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Abstract

Consider the equation ẋ(t) = f(t, x(t), x(t − r(t))) with the initial con-
dition x0 = φ. Here f is a continuous real function, but it does not satisfy
other regularity conditions. We prove that the initial value problem has a
unique solution under the following monotonicity conditions:

(x − y)f(t, x, y) ≤ 0 for all t, x, y ∈ IR,

f(t, x1, y) ≥ f(t, x2, y) for all t, y ∈ IR, and x1 < x2, and
if there is t0 ≥ 0 such that r(t0) = 0, then the function t0 − t + r(t) does
not change sign on an interval [t0, t0 + δ).
We show an example that the result cannot be applied in the state de-

pendent case.

1. Introduction

It is well-known that the stability of the solution of the delay differential
equation

ẋ(t) = G(t, xt)

through a continuous function φ implies the uniqueness of this solution.
Consider the retarded differential equation

(0) ẋ(t) = −g(x(t)) + g(x(t− r(t))),

where g and r are continuous real functions, r(t) ≥ 0, and g is monotone
increasing. According to a result of Razumikhin [4] the constant solution
of Eq. (0) is stable, therefore uniqueness holds for this solution. For some
interesting uniqueness results we refere the interested reader to [2], [3].

Our aim is to show uniqueness for every solution of Eq. (0) provided that
r(t) satisfies the following condition: if there is t0 ≥ 0 so that r(t0) = 0, then
there exists δ = δ(t0) > 0 such that the function t 7→ t0 − t + r(t) does not
change sign on the interval [t0, t0 + δ). Note that the above assumption is
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common for several equations which arise in applications and it is satisfied,
for example, when r(t) > 0 or the function t − r(t) is monotone increasing.

We prove our uniqueness result for an equation more general than Eq.(0),
that is

ẋ(t) = f(t, x(t), x(t− r(t)))

under certain monotonicity assumptions on f . Here f is continuous, but it
does not satisfy other regularity conditions.

Our result cannot be applied when r depends on x(t). We show that by
an example.

2. Uniqueness result

Consider the initial value problem (IVP)

(1) ẋ(t) = f(t, x(t), x(t− r(t))), x0 = φ,

where f : IR3 → IR, r : IR → [0,∞) and φ : (−∞, 0] → IR are continuous.
The solution segment xt : (−∞, 0] → IR is given by xt(s) = x(t + s), s ≤ 0.

Theorem 2.1. Assume that
(i) (x − y)f(t, x, y) ≤ 0 for all x, y ∈ IR, t ≥ 0,

(ii) f(t, x1, y) ≥ f(t, x2, y) for all y ∈ IR, x1, x2 ∈ IR, x1 < x2, and t ≥ 0,

(iii) if there is t0 ≥ 0 so that r(t0) = 0, then there exists δ = δ(t0) > 0 such
that t0 − t + r(t) ≤ 0 or t0 − t + r(t) ≥ 0 for all t ∈ [t0, t0 + δ).

Then IVP (1) has a unique solution.

Proof. Suppose by way of contradiction that there are two solu-
tions x1(t) and x2(t) of IVP (1) on an interval [0, A), A ∈ IR such that
x1(t) = x2(t) = φ(t) for all t ≤ 0, and there is t > 0 such that x1(t) 6= x2(t).

Set H = {s ∈ (0, A) : x1(s) 6= x2(s)} and t0 = inf H. Since t0 6∈ H, it
follows x1(t) = x2(t) for all t ≤ t0.

Let r(t0) > 0 or r(t0) = 0 with t0 − t + r(t) ≥ 0 for all t ∈ [t0, t0 + δ),
where δ is defined in assumption (iii). In both cases t − r(t) ≤ t0 for all
t ∈ [t0, t0 + δ1) with some δ1 ∈ (0, δ].

The definition of t0 implies that there is a sequence (tn) in H so that
tn > t0, tn → t0 and x1(tn) 6= x2(tn) for all n ∈ IN. We can assume without
loss of generality that x1(tn) < x2(tn) for all n ∈ IN.

Define the functions

z(t) = x2(t) − x1(t) and u(t) = max
t0≤s≤t

z(s) for all t ∈ [t0, A).

