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1 Introduction

The branch of modern applied analysis known as ”impulsive” differential equations furnishes
a natural framework to mathematically describe some ”jumping processes”. Consequently, the
area of impulsive differential equations has been developing at a rapid rate, with the wide
applications significantly motivating a deeper theoretical study of the subject(see [1-3]). But
most of the works in this area discussed the first- and second- order equations (see [2-7]).
The theory of nth order nonlinear impulsive integro-differential equations of mixed type has
received attention and has been achieved significant development in recent years (see [8-10]).
For instance, D. Guo [9] and [10] have established the existence of solutions for the above nth
order problems on an infinite interval with an infinite number of impulsive times in Banach
spaces by means of the Schauder fixed point theorem and the fixed point index theory of
completely continuous operators, respectively. However, as we show in Example 2 below, these
techniques do not cover interesting cases. In this paper, we will use the technique associated
with measures of noncompactness to consider the boundary value problem (BVP) for nth-order
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nonlinear impulsive integro-differential equation of mixed type as follows:















u(n)(t) = f(t, u(t), u′(t), · · · , u(n−1)(t), (Tu)(t), (Su)(t)), ∀t ∈ J ′

∆u(i)|t=tk = Iik(u(tk), u
′(tk), · · · , u(n−1)(tk))

(i = 0, 1, · · · , n− 1, k = 1, 2, · · · ),
u(i)(0) = θ (i = 0, 1, · · · , n− 2), u(n−1)(∞) = βu(n−1)(0),

(1)

where J = [0,∞), 0 < t1 < · · · < tk < · · · , tk → ∞, J ′ = J/{t1, · · · , tk · · · }, f ∈ C[J × E ×
· · · × E × E × E,E], Iik ∈ C[E × E × · · · × E,E] (i = 0, 1, · · · , n− 1, k = 1, 2, · · · ), (E, ‖ · ‖)
is a Banach space, θ stands for zero element of E (so it is in all places where it appears),
β > 1, u(n−1)(∞) = lim

t→∞
u(n−1)(t) and

(Tu)(t) =

∫ t

0

K(t, s)u(s)ds, (Su)(t) =

∫ ∞

0

H(t, s)u(s)ds (2)

with K ∈ C[D,R+], D = {(t, s) ∈ J × J : t ≥ s} and H ∈ C[J × J,R+] ( here R+ denotes the
set of all nonnegative numbers). ∆u(i)|t=tk denotes the jump of u(i)(t) at t = tk, i. e.

∆u(i)|t=tk = u(i)(t+k ) − u(i)(t−k ),

where u(i)(t+k ) and u(i)(t−k ) represent the right and left limits of u(i)(t) at t = tk, respectively
(i = 0, 1, · · · , n−1). Let PC[J,E] = {u : u is a map from J into E such that u(t) is continuous
at t 6= tk, left continuous at t = tk, and u(t+k ) exists, k = 1, 2, · · · }, B∗PC[J,E] = {u ∈
PC[J,E] : e−t‖u(t)‖ → 0 as t → ∞ } and BPC[J,E] = {u ∈ B∗PC[J,E] : u is bounded on J
with respect to the norm ‖ · ‖ }. [10] has shown that B∗PC[J,E] is a Banach space with norm

‖u‖B = sup{e−t‖u(t)‖ : t ∈ J}.

In this case, it is easy to see that BPC[J,E] is also a Banach space. Let PCn−1[J,E] = {u ∈
PC[J,E] : u(n−1)(t) exists and is continuous at t 6= tk, and u(n−1)(t+k ), u(n−1)(t−k ) exist for k =
1, 2, · · · }. For u ∈ PCn−1[J,E], as shown in [10], u(i)(t+k ) and u(i)(t−k ) exist and u(i) ∈ PC[J,E],
where i = 1, 2, · · · , n − 2, k = 1, 2, · · · . We define u(i)(tk) = u(i)(t−k ). Moreover, in (1) and in
what follows, u(i)(tk) is understood as u(i)(t−k ) (i = 1, 2, · · · , n − 1). Let DPC[J,E] = {u ∈
PCn−1[J,E] : u(i) ∈ BPC[J,E], i = 1, 2, · · · , n − 1}, then DPC[J,E] is a Banach space (see
[10]) with norm

‖u‖D = max{‖u‖B, ‖u′‖B, · · · , ‖u(n−1)‖B}.

