −v′(r) > m > 0 for large r. Then integrating from
(0, r), gives

−v(r) + v(0) > mr.

Taking the limit as r → ∞, we see that −v is unbounded, which contradicts our assumption that v is
bounded. So, we have the claim. End of proof of Claim.

Consider dividing (3.4) by rN and then taking the limit as r→∞ and using the above claim, gives

0 = lim
r→∞

−
∫ r

0 tN−1|v|q−1v dt

rN
.

Applying L’Hopital’s rule on right hand side and using lim
r→∞

v(r) = J < 0 gives

0 =
−|J |q−1J

N
.

This contradicts our assumption that J < 0. So Case(ii) is not possible.
Hence, v has a first local minimum call it m1, where m1 > z1, and let v1 = v(m1) < 0. Now v satisfies

rN−1|v′|p−2v′ = −
∫ r

m1

tN−1|v|q−1v dt

and

v(m1) = v1.

We may now use the same argument as in Lemma 3.3 to show that v has a second zero at z2 > z1.
Proceeding inductively, we can show that v has infinitely many zeros. �

As uλ → v on any fixed compact set when λ is large, this means that the graph of uλ is uniformly
close to the graph of v. Since v has infinitely many zeros, suppose the first ρ zeros of v are on [0, K]
for K > 0. By uniform convergence on compact subsets uλ will have at least ρ zeros on [0, K + 1] for

large λ. By (3.1), uλ(r) = λ
−p

q−p+1 u
(

r
λ

)

, so u will have at least ρ zeros on [0,∞). So now we are ready
to shift gears from v to u.
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The following lemma is technical and we mimic the idea from [4] and we do necessary changes to fit
our case.

Lemma 3.5. Let u(r, d) be the solution of (2.1)-(2.2). Let us suppose that u(r, d∗) has exactly k zeros
and u(r, d∗) → 0 as r → ∞. If |d − d∗| is sufficiently small, then u(r, d) has at most k + 1 zeros on
[0,∞).

Proof. Our goal is to show that for d close to d∗, u(., d) has at most (k + 1) zeros in [0,∞). So we
suppose there is a sequence of values dj converging to d∗ and such that u(., dj) has at least (k+1) zeros
on [0,∞) (if there is no such sequence, we are done). We write uj(r) = u(r, dj) and we denote by zj

the (k + 1)st zero of uj, counting from the smallest. We will show that if uj has a (k + 2)nd zero, then
u(r, d∗) is going to have a (k + 1)st zero, which is a contradiction.

First we show that u(r, dj) → u(r, d∗) and u′(r, dj) → u′(r, d∗) on compact subsets of [0,∞) as
dj → d∗ and j →∞. We prove this in two claims.

Claim 1: If lim
j→∞

dj = d∗, then |u(r, dj)| ≤M1 and |u′(r, dj)| ≤M2 for some M1, M2 > 0 for all j.

Proof of Claim 1: We use the fact from (2.6) and (2.7) that energy is decreasing and hence E is
bounded by E(0, dj) = F (dj), we can write the energy at r as the following

E(r, dj) =
(p− 1)|u′(r, dj)|p

p
+ F (u(r, dj)) ≤ F (dj) ≤ F (d∗) + 1

for large j. Also, by (1.9), F (u) ≥ −L thus

(p− 1)|u′(r, dj)|p
p

≤ F (d∗) + 1 + L ≤ C

for large j and for some C > 0. Thus, for j large, |u′(r, dj)| ≤ M2 for some M2 > 0. Also, note that
since lim

r→∞
E(r, d∗) exists and since lim

r→∞
u(r, d∗) = 0 it follows that

F (d∗) = E(0, d∗) > lim
r→∞

E(r, d∗) ≥ 0.

Thus, F (d∗) > 0. Hence by (H4) and (H5), d∗ > γ. By lemma 2.4, |u(r, dj)| ≤ dj and since lim
j→∞

dj = d∗

we have |u(r, dj)| ≤ d∗ + 1 = M1 for large j. End of proof of Claim 1.

Claim 2: u(r, dj) → u(r, d∗) and u′(r, dj) → u′(r, d∗) uniformly on compact subsets of [0,∞) as
j →∞.

