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On a nonlinear system containing nonlocal terms related to a fluid
flow model

Adam Besenyei*

Abstract

We consider a nonlinear system of differential equations where the main parts may contain nonlocal
dependence on the unknowns. This system is a generalization of a model describing fluid flow in porous
medium. Existence of weak solutions, boundedness and stabilization of solutions as ¢ — oo is shown by using
the theory of monotone operators, and some examples are given.

1 Introduction

This paper was motivated by the work [21]. There the authors investigated fluid flow in porous media. A
porous medium is a solid medium with lots of tiny holes (e.g., limestone). The flow of a fluid through the
medium is determined by the large surface of the solid matrix and the closeness of the holes. For a detailed
introduction to this topic, see [3]. If the fluid carries dissolved chemical species, chemical reactions can occur,
see [16]. Among these include reactions that can change the porosity. In the cited paper the following model
was derived for such flow in one dimension:

wt,)ue(t,z) = a- (Jo(t, ) |ug(t, ) + K(w(t, x))ps (t, x)us (t, ) — ku(t, z)g(w(t, z)) (1)
we(t, z) = bu(t,z)g(w(t, x)) (2)
(K(w(t,x))pm(t,x))m = bu(t,x)g(w(t,x)), (3)
v(t,z) = —K(w(t, x))p.(t, ), t>0, z€(0,1), (4)

with some initial and boundary conditions where w is the porosity, u is the concentration of the dissolved
chemical solute carried by the fluid, p is the pressure, v is the velocity, further, «, k, b are given constants, K
and g are given real functions. Observe that after elimintaion of the fourth equation one obtains a system that
contains three different types of differential equations: an ordinary, a parabolic and an elliptic one, see [11, 21].
Similar model was studied in [11] by using the method of Rothe. Some numerical experiments were done in [21]
concering the above system, however, correct proof on existence of solutions was not made (and one can hardly
find papers dealing with such kind of systems in rigorous mathematical way). In the following, we consider
a generalization of the above system. Namely, we admit also nonlocal dependence on the unknowns. Such
nonlocality is especially reasonable for diffusion processes (heat or population) where the diffusion coefficient
may depend on terms which depend on the unknowns in a nonlocal way (e.g., on the integral of the density).
Furthermore, nonlocal models arise also in climatology, see the papers [2, 12, 13, 14] where a climatology model
containing functional differential equations was studied. For some other problems involving nonlocal differential
equations, such as transmission problems, see [17, 18, 19], and as nonlocal boundary conditions, see [26, 25, 23].

In the following we show existence and properties of weak solutions (such as boundedness and stabilization
as t — 00) to a nonlocal generalization of the above system by using the theory of operators of monotone type.
Our assumptions will be the generalizations of the classical conditions. However these are strict assumptions,
the examples given after each statement will show that the results apply in a large class of problems.

1.1 Notation

Let Q C R™ be a bounded domain with the uniform C! regularity property (see [1]), further, let 0 < T < oo,
2 < p1,p2 < 00 be real numbers. In the following, Q7 := (0,T) x €, Qo := (0,00) x €. Denote by Wi ()
the usual Sobolev space with the norm

) - ) 1/pi
[ollwrrs ) = (/qu P 3 D)
j=1
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where D; denotes the distributional derivative with respect to the j-th variable (briefly D = (Ds,...,D,)).
In addition, let V; be a closed linear subspace of W1 (Q) which contains W, **(Q) (the closure of C§°(Q ) in
WLri()), and let LPi(0,T;V;) be the Banach space of measurable functions u: (0,7) — V; such that ||ul?
integrable and the norm is given by

K

v, is

r , 1/pi
memmepémwww -

The dual space of LP(0,T;V;) is L%(0,T;V;*) where p— + — =1 and V;* is the dual of V;. We write briefly
X, := LPi(0,T;V;). The pairing between V;*, V; and X} X is denoted by (-,-) and [, ], respectively, further,
D;u stands for the derivative of a function v € LP#(0, T’ V) It is well known (see [27]) that if u € X;, Dyu € X}
then u € C([0,T], L*(2)) so that u(0) makes sense.

1.2 Formulation of the problem

Let us consider the following system of equations:

Dyw(t,z) = f(t z,w(t, @) ult,2)iu),  w(0,7) = wo(x), (5)

Diul(t, z) ZD ai(t, z,w(t, z), u(t, z), Du(t, z), p(t, ), Dp(t, z); w, u, p)] + (6)
1;0(15 z,w(t,z),u(t, z), Du(t,z),p(t, z), Dp(t, z);w,u, p) = g(t, ),  u(0,z) =0,

fZD (t, 2, w(t, z),u(t, ), p(t, z), Dp(t, z); w, u, p)] + (7)

+b0(ta xz, w(ta $), u(ta -T)a p(ta -T)a Dp(ta ZC); w,u, p) = h(t’ ZC)

with some boundary conditions. This system is a generalization of the model (1)—(4), functions f,a;,b; may
contain nonlocal dependence on the unknown functions w,u, p which are written after the symbol ”;”. In the
next section we formulate some assumptions on these functions then we may define the weak form of the above
system and prove existence of weak solutions.

1.3 Assumptions

In what follows, &, ({o, (), (10, n) refer for the variables w, (u, Du) and (p, Dp), respectively, further, w, v;
and vy for the nonlocal dependence on w, u and p.

(A1) For fixed (w,v1,v2) € L®(Q7) x X1 x X3 functions a;: Qr x R x R*1 x R"1 x L®°(Q7) x X1 X Xo —
R (i = 0,...,n) have the Carathéodory property, i.e., they are measurable in (¢t,z) € Qr for every
(€,¢0,¢,m0,m) € Rx R x R*! and continuous in (&, (o, (,1m0,1) € R x R* Tt x R**! for a.a. (t,z) € Q.