We verify the existence of solutions to BVP(1) for which the function f does not need to
be completely continuous. The idea of the present paper has originated from the study of an
analogous problem examined by J. Banaś and B. Rzepka [13] for a nonlinear functional-integral
equation.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from the concept
of a measure of noncompactness [11-13] which are used throughout this paper.
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By B(x, r) we denote the closed ball centered at x and with radius r. The symbol Br stands
for the ball B(θ, r).

Let X be a subset of E and X, convX denote the closure and convex closure of X, re-
spectively. The family of all nonempty and bounded subsets of E is denoted by bf(E). The
following definition of the concept of a measure of noncompactness is due to [12].

Definition. A mapping γ : bf(E) → R+ is said to be a measure of noncompactness in E
if it satisfies the following conditions:
(I) The family kerγ = {X ∈ bf(E) : γ(X) = 0} is nonempty and each of its numbers is a

relatively compact subset of E;
(II) X ⊂ Y ⇒ γ(X) ≤ γ(Y );
(III) γ(convX) = γ(X);
(IV) γ(X) = γ(X);
(V) γ(λX + (1 − λ)Y ) ≤ λγ(X) + (1 − λ)γ(Y ) for some λ ∈ [0, 1];
(VI) If {Xn} is a sequence of sets from bf(E) such that Xn+1 ⊂ Xn, Xn = Xn (n = 1, 2, · · · ),

and if lim
n→∞

γ(Xn) = 0, then the intersection X∞ =
∞
⋂

n=1

Xn is nonempty.

Remark 1. As shown in [12], the family kerγ described in (I) is called the kernel of the
measure of noncompactness γ. A measure γ is said to be sublinear if it satisfies the following
conditions.

(VII) γ(λX) = |λ|γ(X) for λ ∈ R;
(VIII) γ(X + Y ) ≤ γ(X) + γ(Y ).

For our further purposes we will need the following fixed point theorem .

Lemma 1[12]. Let Q be nonempty bounded closed convex subset of the space E and let
F : Q → Q be a continuous operator such that γ(FX) ≤ kγ(X) for any nonempty bounded
subset X of Q, where k ∈ [0, 1) is a constant. Then F has a fixed point in the set Q.

Let us recall the following special measure of noncompactness which originates from [11]
and will be used in our main results.

To do this let us fix a nonempty bounded subset X of BPC[J,E] and a positive number
N > 0. For any x ∈ X and ε ≥ 0, ωN(x, ε) stands for the modulus of continuity of the function
x on the interval [0, N ], namely,

ωN(x, ε) = sup{‖e−tx(t) − e−sx(s)‖ : t, s ∈ [0, N ], |t− s| ≤ ε}.

Define
ωN(X, ε) = sup[ωN(x, ε) : x ∈ X],

ωN
0 (X) = lim

ε→0
ωN(X, ε), ω0(X) = lim

N→∞
ωN

0 (X),

and
diamX(t) = sup{‖e−tx(t) − e−ty(t)‖ : x, y ∈ X}

with X(t) = {x(t) : x ∈ X} for fixed t ≥ 0.
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Now we can introduce the measure of noncompactness by the formula

γ(X) = ω0(X) + lim
t→∞

sup diamX(t).

It can be shown similar to [11] that the function γ is a sublinear measure of noncompactness
on the space BPC[J,E].

For the sake of convenience, we impose the following hypotheses on the functions appearing
in BVP(1).

(h1) sup
t∈J

(

∫ t

0
K(t, s)ds

)

<∞, sup
t∈J

(∫ ∞
0
H(t, s)ds

)

<∞ and there exist positive constant k∗, h∗

such that

sup
t∈J

(

e−t

∫ t

0

K(t, s)esds

)

≤ k∗, sup
t∈J

(

e−t

∫ ∞

0

H(t, s)esds

)

≤ h∗.

(h2) The function t→ f(t, 0, 0, · · · , 0, 0, 0) is an element of the space BPC[J,E] and satisfies

a∗ =

∫ ∞

0

‖f(t, 0, 0, · · · , 0, 0, 0)‖dt <∞.