Clearly, we have u(t0) = 0, u(t) is monotone increasing on [t0, A) and u(t) > 0
for all (t0, A). Further, define the function

D+u(t) = lim sup
h→0+

u(t + h) − u(t)

h
for all t ∈ (t0, A).
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According to Theorem 2.3 (Appendix) [5] there is τ ∈ (t0, t0 + δ1) such
that D+u(τ) > 0. The definition of u(t) gives z(τ) ≤ u(τ). We claim that
z(τ) = u(τ). Obviously, if z(τ) < u(τ), then u(t) is constant in a neighbour-
hood of τ, therefore D+u(τ) = 0, and this is a contradiction. Consequently,
z(τ) = u(τ).

Next we will show that ż(τ) > 0 and ż(τ) ≤ 0 at the same time, and this
will prove the result in the studied case.

Since D+u(τ) > 0, there is a constant K > 0 such that K < D+u(τ),
and there exists a sequence (hn), hn > 0, hn → 0 so that

0 < K <
u(τ + hn) − u(τ)

hn

, n ∈ IN.

It is easy to see, that there is a sequence (hn), 0 < hn ≤ hn such that
u(τ + hn) = z(τ + hn). Indeed, the definition of u(t) yields u(τ + hn) =
max(maxt0≤s≤τ z(s), maxτ≤s≤τ+hn

z(s)) = max(u(τ), maxτ≤s≤τ+hn
z(s)).

As u(τ) = z(τ), we infer u(τ + hn) = maxτ≤s≤τ+hn
z(s). Th continuity of

z(s) on [τ, τ + hn] gives maxτ≤s≤τ+hn
z(s) = z(τ + hn), where 0 < hn ≤ hn.

Thus, u(τ + hn) = z(τ + hn). These facts lead to the following estimations:

0 < K <
u(τ + hn) − u(τ)

hn

≤ z(τ + hn) − z(τ)

hn

.

Letting hn → 0, we conclude ż(τ) > 0. Now, we show that ż(τ) ≤ 0. Clearly,
ż(τ) = ẋ2(τ) − ẋ1(τ). Being x1(t) and x2(t) solutions of IVP (1), we obtain
ż(τ) = f(τ, x2(τ), x2(τ−r(τ)))−f(τ, x1(τ), x1(τ−r(τ))). Since τ−r(τ) ≤ t0
and x1(t) = x2(t) for t ≤ t0, we infer x1(τ − r(τ)) = x2(τ − r(τ)). As
u(τ) = z(τ) = x2(τ) − x1(τ) and u(τ) > 0, we find x1(τ) < x2(τ). Finally,
assumption (ii) implies f(τ, x1(τ), x1(τ − r(τ))) ≥ f(τ, x2(τ), x2(τ − r(τ))),
that is ż(τ) ≤ 0.

It remains to consider case r(t0) = 0 and t0 − t + r(t) ≤ 0 for [t0, t0 + δ).
The definition of t0 implies the existence of a sequence (tn) in H so that

tn > t0, tn → t0 and x1(tn) 6= x2(tn) for all n ∈ IN. We have x1(tn) 6= x1(t0)
or x2(tn) 6= x2(t0) for all n ∈ IN. We can assume without loss of generality
that x2(tn) 6= x2(t0) for all n ∈ IN. Define the functions

u(t) = max
t0≤s≤t

|x2(s) − x2(t0)| and

D+u(t) = lim sup
h→0+

u(t + h) − u(t)

h
for all t ∈ (t0, A).

Obviously, u(t0) = 0, u(t) is monotone increasing on [t0, A) and u(t) > 0 for
all (t0, A). According to Theorem 2.3 (Appendix)[5] there is τ ∈ (t0, t0 + δ)
such that D+u(τ) > 0. Arguing similarly as in the previous case, we obtain
u(τ) = |x2(τ) − x2(t0)|. u(τ) > 0 yields x2(τ) − x2(t0) 6= 0.
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Suppose x2(τ) − x2(t0) > 0. We can choose δ > 0 in assumption (iii) so
that x2(s)−x2(t0) > 0 for all s ∈ (τ − δ, τ + δ). We will show that ẋ2(τ) > 0
and ẋ2(τ) ≤ 0 at the same time, and this contradiction will prove the result
when x2(τ)−x2(t0) > 0. Since D+u(τ) > 0, it follows that there is a constant
K > 0 such that K < D+u(τ), and there is a sequence (hn), hn > 0, hn → 0
so that

0 < K <
u(τ + hn) − u(τ)

hn

, n ∈ IN.

It is easy to see, using the definition of u(t) and the continuity of x2(s)−x2(t0)
on [τ, τ + hn], that there is a sequence (hn), 0 < hn ≤ hn such that
u(τ + hn) = x2(τ + hn) − x2(t0). These facts lead to the following estima-
tions:

0 < K <
u(τ + hn) − u(τ)

hn

≤ x2(τ + hn) − x2(τ)

hn

.