Proof of Claim 2: By Claim 1, |u(r, dj)| ≤ M1 and |u′(r, dj)| ≤ M2. So the u(r, dj) are bounded
and equicontinuous. Then by Arzela-Ascoli’s theorem we have a subsequence (still denoted by dj) such
that u(r, dj) → u(r, d∗) uniformly on compact subsets of [0,∞) as j → ∞. Then by (2.1) and since
uj → u uniformly on compact subsets of [0,∞) we have

lim
j→∞

|u′
j |p−2u′

j = lim
j→∞

−1

rN−1

∫ r

0

sN−1f(uj)ds

=
−1

rN−1

∫ r

0

sN−1f(u)ds.

Therefore, |u′
j |p−2u′

j converges uniformly on compact subsets of [0,∞). Thus, u′
j(r) converges uniformly

say to g(r). We now show that g(r) = u′(r, d∗). Integrating on (0, r), gives

lim
j→∞

∫ r

0

u′
j(t)dt =

∫ r

0

g(t)dt

lim
j→∞

(uj(r) − uj(0)) =

∫ r

0

g(t)dt.
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Since uj(r, dj)→ u(r, d∗), we get

u(r, d∗)− u(0, d∗) =

∫ r

0

g(t)dt.

Differentiating this we get u′(r, d∗) = g(r) = lim
j→∞

u′
j . End of proof of Claim 2.

Let tj be the (k + 2)nd zero of uj . Then there exists an lj such that zj < lj < tj and lj is a local
extremum. So by Lemma 2.6

F (u(lj)) = E(lj , dj) ≥ E(tj , dj) =
p− 1

p
|u′(tj)|p > 0.

Then by (H5), |u(lj)| > γ. Now let bj be the smallest number greater than zj such that |uj(bj)| = α.
Let aj be the smallest number greater than zj such that |uj(aj)| = α

2 . Let mj be the local extrema
between the kth and (k +1)st zeros of uj . So we have mj < zj < aj < bj. Since the energy is decreasing
we have E(zj , dj) ≤ E(mj , dj). Since u′

j(mj) = 0, uj(zj) = 0, F (uj(zj)) = 0, and by Lemma 2.6, we
have

0 <
(p− 1)|u′

j(zj)|p
p

≤ F (uj(mj)).

Thus, |uj(mj)| > γ. So there exists a largest number qj less than zj such that |uj(qj)| = γ. Note
mj < qj < zj < aj < bj < lj < tj .

Claim 3: bj−aj ≥ K1 > 0, where K1 is independent of j for sufficiently large j. Also, ξ2−ξ1 ≥ K2 > 0
where ξ1 and ξ2 are two consecutive zeros of uj.

Proof of Claim 3: Since the energy is decreasing and since dj → d∗ for j large we have

p− 1

p
|u′

j|p + F (uj) ≤ F (dj) ≤ F (d∗) + 1

for large j. Rewriting this inequality gives

(3.15)
|u′

j |
(F (d∗) + 1− F (uj))

1
p

≤
(

p

p− 1

)
1
p

.

So integrate (3.15) on (aj , bj) to get

∫ α

α
2

dt

(F (d∗) + 1− F (t))
1
p

=

∫ bj

aj

|u′
j |

(F (d∗) + 1− F (uj))
1
p

ds ≤
(

p

p− 1

)
1
p

(bj − aj).

So letting

(3.16) K1 ≡
(

p− 1

p

)
1
p

∫ α

α
2

dt

(F (d∗) + 1− F (t))
1
p

we see that K1 ≤ bj − aj for all j.
Turning to the second part of the claim, using Lemma 2.5, let m be the extremum between ξ1 and

ξ2. Let us integrate (3.15) on (ξ1, m) and using (3.15) and that |u(m)| > γ (by Lemma 2.5) gives

(

p− 1

p

)
1
p

∫ γ

0

dt

(F (d∗) + 1− F (t))
1
p

≤
(

p− 1

p

)
1
p

∫ |u(m)|

0

dt

(F (d∗) + 1− F (t))
1
p

=

(

p− 1

p

)
1
p

∫ m

ξ1

|u′
j |

(F (d∗) + 1− F (t))
1
p

ds

≤ m− ξ1.
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Similarly on [m, ξ2] we have,

(

p− 1

p

)
1
p

∫ γ

0

dt

(F (d∗) + 1− F (t))
1
p

≤ ξ2 −m.