There exist functions g ∈ C[J,R+] with

m∗ =

∫ ∞

0

g(t)dt <∞

such that

‖f(t, u(t), u′(t), · · · , u(n−1)(t), (Tu)(t), (Su)(t))−
f(t, v(t), v′(t), · · · , v(n−1)(t), (Tv)(t), (Sv)(t))‖ ≤ g(t)‖u(t)e−t − v(t)e−t‖

for any t ∈ J and u, v ∈ DPCn−1[J,E].

(h3) Iik(0, 0, · · · , 0) (i = 0, 1, · · · , n − 1, k = 1, 2, · · · ) is an element of the space BPC[J,E]
and satisfies

d∗i = sup
t∈J

∞
∑

k=1

‖Iik(0, 0, · · · , 0)‖ <∞, i = 0, 1, · · · , n− 1.

There exist nonnegative constants cik for i = 0, 1, · · · , n− 1, k = 1, 2, · · · with

c∗i =
∞

∑

k=1

cik <∞, i = 0, 1, · · · , n− 1

such that

‖Iik(u(t), u′(t), · · · , u(n−1)(t)) − Iik(v(t), v
′(t), · · · , v(n−1)(t))‖ ≤ cik‖u(t)e−t − v(t)e−t‖

for any t ∈ J , u, v ∈ DPCn−1[J,E] and i = 0, 1, · · · , n− 1, k = 1, 2, · · · .
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3 Main Results

Throughout this section we will work in the Banach space DPCn−1[J,E] and our considera-
tions are placed in the Banach space DPCn−1[J,E] considered previously.

We say that a map u ∈ PCn−1[J,E]∩Cn[J ′, E] is called a solution of BVP(1) if u(t) satisfies
(1) for t ∈ J .

Theorem 1. Let conditions (h1)-(h3) be satisfied. Assume that

τ =
β

β − 1
(m∗ + c∗n−1) +

n−2
∑

j=0

c∗j < 1. (3)

Then BVP(1) has at least one solution x = x(t) which belongs to the space DPCn−1[J,E].

Proof. Define an operator A as follows:

(Au)(t) =
tn−1

(β − 1)(n− 1)!

{
∫ ∞

0

f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))ds

+
∞

∑

k=1

In−1k(u(tk), u
′(tk), · · · , u(n−1)(tk))

}

+
1

(n− 1)!

∫ t

0

(t− s)n−1f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))ds

+
∑

0<t<tk

n−1
∑

j=0

(t− tk)
j

j!
Ijk(u(tk), u

′(tk), · · · , u(n−1)(tk)), ∀t ∈ J. (4)

[9, Lemma 3] has proved that u ∈ DPCn−1[J,E]∩Cn[J,E] is a solution of BVP(1) if and only
if u is a fixed point of A.

In what follows, we write J1 = [0, t1], Jk = (tk−1, tk] for k = 2, 3, · · · .
We are now in a position to prove that the operator A has a fixed point by means of Lemma

1.

In virtue of our assumptions the function Au is continuous on the interval J for each function
u ∈ DPCn−1[J,E]. It is obvious from the condition (h1) that the operators T and S defined
by (2) are bounded linear operators from BPC[J,E] into itself and

‖T‖ ≤ k∗, ‖S‖ ≤ h∗. (5)

Under the assumptions (h2) and (h3) [10] has proved that the infinite integral

∫ ∞

0

f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))ds

is convergent for any u ∈ DPCn−1[J,E]. Differentiating (4) i times for i = 0, 1, · · · , n− 1, we
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have

(A(i)u)(t) =
tn−i−1

(β − 1)(n− i− 1)!

{
∫ ∞

0

f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))ds

+
∞

∑

k=1

In−1k(u(tk), u
′(tk), · · · , u(n−1)(tk))

}

+
1

(n− i− 1)!

∫ t

0

(t− s)n−i−1f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))ds

+
∑

0<tk<t

n−1
∑

j=i

(t− tk)
j−i

(j − i)!
Ijk(u(tk), u

′(tk), · · · , u(n−1)(tk)), ∀t ∈ J.

and so

‖(A(i)u)(t)‖ ≤ β

β − 1
· tn−i−1

(n− i− 1)!

∫ ∞

0

‖f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))‖ds

+
tn−i−1

(β − 1)(n− i− 1)!

∞
∑

k=1

‖In−1k(u(tk), u
′(tk), · · · , u(n−1)(tk))‖

+

n−1
∑

j=i

tj−i

(j − i)!

∑

0<tk<t

‖Ijk(u(tk), u′(tk), · · · , u(n−1)(tk))‖, ∀t ∈ J.