Letting hn → 0, we conclude ẋ2(τ) > 0. Now, we prove ẋ2(τ) ≤ 0.

Since t0 ≤ τ − r(τ) ≤ τ, the monotone increasing property of u implies
u(τ − r(τ)) ≤ u(τ). Therefore |x2(τ −r(τ))−x2(t0)| ≤ x2(τ)−x2(t0). Hence
x2(τ − r(τ)) ≤ x2(τ). By assumption (i) we get f(τ, x2(τ), x2(τ − r(τ))) ≤ 0,

that is ẋ2(τ) ≤ 0.

If x2(τ)− x2(t0) < 0, arguing similarly as above, we show that ẋ2(τ) < 0
and ẋ2(τ) ≥ 0 at the same time using assumption (i). The proof of Theorem
2.1 is complete.

Remark. In case r(t0) = 0 and t0− t+ r(t) ≤ 0 for all t ≥ t0, the unique
solution of IVP (1) is the constant solution x(t) = x(t0) for all t ≥ t0.

Note that modifying slightly assumption (iii) of Theorem 2.1 and assum-
ing condition (ii) of Theorem 2.1, we obtain the following result.

Theorem 2.2. Suppose that
a) f(t, x1, y) ≥ f(t, x2, y) for all y ∈ IR, x1, x2 ∈ IR, x1 < x2, and t ≥ 0,

b) for all t0 ≥ 0 there is δ = δ(t0) > 0 such that t0 − t + r(t) ≥ 0 for all
t ∈ [t0, t0 + δ),

then IVP (1) has a unique solution.

We mention that Theorem 2.2 is a generalization of Ding’s result [1] for
scalar equations.

3. Example

Consider the functions

f(x, y) = − 3
√

x + 3
√

y, (x, y) ∈ IR2, and r(u) = N |u| 1

α + r0, u ∈ IR,

where r0, N and α are positive constants. Clearly, assumptions (i), (ii) and
(iii) of Theorem 2.1 are satisfied.
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Consider the IVP

(2) ẋ(t) = − 3

√

x(t) + 3

√

x(t − r(x(t))), x0 = φ,

where

φ(t) =

{

|t + r0|α, t ≤ −r0

0, −r0 < t ≤ 0.

Our aim is to find two solutions of IVP (2) of form x(t) = M tα, namely
we propose to choose two different sets of positive constants α, N, M and
r0 such that x(t) = M tα is a solution, and hence IVP (2) is not uniquely
solved.

The definition of r and the form of x imply

t − r(x(t)) = (1 − N M
1

α )t − r0 for all t > 0.

We may assume that 1−N M
1

α < 0. Then (1−N M
1

α )t− r0 < −r0 < 0.

x(t − r(x(t))) = φ(t − r(x(t))) = |t − r(x(t)) + r0|α.

x(t − r(x(t))) = (N M
1

α − 1)α tα.

Being x(t) = M tα a solution of IVP (2), it follows

(3) α M tα−1 = −M
1

3 t
α

3 + (N M
1

α − 1)
α

3 t
α

3 for all t > 0.

Obviously, α − 1 = α

3
, that is α = 3

2
. We deduce from (3) that

3M + 2M
1

3 = 2(N M
2

3 − 1)
1

2 .

Set N = A2 and M
−2

3 = X, where A > 0 and X > 0. Therefore

(4)
3

X
+ 2 = 2(A2 − X)

1

2 .

Comparing the graphs of the functions (0, A2] 3 X 7→ 3
X

+ 2 and

(0, A2] 3 X 7→ 2(A2 − X)
1

2 , it follows that, if 5 < 2(A2 − 1)
1

2 , that is

A >
√

29
2

, then there are two solutions X1, X2 ∈ (0, A2) of (4). Then

1 − N M
1

α < 0, because 1 − N M
1

α = 1 − A2 M
2

3 = 1 − A2 X−1 < 0.

Let A = 4 >
√

29
2

. From the definition of A and X, we obtain N = 16,

M1 = X
−3

2

1 , M2 = X
−3

2

2 . Consider IVP (2), where

r(u) = 16|u| 23 + r0, r0 > 0,

and

φ(t) =

{

|t + r0|
3

2 , t ≤ −r0

0, −r0 < t ≤ 0.
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As we have shown, there are two positive constants M1 6= M2 such that
x1(t) = M1 t

3

2 and x2(t) = M2 t
3

2 are two different solutions of IVP (2).
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