(A2) There exist a continuous function c¢;: R — R* and bounded operators ¢;: L>®(Qr) x X1 x X5 — RT,
k1: L (Qr) x X1 x X9 — L% (Qr) such that

|ai(ta$afaC0aC,770,U;waU1,7J2)| <
P2 P2
< ex(w,vr,v)en(§) (16~ + ¢ 7 4 ol o+ [l + [k (w, vr, w2t 2) )

for a.a. (t,2) € Qr, every (&,¢o,¢,m0,m) € R x R*™1 x R™ 1 and (w,vy,v2) € L®(Qr) X X1 X X»
(:=0,...,n).

(A3) There exists a constant C > 0 such that for a.a. (t,z) € Qr, every (&, ¢o,¢ n0.1), (€,C0,Cm0,m) €
R x R x R*™! and (w,v1,v2) € L(Q7) x X1 X X»

Z (a/i(tawagaCOaCanOan;wavlaUQ) - ai(t5$a€7<0555 nOan;wavlaUQ)) (Cl - 57/) Z C- |§ - 5'171-
i=1

(A4) There exist a constant ¢ > 0, a continuous function v: R — R and bounded operators I': L>°(Qr) —
L>(Qr), ka: X1 — LY(Qr) such that

D ailt,z,€ Go, Cos 5w, v1,02)G = 2 (GofP 4 [¢P) = (€D (w)] (¢, ) [kz (01)] (8, )
=0
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for a.a. (t,z) € Qr and every (&, (o, (,m0,m) € Rx R x R (w, v1,v9) € L®(Qr) x X1 x Xo. Further,

k 1
[P -

loallx, =400 [lurlli,

(A5) If (wy) is bounded in L*®(Qr), wr — w a.e. in Qr and uy, — u weakly in X7, strongly in LP*(Qr), further,
Pr — p strongly in X, then

Jim llai(-, Wi, uk, Dug, Pry DPr; Wi U, Pr) — @i+, Wi, Uk, Dug, Pr, DPr; w, 4, P) || La1(p) = 0.
(Bl) For fixed (’LU,’Ul,Ug) S LOO(QT) X X1 X X2 functions bz QT X R x R x Rn+1 X LOO(QT) X X1 X X2 —

R (i = 0,...,n) have the Carathéodory property, i.e., they are measurable in (t,2) € Qr for every
(&,¢0,m0,m) € R x R x R™*! and continuous in (&, {p,70,7) € R x R x R**! for a.a. (t,z) € Q.

(B2) There exist a continuous function ¢;: R — RT and bounded operators ¢;: L= (Qr) x X; x Xa — RT,

ky1: L®°(Qr) x X1 x Xo — L%2(Qr) such that
18, €, Gos 0,50, 01,02)] < €1, 01,02)0(€) (ol ™+ i+ [Go |+ [ (w, 00, 02)](1,2))

for a.a. (t,7) € Qr and every (&, (p,7m0,m) € R x R x R (w,v1,v3) € L=®(Qr) x X1 x X2 (i =0,...,n).

(B3) There exists a constant C > 0 such that for a.a. (t,x) € Qr, every (&, Co,m0,7m), (&,¢0,70,7) € RxRxR" !
and (w,v1,v9) € L™®(Q1) x X1 X X5

n

Z (bi(tv'rvgvc()vn()a nw, v, v?) - b’b(ta 1'557 CO) ﬁOvﬁ; w, 1}1,’02)) (771 - ﬁ’b> Z é ' (|770 - ﬁ0|p2 + |77 - 777|P2> .
=0

(B4) There exist a constant & > 0, a continuous function 4: R — R and bounded operators I': L=(Qr) —
L>(Qr), ka: X2 — LY(Qr) such that

S it 2,€,Cov o, s w, o0, v > & (ol + [n172) — A(OF (e, ) (Il + a(w)] 1))
i=0
for a.a. (t,z) € Qr, and every (£,(o,m0,7) € R x R x R (w,v1,v9) € L®(Qr) x X1 x Xo. Further,

(0
k(e rian _ -

lvallx,—oo  [lv2l%,

(B5) If (wg) is bounded in L (Qr), wr — w a.e. in Qr and u, — u weakly in X1, strongly in LP*(Qr), further,
Pr — p weakly in X, then

Jim [|6:(-, Wi, U, PR, DPr; Wy Uk, P) — b3 (-, Wy Uky P, DPr; w, U, P)|| L2 (@) = 0.
(F1) For fixed v € X; function f: Q7 xR2x L*>®(Qr) x X; — R is a Carathéodory function, i.e., it is measurable

in (t,7) € Qr for every (£,{y) € R? and continuous in (£,(y) € R? for a.a. (t,z) € Q7. Further, there
exists a bounded operator K;: X; — R such that

(i) for every bounded set I C R there is a continuous function Ki: R — R™ satisfying |K1((p)| <
d1|40|é + ds for every (p € R, with some nonnegative constants d, d2 (depending on I),
(i) for a.a. (t,z) € Qr, every (£,¢0), (€,¢0) € I x R and every v € X,

|f(t,x,§,(0;v) - f(tazaga CO’U>| < CKI(’U)KI(CO) ! |§ - £|

(F2) There exist a bounded operator X»: X; — Rt and a continuous function Ks: R — R7T such that for a.a.
(f,(E) € QTJ every (5)(0)3 (5)(0) € R* and v € Xy

(2, €, Gosv) — F(t 2, Cosv)| < Ka(v) Ka(€) - [6o — Col-
(F3) There exists w* € L>°(Q) such that for a.a. (t,7) € Qr, every (£,() € R? and v € X7,
(€ —w" (@) f(t,z,& Co3v) < 0.
(F4) If (wy) is bounded in L°°(Q7) and uj — u strongly in LP*(Q7) then

Jm ILf (s wry urs ug) — f (5 Wy urs w) || L1(@qpy = 0.
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1.4 Weak form

If the above assumptions are satisfied we may define operators A: L™ (Qr) x X7 x Xo — X7, B: L>®(Qr) X
X1 X X2 — X; by:

[A(w, u,p),v1] := / Zaz (t,xz,w(t,x),u(t,z), Du(t,z),p(t, z), Dp(t, x); w, u, p)D;v1 (¢, x) dt de+
Q

T 4=1
+/ ao(t, z,w(t, x), u(t, z), Du(t, z), p(t, z), Dp(t, ¥);w, u, p)vi (t, x) dt dz, (10)
T

[B(w,u,p),ve] := Zb (t,z,w(t,x),ut,z),p(t, z), Dp(t, x);w, u, p)D;va(t, ) dt de+

+/ bo(t,ac,w(t,x),u(t,x),p(t,x),Dp(t,x);w,u,p)vg(t,x) dt dCL‘, (11)
T

for v; € X7 and vy € X». In addition, let us introduce the linear operator L : D(L) — X{ by
D(L) ={u € X1: Dy € X7, u(0) =0}, Lu = Dqu. (12)

By the operators above we may define the weak form of system (5)—(7) as

w(t,z) = wo(x) +/O f(s,z,w(s,z),u(s,z);u)ds for a.a. (t,x) € Qp (13)
Lu+ A(w,u,p) =G (14)
B(w,u,p) =H (15)

where G € X{ and H € X3 are given by

[G,vl]:/ g(t,x)vy(t, x) dt dx, [H,vg]:/ h(t, z)va(t, x) dt dz

T

where v; € X; (i = 1,2). It is well-known (see, e.g., [20]) that one obtains the above weak form by taking
sufficiently smooth solutions, using Green’s theorem and finally considering the whole system in the space
LP(0,T;V). Clearly, if the boundary condition is homogeneous Neumann then V = W1?(Q) (since the boundary
term vanishes in Green’s theorem) and if we have homogeneous Dirichlet boundary condition then V' = VVO1 P(Q)
(in order to eliminate the boundary term in Green’s theorem). Further, if we have a partition, for example in one
dimension with homogenous Dirichlet and Neumann boundary conditions then V = {v € WP1(0,1) : v(0) =
0,D,v(1) = 0}.

2 Existence of solutions

In this section we prove

Theorem 1. Suppose that conditions (A1)-(A5), (B1)-(B5), (F1)-(F4) are fulfilled. Then for every wy €
L>(Q), G € X{ and H € X; there exists a solution w € L>®(Qr), u € D(L), p € LP2(0,T;V2) of problem
(13)—(15).

First we formulate some statements related to the solvability of the above equations (13)—(15).

Proposition 2. Assume that conditions (F1), (F3) are satisfied. Then for every fixred u € LP*(Qr) and wy €
L>(Qr) there exists a unique solution w € L™ (Qr) of the integral equation (13), further, for the solution w,
estimate ||w||Lo(Q.) < [|wollLee(q) + |w* || Lo () holds.

Proof. Immediately follows from Proposition 2.3 in [6] since for fixed nonlocal variable «, condition (F1) is the
same as in the cited paper. O

Proposition 3. Assume (F1)-(F4) and let (uy,) C LP*(Qr), further, let wy, be the solution of (13) corresponding
to ug. If up, — uw in LP*(Qr) then wy, — w a.e. in Qr where w is the solution of (13) corresponding to u.
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Proof. We may assume that for a.a. x € Q, ug(-,z) — u(-,z). Fix such a point z € 2. Consider the following
estimate:

|wi(t, ) —w(t,x)| < / [f (s, 2, wi(s,x), ug(s,x);ur) — f(s, 2, wr(s, z), ur(s, x);u)| ds+
0

/0 |f(s,z,wk(s, @), ur(s, z);u) — f(s,z,w(s,z),u(s, x);u)| ds.

The first integral converges to 0 for a.a. x € Q by condition (F4), further, by (F1), (F2) it is easy to show that
the second integral is less then

t 1/p2 T
const - </ |wi(s, ) —w(s,z)P? ds> + const - / luk (s, z) — u(s,x)| ds.
0 0

Hence ¢
|wi(t, 2) — w(t, x)|P? < const - / |wi(s,2) — w(s, z)|P? ds + r(uk, wk)
0

where the remainder term r(ug,wy) tends to 0 as k — oco. Thus Gronwall’s lemma yields |wg (t, ) — w(t, x)| <
const - r(uy) — 0 which implies the desired a.e. convergence of (wy). O

Proposition 4. Assume (A1)-(A5). Then for every fized w € L*(Qr), p € X2 and G € X there exists a
solution u € D(L) of problem Lu+ A(w,u,p) = G.

Proof. The proof follows from Theorem 1.1 in [22] (based on the theory of monotone type operators, see [4])
since for fixed w € L>®(Qr) and p € X5 conditions (A1)—(A5) imply that operator A(w,-,p): X1 — X7 fulfils
conditions I-V of the mentioned theorem. O

Proposition 5. Suppose that (B1)-(B5) hold. Then for every fired w € L>®(Qr), u € X1 and H € X5 there
exists a solution p € X5 of problem B(w,u,p) = H.

Proof. The statement follows from the theory of monotone operators (see [27]) since conditions (B1)—(B5)
imply the boundedness, demicontinuity, pseudomonotonicity and coerciveness of operator B(w,u,): X — X3
for fixed w € L>®(Qr),u € X;. O

Proof of Theorem 1. The idea is similar as in [6]. We define sequences of approximate solutions of problem (13)—
(15) and we show the boundedness of these sequences. By using the diagonal method we will choose wealky
convergent subsequences and we verify that the weak limits of the subsequences are solutions of the problem.
For simplicity, in the proof we omit the variable (¢, x) of functions a;, b; if it is not confusing.

Step 1: approximation. Define the sequences (wy), (ug), (pr) as follows. Let wo(t, ) = uo(t, z) = po(t,x) =0

((t,x) € Qr) and for k =0,1,... let wit1,Uk+1, Pr+1 be a solution of the system:
t
i ta) =wn(o) + [ Fls.awna(s,0), s, )i ) ds (16)
0
Lupy1 + A(wp, upy1,Pr) = G (17)
B(Wk,’bbk,pk+1) =H. (18)

By Propositions 2, 4, 5 we have solutions wi11 € L®(Qr1), ug+1 € X1, Pr+1 € X2 so the above recurrence
yields the sequences (wy) C L>®(Qr), (ur) C X1, (Px) C Xo.