This, together with (h2) and (h3), implies that

e−t‖(A(i)u)(t)‖ ≤ β

β − 1

∫ ∞

0

‖f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))‖ds

+
1

β − 1

∞
∑

k=1

‖In−1k(u(tk), u
′(tk), · · · , u(n−1)(tk))‖

+

n−1
∑

j=0

∞
∑

k=1

‖Ijk(u(tk), u′(tk), · · · , u(n−1)(tk))‖

≤ β

β − 1

∫ ∞

0

[g(s)‖u(s)e−s‖ + ‖f(s, 0, · · · , 0, 0, 0)‖]ds

+
1

β − 1

∞
∑

k=1

[

cn−1k‖u(tk)e−tk‖ + ‖In−1k(0, 0, · · · , 0)‖
]

+
n−1
∑

j=0

∞
∑

k=1

[

cjk‖u(tk)e−tk‖ + ‖Ijk(0, 0, · · · , 0)‖
]

≤ β

β − 1

[

‖u‖D

∫ ∞

0

g(s)ds+ a∗
]

+
1

β − 1
[c∗n−1‖u‖D + d∗n−1] +

n−1
∑

j=0

[c∗j‖u‖D + d∗j ]

=

[

β

β − 1
(m∗ + c∗n−1) +

n−2
∑

j=0

c∗j

]

‖u‖D +
β

β − 1
(a∗ + d∗n−1) +

n−2
∑

j=0

d∗j . (6)
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In view of the assumptions (h2) and (h3) we have the following estimate:

‖Au‖D ≤ τ‖u‖D + ρ (7)

with ρ =: β

β−1
(a∗+d∗n−1)+

n−2
∑

j=0

d∗j . We deduce from this estimate that the operator A transforms

the ball Br into itself with r = ρ/(1 − τ).

In what follows we show that A is continuous on the ball Br. In order to do this let us take
u, v ∈ Br. Then for t ∈ J we have

‖f(t, u(t), u′(t), · · · , u(n−1)(t), (Tu)(t), (Su)(t))−
f(t, v(t), v′(t), · · · , v(n−1)(t), (Tv)(t), (Sv)(t))‖ ≤ g(t)‖u(t)e−t − v(t)e−t‖ ≤ 2rg(t).

This and the dominated convergence theorem guarantee that

lim
u→v

∫ ∞

0

‖f(t, u(t), u′(t), · · · , u(n−1)(t), (Tu)(t), (Su)(t))−

f(t, v(t), v′(t), · · · , v(n−1)(t), (Tv)(t), (Sv)(t))‖dt = 0. (8)

Similarly, from the condition (h3) we get

lim
u→v

∞
∑

k=1

‖Iik(u(tk), u′(tk), · · · , u(n−1)(tk)) − Iik(v(tk), v
′(tk), · · · , v(n−1)(tk))‖ = 0. (9)

On the other hand, Similar to (6), it is easy to see

‖Au−Av‖D ≤ β

β − 1

∫ ∞

0

‖f(s, u(s), u′(s), · · · , u(n−1)(s), (Tu)(s), (Su)(s))

−f(s, v(s), v′(s), · · · , v(n−1)(s), (Tv)(s), (Sv)(s))‖ds

+
1

β − 1

∞
∑

k=1

‖In−1k(u(tk), u
′(tk), · · · , u(n−1)(tk)) − In−1k(v(tk), v

′(tk),

· · · , v(n−1)(tk))‖ +

n−1
∑

j=0

∞
∑

k=1

‖Ijk(u(tk), u′(tk), · · · , u(n−1)(tk))

−Ijk(v(tk), v′(tk), · · · , v(n−1)(tk))‖. (10)

We conclude from (8), (9) and (10) that ‖Au−Av‖D → 0, i.e., A is continuous on the ball Br.

Let us take a nonempty set X ⊂ Br. Then, for any u, v ∈ X and for a fixed t ∈ J , from the
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conditions (h2) and (h3) we have the following estimate:

e−t‖(Au)(t) − (Av)(t)‖

≤ β

β − 1

∫ ∞

0

g(t)‖u(t)e−t − v(t)e−t‖dt+
1

β − 1

∞
∑

k=1

cn−1k‖(u(tk)e−tk − v(tk)e
−tk‖

+

n−1
∑

j=0

∞
∑

k=1

cjk‖(u(tk)e−tk − v(tk)e
−tk‖

≤ β

β − 1
m∗ sup diam(X(t)) +

1

β − 1
c∗n−1 sup diam(X(t)) +

n−1
∑

j=0

c∗j sup diam(X(t))

≤ τ sup diam(X(t)).