So,

(3.17) K2 ≡ 2

(

p− 1

p

)
1
p

∫ γ

0

dt

(F (d∗) + 1− F (t))
1
p

≤ ξ2 − ξ1.

End of proof of Claim 3.

In particular uj → u uniformly on

[

0, y∗ +
K2

2

]

where y∗ is the kth zero of u(r, d∗). Along with

Lemma 2.6 and the previous claim, it follows that for large j, uj has exactly k zeros on

[

0, y∗ +
K2

2

]

.

Let yj be the kth zero of uj, then by Claim 2, uj(r, dj) → u(r, d∗) as j → ∞ on

[

0, y∗ +
K2

2

]

, so

yj → y∗ as j →∞.

Claim 4: zj →∞ as j →∞.
Proof of Claim 4: Suppose not, that is if |zj | ≤ A then there exists a subsequence jk such that

zjk
→ z and u(r, djk

)→ u(r, d∗) on [0, A] which in turn implies

0 = u(zjk
, djk

)→ u(z, d∗).

Since zjk
> yjk

and yjk
→ y∗ as j → ∞, then z ≥ y∗. On the other hand, u(r, d∗) has exactly k zeros,

therefore z = y∗. Thus uj(yj) = 0 = uj(zj). By the mean value theorem, u′
j(wj) = 0 for some wj with

yj ≤ wj ≤ zj . Since uj → u uniformly on [0, A] and yj → y∗ ← zj, so taking the limit gives u′(y∗) = 0,
but by Lemma 2.6, this implies u ≡ 0. This is a contradiction to our assumption that u has exactly k
zeros. End of Claim 4.

Now let us show that the qj are bounded as j →∞. Since uj → u and u′
j → u′ uniformly on compact

subsets of [y∗, m∗ + 1], where m∗ is the local extremum of u(r, d∗) that occurs after y∗, we see that u′
j

must be zero on [y∗, m∗ + 1] for j large. Thus there exists an mj with yj < mj < m∗ + 1 such that
u′

j(mj) = 0.
Next, we estimate qj −mj on [mj , qj ], since u ≥ γ > β on [mj , qj ] so we have f(u) ≥ C > 0. So

−rN−1|u′
j|p−2u′

j = −
∫ r

mj

(rn−1|u′
j|p−2u′

j)
′ dt =

∫ r

mj

rN−1f(uj) dt ≥
C(rN −mN

j )

N
≥ C

N
(r −mj)r

N−1.

So we have

−|u′
j|p−2u′

j ≥
C

N
(r −mj).

Further simplification and integrating on [mj , qj ] gives

dj − γ ≥ u(mj)− γ =

∫ qj

mj

u′
j dt ≥

(

C

N

)
1

p−1
∫ qj

mj

(r −mj)
1

p−1 dt.

Now using Lemma 2.4 and the fact that j is large gives

d∗ + 1 ≥ dj − γ ≥
(

C

N

)
1

p−1
(

p− 1

p

)

(qj −mj)
p

p−1

for large j. As we saw in a previous paragraph that mj are bounded by m∗ + 1, it follows that qj are
bounded.

Claim 5: For sufficiently large j, |uj(r)| < γ for all r > zj .
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Proof of Claim 5: Suppose on the contrary that there is a smallest cj > zj such that |uj(cj)| = γ.
Thus, on (zj , cj) we have 0 < |uj | < γ. Hence, F (uj) ≤ 0 on (zj , cj). So there exists an aj and a bj

such that zj < aj < bj < cj with |uj(aj)| =
α

2
, |uj(bj)| = α. Also, F is decreasing on [α

2 , α], so that

F (α
2 ) ≥ F (uj) for all α

2 ≤ uj ≤ α.
Now integrating the following identity on (qj , cj)

(r
p(N−1)

p−1 E)′ =
p(N − 1)F (uj(r))r

Np−2p+1
p−1

p− 1

and since |uj(qj)| = |uj(cj)| = γ and F (uj(qj)) = 0 = F (uj(cj)), gives

(3.18) 0 ≤
c

p(N−1)
p−1

j |u′
j(cj)|p(p− 1)

p
=

q
p(N−1)

p−1

j |u′
j(qj)|p(p− 1)

p
+

∫ cj

qj

p(N − 1)F (uj(r))t
Np−2p+1

p−1

p− 1
dt.