Step 2: boundedness. We show that the above defined sequences are bounded. By Proposition 2 for fixed
wo € L>(12) for the solution of equation (16) estimate |lwyy1l|z<(0r) < llwoll Lo (@) + [w*|| > (o) holds thus (ws)
is bounded in L>(Q1)

Now by choosing the test function v = ugy; in (17) and by using condition (A4) and the monotonicity of
operator L we obtain

(G, ury1] = [Lugyr, upy1] + [A(wk, Ukt1, Pr), Ur1] > 02/ (lu [Pt + [Dugga [Pt = y(wi)T(wr) k2 (un 1)) =

T
||k2(uk+1)||L1(QT))
luk+1llx,

-1
> cal|ursllx, (IIWHII’;’& = [Iv(wr) (W)l Lo (@) -

Whence by the boundedness of (wy) we conclude for some K > 0

[[k2 (whs1) L1 (@)
llurtall,

[y e (1 -K- ) < const.
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Now (8) implies that (ux) is bounded in Xj.

The boundedness of (px) in X5 follows by similar arguments as above by using condition (B4) and the
boundedness of the sequences (wy), (ug).

We need also the boundedness of the sequence (Luy) in X;. By Holder’s inequality

[[A(wr, wkt1, Pr), V]| < <Z l|ai(wk, k41, Duk41, Pr, DPri Wi, Wit1, Pr) |Lq1(QT)> vllx,-
=0

and from condition (A2) it follows that for all ¢

llai(wk, ur+1, Dukt1, Prs DPr; Wiy Ukt 1, Pr) | L1 Q1) <
< comst - ¢y (wi)er (Wi trr1, Pr) (lur a5, + 1PRI%, + 11 Wk, v 1, PE) | Lo (1)) -
Therefore by the boundedness of the sequences (wy), (ug), (pr) and the boundedness of operators ¢y, ¢y, ko we
conclude |[Lugt1,v]| = [[A(wk, uk+1, Px) + G, v]| < const - ||v]|x, so (Luy) is a bounded sequence in X7.

Step 3: convergence. Due to the boundedness of the sequences (ug), (Lug), (pr) (in reflexive Banach spaces)
each has a weakly convergent subsequence, further, by applying a well known embedding theorem (see [20])
it follows that there exist subsequences (which will be denoted same as the original sequences) and functions
w € L>®(Qr), u € X1, p € X5 such that

ur — u weakly in X7, strongly in LP*(Qr), a.e. in Qr;
Luy — Lu weakly in X7;
pr — p weakly in Xo.
In what follows, we show that w,u, p are solutions of problem (13)—(15).

Since up — w in LP(Qr), further, wiy;1 is the solution of equation (16), by Proposition 3 it follows that

wi — w a.e. in Q7 and functions w, u satisfy the integral equation (13).

_ Now let us consider equation (18). First we show that pr, — p in X». To this end, let us introduce operator
B: LOO(QT) X X1 X X2 X LOO(QT) X X1 X X2 — X; by

[B(w, u, p;w, v1,v2), 23] := / Zb (t,z,w(t, x),u(t,x), p(t,z), Dp(t,x); w,v1,ve)D;22(t, x) dt dz+
Q

T =1

+/ bo(t,x,W(t,x),u(t,ZL'),p(t,ZL'),Dp(t,SC);’LU,Ul,’UQ)ZQ(t,ZL') dt dx (19)
T

for zy € X,. Observe B(w, u,p) = B(w,u, p; w, u, p). By condition (B3) we have

[B(wkaukapk-‘rl;wau?p) - B(wk5uk’p;w7uap))pk+1 - p] Z é : Hpk"rl - le))(ZZ (20)

On the left hand side of the above inequality we have the following decomposition:

[B(wka Uk, Pk+15W, U, p) - B(wka Uk, p;w, u, p)a Pk+1 — p] = [B(wka Uk, Pk+1; Wk, Uk, pk+1)a Pk+1 — p]+
+ [B(wk,uk,PkH;W,U,P) - B(wk,uk,Pk+1;wk,uk,Pk+1)7pk+1 - PH
+ [B(w, u, p;w, u, p) — B(wp, g, P;w, 4, P), Pt — P| — [B(w, u, p;w,u, p), Prs1 — ). (21)
We show that each term on the right hand side tends to 0. By recurrence (18), B(wg, Uk, Prt1; Wk, Uk, Prs1) = H,
further, px+1 — p weakly in Xy which implies the convergence of the first and the last term. The convergence

of the second term follows from condition (B5). In order to verify the convergence of the third term, observe
that

|[B(wkaukap;w7uap) - B(w7uap;wau7p)apk+1 - p]' <

< Z ||bi(wk; Uk, P, Dp;w7 u, p) - bi(wa u, p, Dp7 w,u, p)”L"2 (Qr) - ||pk+1 - p||X2 (22)
=0

and by condition (B2)

|bi(wk,uk,p,Dp;w,u,p) - bi(wvuapaDp;wvuap>|q2 S

< const+ & (w, 0, p) - (11 ()| + [e()1%) (|pIP* + DpIP + usf?* + ul? + [y (@, u, p)| %)
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Due to the boundedness of (wy) in L (Qr) and the convergence of (uy) in LP*(Qr) the left hand side of the
above inequality is equi-integrable (see [10]), in addition, it a.e. converges to 0, therefore by Vitali’s theorem the
left hand side converges in L!(Qr) to the zero function. Thus (because of the boundedness of (p)) the right
hand side of (22) tends to 0. Hence all terms on the right hand side of equation (21) converges to 0 thus (20)
implies pxy1 — p in Xo.