This implies that

lim
t→∞

sup diam((AX)(t)) ≤ τ lim
t→∞

sup diam(X(t)). (11)

Now, let us fix arbitrarily numbers N > 0 and ε > 0. Choose a function u ∈ X and take
s, t ∈ [0, N ] such that |t − s| ≤ ε. Without loss of generality we assume that s < t. Then, in
the light of (4) we get

‖(Au)(t)e−t − (Au)(s)e−s‖

≤
[

e−ttn−1

(β − 1)(n− 1)!
− e−ssn−1

(β − 1)(n− 1)!

]{
∫ ∞

0

‖f(h, u(h), u′(h), · · · , u(n−1)(h), (Tu)(h),

(Su)(h))‖dh+

∞
∑

k=1

‖In−1k(u(tk), u
′(tk), · · · , u(n−1)(tk))‖

}

+
1

(n− 1)!

{
∫ t

s

(t− h)n−1‖f(h, u(h), u′(h), · · · , u(n−1)(h), (Tu)(h), (Su)(h))‖dh

+

∫ s

0

[(t− h)n−1 − (s− h)n−1]‖f(h, u(h), u′(h), · · · , u(n−1)(h), (Tu)(h), (Su)(h))‖dh
}

+
∑

0<tk<s

n−1
∑

j=0

[

(t− tk)
j

j!
− (s− tk)

j

j!

]

‖Ijk(u(tk), u′(tk), · · · , u(n−1)(tk))‖

+
∑

s<tk<t

n−1
∑

j=0

(t− tk)
j

j!
‖Ijk(u(tk), u′(tk), · · · , u(n−1)(tk))‖. (12)

From the conditions (h2) and (h3) it follows that

‖f(h, u(h), u′(h), · · · , u(n−1)(h), (Tu)(h), (Su)(h))‖
≤ g(h)‖e−hu(h)‖ + ‖f(h, 0, 0, · · · , 0, 0, 0)‖
≤ g(h)r + ‖f(h, 0, 0, · · · , 0, 0, 0)‖,

‖Ijk(u(tk), u′(tk), · · · , u(n−1)(tk))‖
≤ cjk‖u(tk)e−tk‖ + ‖Ijk(0, 0, · · · , 0)‖ ≤ rcjk + ‖Ijk(0, 0, · · · , 0)‖.
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When we load this into (12), we obtain

‖(Au)(t)e−t − (Au)(s)e−s‖

≤
[

e−ttn−1

(β − 1)(n− 1)!
− e−ssn−1

(β − 1)(n− 1)!

]

(rm∗ + a∗ + rc∗n−1 + d∗n−1)

+
1

(n− 1)!

{
∫ t

s

(t− h)n−1[g(h)r + ‖f(h, 0, 0, · · · , 0, 0, 0)‖]dh

+

∫ s

0

[(t− h)n−1 − (s− h)n−1][g(h)r + ‖f(h, 0, 0, · · · , 0, 0, 0)‖dh
}

+
∑

0<tk<s

n−1
∑

j=0

[

(t− tk)
j

j!
− (s− tk)

j

j!

]

[rcjk + ‖Ijk(0, 0, · · · , 0)‖]

+
∑

s<tk<t

n−1
∑

j=0

(t− tk)
j

j!
[rcjk + ‖Ijk(0, 0, · · · , 0)‖].

Hence we deduce that ωN
0 (AX, ε) → 0 as ε → 0, that is,

ω0(AX) = 0 ≤ τω0(X). (13)

Now, combining (11) with (13), and keeping in mind the definition of the measure of noncom-
pactness γ in the above section, we have

γ(AX) ≤ τγ(X).

Consequently, the conditions of Lemma 1 are fulfilled and Lemma 1 guarantees that operator
A has at least one fixed point in DPCn−1[J,E]. The proof is completed.