Since qj is bounded, for an appropriate subsequence qj → q∗ where u(q∗, d∗) = γ and since u′
j → u′

uniformly on [0, q∗ + 1], then u′
j(qj)→ u′(q∗, d∗). Hence

(3.19) lim
j→∞

inf

∫ cj

qj

t
(N−2)p+1

p−1 F (uj(r))dt ≥ − (q∗)
p(N−1)

p−1 |u′(q∗, d∗)|p(p− 1)

p
> −∞.

Also, since zj →∞ and since zj < aj < bj , so aj →∞.
On other hand, by Claim 3

∫ cj

qj

t
(N−2)p+1

p−1 F (uj(t))dt ≤
∫ bj

aj

t
(N−2)p+1

p−1 F (uj(t))dt

≤ F
(α

2

)

(b
(N−1)p

p−1

j − a
(N−1)p

p−1

j )

(

p− 1

(N − 1)p

)

≤ F
(α

2

)

a
(N−1)p

p−1 −1

j (bj − aj)

(

p− 1

(N − 1)p

)

≤ K1F
(α

2

)

a
(N−1)p

p−1 −1

j

(

p− 1

(N − 1)p

)

→ −∞

as j → ∞. (We obtain the last inequality by using K1 ≤ (bj − aj) from Claim 3 and also F
(

α
2

)

< 0.)
Thus,

∫ cj

qj

t
(N−2)p+1

p−1 F (uj(t))dt→ −∞,

but this is a contradiction to (3.19). Hence, |uj(r)| < γ for large j and for r > zj . End of proof of
Claim 5.

Now suppose uj has another zero, call it tj > zj. Then there is a local extrema for uj at a value sj

such that zj < sj < tj. Since the energy is decreasing, we have E(tj) ≤ E(sj). By Lemmas 2.5 and 2.6
we have

0 <
(p− 1)|u′

j(tj)|p
p

≤ F (uj(sj)).

Thus |uj(sj)| > γ (by (H5)). By Claim 5, for sufficiently large j and for all r > zj we have |uj(r)| < γ.
In particular |uj(sj)| < γ, a contradiction. Hence, there is no zero of uj larger than zj. �
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4. Proof of Main Theorem

To prove the Main Theorem we construct the following sets such that u has any prescribed number
of zeros.

Let Sk = {d ≥ γ | u(r, d) has exactly k zeros for r ≥ 0 } and let dk = supSk.

We will then show that Sk for k ≥ 0 is nonempty and bounded above.

Let S0 = { d ≥ γ | u(r, d) > 0 for all r ≥ 0 }.
Claim: γ ∈ S0.
Proof of Claim: If d = γ, then u(0) = γ > 0. So the energy at r = 0 is

E(0, γ) =
p− 1

p
|u′(0)|p + F (u(0)) = 0.

So E < 0 for r > 0; for if there is an r1 > 0 such that E(r1, γ) = 0 then E ≡ 0 on [0, r1], this implies
u ≡ 0 on [0, r1], but u(0) = γ > 0. Thus E < 0 for r > 0. If there exists an r2 such that u(r2) = 0 then

E(r2, d) =
p− 1

p
|u′(r2)|p ≥ 0

contradicting E < 0 for all r > 0. Therefore, u(r, γ) > 0 for all r ≥ 0. Hence γ ∈ S0. End of proof of
Claim.

Lemma 4.1. S0 6= ∅ and S0 is bounded above.

Proof. S0 is nonempty by the above Claim and S0 is bounded above by the Lemmas 3.1 and 3.3. �

Let d0 = supS0. Since d > γ for all d ∈ S0 so d0 > γ > 0.