Now by using the same arguments as in [6] one obtains that B(wg, ik, Pri1;w, ,p) — B(w,u, p;w, u,p) =
B(w,u,p) weakly in XJ. Further, by condition (B5) it is not difficult to see that B(wk, g, Pry1; W, U, P) —
B(wk,uk,pk+1,wk,uk,pk+1) — 0 strongly in Xj thus B(wk,uk,pk+1,wk,uk,pk+1) — B(w,u,p). Then from
recurrence (18) we conclude B(w,u,p) = H, i.e., w,u, p are solutions of problem (15).

Finally, A(w,u,p) = G can be shown by similar arguments as above. The proof of the theorem is complete.

O

3 Examples

We show some examples for functions satisfying conditions (A1)—(A5), (B1)-(B5). Let functions a;, b; have
the form

ai(t, @, €, Co, ¢, Mo, 15w, v1,v2) = [m(w)](t, 2) [ (01)] (L, 2) [ (v2)](t, ) P(E)Q (1m0, )G IC P~ +
1(¢

L) [@(01)] (8, ) POGICI™ Y, if i £ 0, (23)

ao(t, €, Co, G, Mo, 15w, v1,v2) = [m(w)](t, ) [ (v1)](t, 2) [Y (v2)] (E, ) P(E)Q (10, 1) ol Co [ >+
w)]

[Bo (v0)](t,2) Po(€)Col¢ol ™, (24)

bi(t, x, &, Co, oy 175w, 01, 02) = [K(w)](E, 2)[A(01)] (8, 2) [0 (v2)](E, 2) R(€)S (Co)mil (110, m) [P~ +
+ [R(w)](t, @) [0 (v2)] (8, &) R(E)mi| (o, m)|"> ™1, i = 0,...,m, (25)
where 1 <r; <p; —1 (i =1,2) and the following hold.

El. a) Operators 7: L>(Qr) — L>=(Q71), ¢: LP*(Qr) — L>®(Q1), ¥: Xo — L*°(Qr) are bounded, ¢ and
1 are continuous, further, if (wy) is bounded in L>®°(Qr) and w; — w a.e. in Q7 then w(wy) — 7(w)
in L>*(Qr). In addition, P € C(R), Q € C(R"™!) N L>*(R"*1), and there exists a positive lower
bound for the values of 7, p, ¥, P, Q.

b) Operators 7, 7: L>®(Qr) — L>®(Qr), &, $o: LP*(Qr) — Lm’f—nlfl(QT) are bounded, ¢ and @ are
continuous, further, if (wy) is bounded in L*®(Qr) and wy — w a.e. in Qr then T(wy) — 7(w)
and 7o(wr) — 7o(w) in L=(Q7). In addition, P, P, € C(R), operators 7, % and function P are
nonnegative and

A pp—l;l—l
Jo, |Bo(wn)| 7T

1m
v [l 36, =400 v Il

=0.

E2. a) Operators x: L>®(Qr) — L>(Qr), \: LP*(Qr) — L>®(Qr1), ¥: LP2(Qr) — L*°(Qr) are bounded, A
and ¢ are continuous, further, if (wy) is bounded in L>®(Qr) and wy — w a.e. in Qr then k(wy) —
K(w) in L*®(Qr). In addition, R € C(R), S € C(R)N L*(R), and there exists a positive lower bound
for the values of x, \,9, R, S.

b) Operators #: L>®(Qr) — L>(Qr), ¥: LP*(Qr) — L7 (Qr) are bounded, 9 is continuous,
function R € C(R), further, if (w) is bounded in L>°(Qr) and wy — w a.e. in Q7 then R(wi) — &(w)
in L>=(Qr). In addition, operators %, and function R € C(R) are nonnegative and

~ pa—1
Jor [9(ve) 727277

im
llozlxg—+o00 ||U2H§§2

=0.

Proposition 6. Assume that E1-E2 hold, then functions (23)—(25) fulfil conditions (A1)-(A5), (B1)-(B5).

By using Young’s and Hoélder’s inequalities it is not difficult to prove the above statement, a detailed proof
can be found in [5].

Operators 7, 7, 7p, k, & may have the form [7(w)](t,x) = / |w|?, where 1 < 3. Further, operators ¢, A may

t

()t 2) = @ (/ o) o o (/d) ,
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where 1 < < p1,d € L%(Qr), ® € C(R) and ® > const > 0. Similarly, ¢» may have in the form

W)t z) = T (/Q ol? + |Du|ﬁ) or U (/Q div +d2|Dv|> ,

where 1 < 3 < po, d1,ds € L2(Q1), ¥ € C(R) and ¥ > const > 0 For ¢ consider, e.g.,

[B(0)](t,z) = & (/Ot d(s, z)v(s, z) ds> . B </Q d(t, z)v(t, z) das) or & ([/Ot lo(s, 2)|° ds] é) :

where d € L®(Qr), 1 < 3 < p1, ® € C(R), ® > 0 and |®(7)| < const - |7|P*~"~1. In the case of ¢y one has
similar examples as for ¢ above, except ® does not have to be nonnegative.

For operators ¥,9 we may consider similar examples as for ¢, @ above, by replacing exponents p; with po
and r; with 7.

It is not difficult to show that the above operators fulfil conditions E1-E2, for similar arguments see, e.g.,
[5]-

As an example for function f consider, e.g., f(t,z,§,Co;v) = —[p()](t, x) f1(t, x) f2(¢o)(§ — w*(x)), where
p: LP(Qr) — L*™°(Qr) is bounded and nonnegative, further, f; € L>®(Qr), f2: R — R is nonnegative,

Lipschitz continuous and |f2(¢p)| < const - |C0|%-

4 Solutions in (0, c0)

In the previous section we have proved existence of solutions for all finite time interval (0, 7). In what follows
we shall show existence of weak solutions in (0,00). Denote by X = L (0, 00;V;) the space of measurable

functions u: (0,00) — V; such that u|ry € LP*(0,T;V;) for every 0 < T < oo, further, let L{%, (Q) be the
space of functions w: Q- — R such that w|g, € LOO(QT) for every 0 < T' < co. In the following we suppose

(Vol) Functions a;: Qoo X R x R*" 1 x R x [°(Q) X X{° x X — R, bi: Qoo X R xR x R" 1 x L®(Q4) X
XPx X >R @G =0,...,n), [: Qu X R? X L{® (Q) X X7° — R have the Volterra property,

i'e'a ai(tvxv§7(05CvﬁOan;wvvlav2)|QTa bi(t;za&vCOaUOvnawavlvaHQTa f(tv'rvg?é.o;w”QT depend Only on
(W|Qr,v1]Qr, v2|Qr) for every 0 < T < 0.