Remark 2. Similar to [13], we can define the concept of asymptotic stability of a solution
of BVP(1) on the interval J , namely, for any ε > 0, there exist N > 0 and r > 0 such that if
x, y ∈ Br and x = x(t), y = y(t) are solutions of BVP(1) then ‖x(t) − y(t)‖ ≤ ε for t ≥ N . We
infer easily from the proof of Theorem 1 that any solution of BVP(1) which belongs to Br is
asymptotically stable.

Example 1. consider the infinite system of scalar third order impulsive integro-differential
equations











































u′′′n = e−2t

20n
[1 + un+1 + sin(u′n + u′′n+2)] − te−2t

6n2

(

1 −
∫ t

0
un(s)ds

1+ts

)
1

5

+ e−3t

10
√

n

∫ ∞
0
e−2s cos(t− s)u2n(s)ds, ∀t ∈ J, t 6= k (k = 1, 2, · · · );

∆un|t=k = 1
n42kun+1(k) − 1

(n+1)k2 ,

∆u′n|t=k = 1√
n52k [un(k) − u′′2n(k)],

∆u′′n|t=k = 1
n252ku

′
n+2(k) (k = 1, 2, · · · )

un(0) = u′n(0) = 0, 2u′′n(∞) = 3u′′n(0) (n = 1, 2, · · · ).

(14)

Conclusion. Infinite system (14) has a solution {un(t)} with un ∈ C3[J ′,R] for n = 1, 2, · · · ,
where J ′ = [0,∞)/{1, 2, · · · }, such that un(t) → 0 as n→ ∞ for 0 ≤ t <∞ and e−t supn |u

(i)
n (t)| →
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0 as t→ ∞ (i = 1, 2, 3).

In fact, let J = [0,∞), E = C0 = {u = (u1, u2, · · · , un, · · · ) : un → 0} with ‖u‖ =
supn |un|. Thus, (14) can be regarded as BVP of the form (1) in E. In this case, k(t, s) =
(1+ st)−1, h(t, s) = e−2s cos(t− s), u = (u1, u2, · · · , un, · · · ), f = (f1, f2, · · · , fn, · · · ), in which

fn(t, u, u′, u′′, Tu, Su) =
e−2t

20n
[1 + un+1 + sin(u′n + u′′n+2)]

−te
−2t

6n2

(

1 −
∫ t

0

un(s)ds

1 + ts

)

1

5

+
e−3t

10
√
n

∫ ∞

0

e−2s cos(t− s)u2n(s)ds,

and

I0kn(u, u
′, u′′) =

1

n42k
un+1 −

1

(n+ 1)k2
,

I1kn(u, u
′, u′′) =

1√
n52k

[un − u′′2n]

I2kn(u, u
′, u′′) =

1

n252k
u′n+2,

where, tk = k (k = 1, 2, · · · ). It is easy to see that all conditions of Theorem 1 are fulfilled, so
our claim is true by Theorem 1.

Example 2. Let L and E = C0 be given in Example 1. For fixed t0 ∈ J ′ and any y ∈ E,
there exists obviously x ∈ DPC[J,E] such that x(t0) = y. Let us denote by DPC[t0, E] the
set {x(t0) : x ∈ DPC[J,E]}. Then DPC[t0, E] = E. Define the function F : DPC[J,E] → E
by

F (x(t)) = x(t0) =: (x1(t0), x2(t0), · · · , xn(t0), · · · )
for x(t) = (x1(t), x2(t), · · · , xn(t), · · · ), x ∈ DPC[J,E] and t ∈ J . F is clearly continuous but
cannot be completely continuous since F (xn(t)) = en for n = 1, 2, · · · , where xn(t) ≡ en and

the sequence {en}, defined by en = (en
1 , e

n
2 , · · · , en

k , · · · ) with en
k =

{

0, ifn 6= k,
1, ifn = k

, stands for

a standard basis in E. Define the function ϕ : J ×DPC[J,E] → E by

ϕ(t, x(t)) = e−2tF (x(t)).

Now let
ψ(t, x, x′, x′′, Tx, Sx) = ϕ(t, x) + f(t, x, x′, x′′, Tx, Sx),

where f = (f1, f2 · · · , fn, · · · ) with fn(t, x, x′, x′′, Tx, Sx) given in Example 1. Consider equation
(14) for which the corresponding function is ψ instead of f . We can prove that the operator A
defined as in (4) is not compact. However, the hypotheses (h1)-(h3) are satisfied which implies
that (14) has a solution under the inequality (3) holding.
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