Now our goal is to show that u(r, d0) > 0 and that u(r, d0) satisfies (1.4). As d0 is the supremum of
S0 we expect u(r, d0) > 0. We prove this in two lemmas. In the first lemma we show u(r, d0) ≥ 0 and
in the second lemma we show u(r, d0) > 0.

Lemma 4.2. u(r, d0) ≥ 0 for all r ≥ 0.

Proof. If u(r0, d0) < 0 for some r0, then by continuity with respect to initial conditions on compact sets
for d close to d0 and d < d0 , we have u(r0, d) < 0. This contradicts the definition of S0. �

Lemma 4.3. u(r, d0) > 0.

Proof. Suppose there exists an r1 such that u(r1, d0) = 0. By Lemma 4.2, we know u(r, d0) ≥ 0. So
u(r, d0) has a minimum at r1 and also since u ∈ C1[0,∞), this implies u′(r1) = 0. Then by Lemma 2.6,
u ≡ 0 which is a contradiction to u(0) = d0 6= 0.

�

Let d > d0. Then u(r, d) has at least one zero, otherwise d would be in S0 which it is not. Moreover,
as d approaches d0 from above, we expect that the first zero of u, z1(d), should go to infinity. This is
shown in the following lemma.

Lemma 4.4. lim
d→d

+
0

z1(d) =∞.

Proof. Suppose lim
d→d

+
0

z1(d) = zd0 <∞. Since u(r, d)→ u(r, d0) uniformly on compact subsets as d→ d0,

this implies u(zd0) = lim
d→d0

u(z1(d), d), and which in turn implies u(zd0 , d0) = 0. However, by Lemma

4.3, u(r, d0) > 0, which is a contradiction. �
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Next we want to show the energy E(r, d0) ≥ 0. This is crucial, as if E(r, d0) < 0 at some point,
say n1, then u will not have any zeros after n1, and also u will not decay as r → ∞. So we have the
following lemma.

Lemma 4.5. E(r, d0) ≥ 0 for all r ≥ 0.

Proof. If E(r0, d0) < 0 then by continuity E(r0, d) < 0 for d > d0 and d close to d0. On other hand,
since d > d0 then u(r, d) has a first zero, z1(d), (F (u(z1(d))) = 0) so the energy is

E(z1(d), d) =
p− 1

p
|u′|p ≥ 0.

But since E′ ≤ 0, we must have that z1(d) ≤ r0. This contradicts Lemma 4.4. Hence the result
follows. �

Lemma 4.6. u′(r, d0) < 0 on (0,∞).

Proof. Since u(0) = d and u′(0) = 0, first we want to show that u is decreasing on (0, ε) for some ε > 0.
Dividing both sides of (2.1) by rN and then taking the limit as r → 0, and applying L’Hopital’s rule,
gives

lim
r→0
|u′|p−2

(

u′

r

)

= lim
r→0

−f(u(r))

N
=
−f(u(0))

N
=
−f(d0)

N
< 0.

The last inequality is true since by the definition of S0, we have that d0 > γ and then by (H5), γ > β
where β is the largest zero of f. Thus, f(d0) > 0. So, u′ < 0 on (0, ε) for some ε > 0.

Let [0, Rd0] be the maximal interval so that u′ < 0 on (0, Rd0). If Rd0 = ∞, then u′ < 0 on (0,∞)
and we are done. Otherwise Rd0 <∞ and u′(Rd0) = 0.

Claim: 0 < u(Rd0) ≤ β.
Proof of Claim: Suppose f(u(Rd0)) > 0 and let us look at the following identity:

−
∫ Rd0

r

(rN−1|u′|p−2u′)′ =

∫ Rd0

r

tN−1f(u)dt.

Using u′(Rd0) = 0, this gives

rN−1|u′|p−2u′ =

∫ Rd0

r

tN−1f(u)dt > 0

for r < Rd0 and r close to Rd0 . We get the last inequality since f(u(Rd0)) > 0, and by continuity,
f(u) > 0 for r near Rd0 . This implies u′ > 0 on (r, Rd0) for r close to Rd0 . But by assumption u′ < 0
on (0, Rd0). Hence, f(u(Rd0)) ≤ 0 and since we also know u(Rd0) > 0, this implies 0 < u(Rd0) ≤ β.
End of proof of Claim.