Now we may define the weak form of (5)—(7) in Q. For fixed 0 < T' < oo introduce operators Ar: L= (Qr) X
LPr(0,T;V4) x LP2(0,T;Va) — L%(0,T; V"), Br: L®(Qr) x LP(0,T;V1) x LP2(0,T;V,) — L%(0,T;V5),
Lp: D(Lt) — LE(0,T;V;*) by formulae (10)—(12). We say that w € L2 (Qx),u € X{°,p € X5° is a solution

of (5)—(7) in (0, 00) if for all 0 < T' < oo (for the restrictions of the functions to Qr)

w(t,z) = wo(x / f(s,z,w(s,z),u(s,z);u)ds (t,z) € Qr (26)
Lru+ Ar (w, u, p) = Gr (27)
Br(w,u,p) = Hr (28)

where G7 = G|, 1), Hr = H|o,r) with G € L]} (0,00;V)*), H € L (0,00; V5"). Observe that the Volterra

property ensures that if w, u, p is a solution in (0,T) for some T then these functions are solutions in (0, T) for
all T < T.

Theorem 7. Suppose that (Vol), (A1)-(A5), (B1)-(B5), (F1)-(F4) hold (in the sense that they are satisfied by
the restrictions of functions a;, b;, f to Q7 for all0 < T < o). Then there ezists w € L™(Qoo),u € X° p € X35°
such that w|g,, u|lor, Plor 8 a solution of problem (13)—(15) for all0 < T < oo .

Idea of the proof. One may apply the arguments of the proof of Theorem 1 in [7] word for word. The idea is the
following. Due to Theorem 1 we have solutions in (0, T} ) where T, — oco. By showing the boundedness of these
solutions and using a diagonal process one may choose weakly convergent sequences of solutions. After taking
k — oo we obtain a solution in (0, 00). O
Remark 8. Ezamples (23)—(25) fulfil the conditions of the above theorem if m, T, 7o, Kk, Kt Ly (Qoo) — LS. (Qoo),

| loc
p1—

>‘ leoolc(QOO) — Ly (Qoo), ¥, 0: Lloc(QOO) — L5 (Qo); @5 ¢0: Lloc(QOO) Lo I(Qoo) b L%C(QOO) -
Lp2 pa-ra—1 (Quo) are of Volterra type and conditions E1-E2 are satisfied for all finite T > 0. E.g., the operators

loc
given after Proposition 6 serve as an example for the above.
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4.1 Boundedness

Now we show that under some further assumptions, the solutions, formulated in the previous theorem are
bounded in appropriate norms in the time interval (0, 00). First suppose

A4*. There exist a constant ¢ > 0, a continuous function v: R — R and Volterra operators I': L{® (Qx) —
Li5o(Qoo), k22 X7° — Liye(Qoc) such that

n

D ailty @, €,Co, Cmoymsw, v1,02)G > €2 ([GofP2 + [¢[P2) = (D (w)] (¢, @) [ka (v1)] (¢, @)

=0

for a.a. (t,7) € Qoo, every (£,(o,m0,m) € R x R x R and (w,v1,v2) € L®(Qoo) X X{° x X5°. Further,
(8) holds and for all v € X and

/I[kz(vl)](t,w)ldxﬁal sup |[[o1(7)l|72q) + x1(t) sup [Joa(7)l[72q) +1
Q T€[0,t] T€[0,t]

with some a1 > 0, p; < p; and x1: R — R such that tlim x1(t) = 0.
— 00

B4*. There exist a constant ¢ > 0, a continuous function 4: R — R and Volterra operators I': L®(Qu) —
L®(Qw), k2: X5° — L .(Qs) such that

n

D bt & Govo, i w, w1, v = & (ol + ™) = SO @)t 2) (1 + a(v2))(t, 7))

=0

for a.a. (t,7) € Quo, every (&,o,m0,m) € R x R x R*"™! and (w, vy, v2) € L®(Qs) X X x X5°. Further,
(9) holds and for all v € X$° and

/ ko (v2)](t, )| do < @z [ess sup oa(7) £ + xa(t) ess sup oa (7|72 + 1
Q T€[0,t] T€[0,t]

with some as > 0, p2 < p2 and x2: R — R such that tlim x2(t) = 0.
— 00

Theorem 9. Suppose that p1,pa > 2 and conditions (Vol), (A1)-A3, (A4*), (A5), (B1)-(B3), (B{*), (B5),
(F1)-(F4) are satisfied, further, |G(-)||v:, [[H(-)|lv; € L>(0,00). Then for the solutions w,u,p formulated in
Theorem 9, w € L (Q), u € L>=(0,00; L2(2)),p € L>(0, 00; V2).

Idea of the proof. We may apply the arguments of the proof of Theorem 2 in [7]. Introduce the notation y(t) =
[lu(t, -)H%Z(Q) (then y is continuous see, e.g., [27]). By choosing arbitrary 0 < 71 < T» < oo, (13), conditions
(A4*), Young’s inequality and the continuous embedding Vi — L?(Q) imply

T>

1 1 b T2 e »
= (y(Th) —y(Tw)) + —02/ y(ﬁ)T1 dt < const - / sup y(T)T1 + x1(t) sup y(7‘)71 +1] dt.
2 27 Jn T \r€0.] ref0,4

It is not difficult to see that the above inequality implies the boundedness of y in (0, 00), a detailed argument
can be found in [24]. The boundedness of p follows from the boundedness of y similarly as above, by using
conditions (B4*), see [7]. O

Remark 10. Ezample (23)—(25) fulfil the conditions of Theorem 9 if assumptions of Remark 8 are satisfied, in
addition

/ [Bo(v)](t,2)| =T da < e l sup [|v1(7)[|Z2(q) + x1(8) sup [lor (7)) + 1
Q T7€[0,t] 7€[0,]

for all vi € L (Qoo) with some constants a; > 0,01 < p1 and function x1: R — R such that tlim x1(t) =0,
—00

further, similar condition holds for ¥ (by changing the indeces from 1 to 2, and L*(Q) to Va). For example,
operator po may have the form

[@(v)](t,z) = </Q d(t,x)v(t, ) dz> , </Q |d(t, z)||v(t, )P dz> or x1(t)® ([/Q |d(t, )| |v(t, z)|? dz] é) )

where d € LOO(QOO)J 1< ﬁ < 2: (i)a(i)OaXI € C(R) and |(i)(7-)| < const - |T|p179171, |(i)0(7-)| < const - |7.|p17r171’
lim x1(7) =0.

T—00
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4.2 Stabilization

In this section we consider a special case of problem (26)—(28), namely, let p1 = p2 = p (thus ¢1 = ¢2 = g,
Vi =V, =V and X; = Xy = X). In what follows, we prove stabilization of the solutions of the system, that
is, we show the convergence (in some sense) of solutions as ¢ — oo to the solutions of a stationary system. We
need some further assumptions:

A6. There exist Carathéodory functions a; oo: 2 x R x R*"™! x R"*! — R (i = 0,...,n) such that for a.a.
x € Q and every ((o,(,m0,17) ERXR* xR xR?, £* € R, w € L®(Qoo),v1 € X®NL>®(0,00; L2()),v2 €
XN L*®0,00;V),

fhnfl* ai(ta ‘r)ga CO) 43770’77; w, U15U2) = ai,oo(xaé-*a CO? Canoa 77)

t—oo

B6. There exist Carathéodory functions b; oo: QX RXxRxR"™ — R (i = 0,...,n) such that for a.a. z € Q and
every (Co,0,7) € R x R7L, € € R, w € L%(Quo),v1 € XN L¥(0, 005 L2(Q), 03 € X N1 L=(0,00; V),

Eli{?* bz(t; 1'557 CO) Mo, 15w, 1)1,’02) = bi,oo('rvg*v COleOa 77)

t—o0

AB There exists a positive constant, C such that for a.a. (t,z) € Qo and every £ € R, (Co, ¢, 10,1), (Co, s 70, 7) €
R xR” x R x R", (w,v1,v2) € L®(Quo) X X° x X5°,

M=

(a’i(ta‘r)gaCOaCanOan;wa’Ulﬂ/UQ) - ai(taxagaé()aga ﬁOaﬁ;wa’UlaUQ)) (Cl - 51)—’—

<.
[}

+

-

(=)

(bi(t7x7§7407770777) - bi(t7x7§7<~07ﬁ05 ﬁ)) (771*771) > e(|€0 - <~0|p + |< - 5|p + |770 - ﬁ0|}7 =+ |77 - ﬁ|p) .

1=

F5. For every fixed v € XN L% (0, 00; L?(9)) there is a constant m > 0 such that (£ —w*(2))f(t, 2, &, (o;v) <
—m(§ — w*(z))? for a.a. (t,z) € Qu and every (&, (o) € R?.

Now introduce operators As: L®(Q) XV xV = V* By: L®(Q) xV xV — V* by

(Anclp).0) = [ 3 asou(, (@), ulz). Du(o). (o), Do) Diol) vt

+ /Q ag,00 (z,w(x),u(z), Du(z), p(x), Dp(z))v(z) dz,

(B2, = [ 3 b, (), (o). pla). D(a)) Dy dt

+ / bo.oo (2, 0(x), u(x), p(z), Dp(x))o(z) dz,
Q

Theorem 11. Assume conditions (A1)-(A3), (A4*), (A5)-(A6), (B1)-(B3), (B4*), (B5)-(B6), (AB), (F1)-
(F5) are satisfied (with p = p1 = p2), further, there exist Foo, Goo € V* such that

Jim [|F(t) = Fully+ =0, lim [|G(t) = Golly- = 0.

Then there exist us € V,pPoo € V such that for the solutions w,u,p of problem (26)—(28), w(t,:) — w* in
t+1

t4+1
L*(Q), u(t) — usx in L3(Q), / lu(s) — usoll}, ds — 0 ,/ Ip(s) — Poolliy ds — 0, further,
t—1 -
Aoo(w*auooa Px) =G (29)
Boo (W™, Uoos Poo) = Hoo- (30)

Sketch of the proof. We follow the proof of Theorem 3 in [7]. Let w,u,p be solutions of (26)—(28) then by
Theorem 9, w € L®(Qu), u € L>(0,00; L*(Q)), p € L*>(0,00; V2). By using the same arguments as in the
above mentioned paper, conditions (F3), (F5) imply estimate ||w(t,-) — w*(:)|| L) < |lwol Lo (@ye™™" which
yields the convergence w(t,-) — w*(:) in L>=(£2).
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Now by the using the idea of Proposition 5 and condition AB it is easy to see that for fixed w* there exist
a unique solution us € V,po € V of problem (29)—(30) see, e.g., [27].