The previous claim implies F (u(Rd0)) < 0. Since u′(Rd0) = 0 we obtain

E(Rd0 , d0) = F (u(Rd0)) < 0,

which is a contradiction to Lemma 4.5. Hence, u′(r, d0) < 0 for all r > 0. �

Since we now know that u(r, d0) > 0 and u′(r, d0) < 0, it follows that lim
r→∞

u(r, d0) exists.

Lemma 4.7. lim
r→∞

u(r, d0) = U ≥ 0 where U is some nonnegative zero of f .
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Proof. Since E is decreasing and bounded below we see that lim
r→∞

E(r, d0) = E. Rewriting (2.6) we

obtain:
p− 1

p
|u′|p = E(r, d0)− F (u(r, d0)).

The limit of both terms on the right exists and so we have

lim
r→∞

(p− 1)|u′|p
p

= E − F (U).

Thus, lim
r→∞

|u′| exists.

Claim 1: lim
r→∞

|u′| = 0.

Proof of Claim 1: Suppose not, then lim
r→∞

|u′| = L > 0. So |u′(r)| > L
2 > 0 if r ≥ R . Suppose

|u′(r)| = −u′(r), now integrating |u′(r)| > L
2 > 0, gives

∫ r

R

−u′(r)dt >

∫ r

R

L
2

dt

for r ≥ R, this implies

d0 ≥ u(R) ≥ u(R)− u(r) ≥ L
2

(r −R)→∞,

which is a contradiction. Hence, lim
r→∞

|u′| = 0 and so lim
r→∞

u′ = 0. End of proof of Claim 1.

Dividing both sides of (2.1) by rN gives

|u′|p−2 u′

r
=
−

∫ r

0 tN−1f(u)dt

rN
.

Taking the limit as r →∞, and then doing simplification on right hand side by L’Hopital’s rule, gives

0 = lim
r→∞

|u′|p−2

(

u′

r

)

= lim
r→∞

−
∫ r

0
tN−1f(u(t))dt

rN
= −f(U).

So, f(U) = 0. �

Lemma 4.8. U = 0.

Proof. Taking the limit as r → ∞ in (2.1), gives E = F (U). By Lemma 4.4, E ≥ 0. Hence F (U) ≥ 0.
Also by Lemma 4.7, f(U) = 0. Thus by (H5) and (H6), U ≡ 0. �

Let S1 = { d > d0 | u(r, d) has exactly one zero for all r ≥ 0 }.

Lemma 4.9. S1 6= ∅ and S1 is bounded above.

Proof. By Lemma 3.5, if d > d0 and d close to d0 then u(r, d) has at most one zero. Also, if d > d0

then d /∈ S0 so u(r, d) has at least one zero. Therefore, for d > d0 and d close to d0, u(r, d) has exactly
one zero. Hence S1 is nonempty. Also by Lemmas 3.1 - 3.4, S1 is bounded above. �

Define d1 = supS1.
As above we can show that u(r, d1) has exactly one zero and u(r, d1)→ 0 as r →∞.

Proceeding inductively, we can find solutions that tend to zero at infinity and with any prescribed
number of zeros. Hence, we complete the proof of the main theorem.

Here is an example of a u that satisfies the hypotheses (H1)-(H6):

(4.1) u′′ +
2

r
u′ + u3 − u = 0

where p = 2, N = 3, and f(u) = u3 − u. The graph of f(u) is
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-1

1

2

3

4

As F is the anti derivative of f, the graph of F is The only positive zero of F occurs at γ =
√

2.

-4 -2 2 4

-3

-2

-1

1

2

3

Here are some graphs of solutions of (4.1) for different values of d, all graphs are generated numerically
using Mathematica:

(a) Solution that remains positive when d = 1.4 < γ =
√

2 :

5 10 15 20

1

2

3

4

5

(b) Solution with exactly one zero when d = 4.7 > γ =
√

2 :

5 10 15 20

-3

-2

-1

1

2

3

4

5
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(c) Solution with exactly two zeros when d = 15.1 > γ =
√

2 :

5 10 15 20

-2.5

2.5

5

7.5

10

12.5

15

�
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