In order to show the desired convergences we prove a differential inequality for v and p. From equations
(26)—(28) and (29)—(30) we obtain

(De(ut) = too), u(t) = uoo) + ([A(w, u, P)J(t) = Aco (W, oo, Poo ), ult) — tioo)+
+([B(w, 4, p)I(t) = Boo(W", thoos Poo)s P(E) = Poo) = (G(t) — Gooy u(t) = tioo) + (F(t) = Foo, P() = Poo). (31)

1
Observe that the first term equals to iy’ (t) where y(t) = / (u(t) — uoo)?. Further, for the second and third

Q
terms of the above equation we have by condition AB and Young’s inequality

([Aw; 4, P)I(t) = Aco (@™, tioos Poo), ult) — too) + ([B(w; 4, P)I(t) = Boo (W tioo; Poo); P() — Poo) =

eP eP
> C- (Jlu(t) — usolly, + [IP(t) — Pc|V,) — ;IIU(t) — U}, — ;Hp(t) — Pooll—

1 1 *
- E"[A(Wauooapoo;wvuap)](t)_AOO(UJ auOOapOO)ll\J/*_
1~ *
- qgll[B(w,uoo,poo;ww,p)](t)—B(w  Usos Poo) |1+ (32)

with some ¢ > 0 (and operator A is defined similarly as B, see (19)). We show that last two terms on the right
hand side of the above inequality converges to 0 as ¢t — oco. Clearly,

[[A(w, oo, Poo; W, 1, P)] () — Aco (W™, oo, Poo) | & <

n
SZ/ |a;(t, -, w(t,+), Uoo, Dlioss Poo, DPooi W, Uy P) — @00 (W™ Uoss Dllso, Pocs DPoo )|
i=0 7%

The integrand on the right hand side is a.e. convergent in Q as ¢ — oo by condition A6 and since w(t, z) — w*(z)
for a.a. x € Q. Further, it is integrable in Q by conditions (A2), (A6) and estimate

|a”i(ta ',W(t, ')a Uo, Duoovpoov Dpoo) - ai,oo(W*vuOO; Duoovpooa Dpoo)|q S
< const - ([le1 (W)l (@u) + lle1(w) 2 (@u)) (too]” + [Dtioo|” + [Poc|” + [DPoo|” + [[K1ll ()
thus by Lebesgue’s theorem we obtain ||[A(w, teo, Poo; @, U, P)](t) — Aco (W, Uso, Poo)||&e — 0 as t — oo. The

convergence of the last term in (32) can be proved similarly.
On the right hand side of (31) by Young’s inequality we obtain

(G(t) = Goos u(t) = too) + (F(t) = Foo, P() = Poo)| <

gP 1
—[u(t) — usolly, + ;IIp(t) — Py + @I\G(t) — Gl

1
q E _F q
v qEqH (t) = Feolly- (33)

where the last two terms tend to 0 as ¢ — oc.
Now, by choosing sufficiently small ¢ in (31) and by using (32), (33), the above convergences and the
continuous embedding LP() — L?*(Q) we obtain

P
2

y'(t) + const - y(t)> + const - [p(t) — Poolly, < (%)

where p(t) — 0 as t — oo and the constants are positive. It is not difficult to show that this inequality implies
tlim y(t) = 0 (see the proof of Theorem 2 in [24]), furthermore, by integrating (31) over (¢t — 1,¢+ 1) one can
— 00

t+1

t41
deduce the convergences / lu(s) —usl}y ds — 0, / lp(s) —Pool|}s ds — 0, too. The proof of stabilization
t—1

t—1

is complete. O
Consider the following functions for ¢ = 0,...,n
ai(t, z,€, o, ¢, 10, 1w, v1,v2) = [w(w)](t, @) [p(v1)](t 2)[$(v2)](E 2) P€)Gil (Cos 0, P2, (34)
bi(t, 2,€, Cos 10, 1w, w1, v2) = [K(w)](t, @) [A(wi)](E, 2) [9(v2)] (t, 2) R(E)n:] (o, mo, m) P2 (35)
Suppose
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E3. a) Operators 7: LY (Qoo) — L(Qoo), 0,0 LY. (Qoo) — L. (Qso) are of Volterra type, further, for

loc loc loc loc

every 0 < T < oo, m: L®(Qr) — L*®(Qr), v, ¢¥: LP(Qr) — L*®(Qr) are bounded, ¢ and 1 are
continuous, and if (wy,) is bounded in L*°(Qr) and w;, — w a.e. in Qp then m(wy) — 7(w) in L>®(Q7).
In addition, P € C(R), and there exists a positive lower bound for the values of 7, ¢, 1), P.

b) There exist Too, Poo, Yoo € L(Q) such that for every w € L>®(Qx),v1 € X°NL>®(0,00; L%()),v2 €
XN L*>®(0,00; V),

lim (|| [w(w)](,-) = Tooll () + ([0 (@1)](t, ) = Poollzae() + 1 [ (v2)](E 1) = Yoo llL (o)) =0.

t—o0o

E4. a) Operators £: L (Qs) — L.(Qso), M 01 L. (Qso) — L2.(Qso) are of Volterra type, further, for

loc loc loc loc

every 0 < T < oo, k: L™®(Qr) — L=(Qr), \,9: LP(Qr) — L>*(Qr) are bounded, A and ¥ are
continuous, and if (wy) is bounded in L*®(Qr) and wy — w a.e. in Qr then k(wy) — k(w) in
L>°(Qr). In addition, R € C(R), and there exists a positive lower bound for the values of 7, ¢, 1, R.

b) There exist Koo, Moo, Voo € L(Q) such that for every w € L®°(Qoo),v1 € X°NL>®(0,00; L%()),v2 €
XN L%®(0,00; V)

lim (|| [s(w)](¢, ) = foo | L) + [A@D](E ) = Asollzoe (@) + [[(v2)](E ) = Vool () = 0.

t—o0

It is not difficult to prove (for some arguments see, e.g., [9, 5, 22])

Proposition 12. Suppose 2 < p < 4 and E3-E/, then the above (34)—(35) functions satisfy conditions (A1)-
(A3), (A4*), (A5)-(A6), (B1)~(B3), (B{*), (B5)~(B6), (AB) with py = p2 = p.

If we consider

a/i(ta x, 67 CO) Ca Mo, 7); W, V1, UQ) = §i|(COa C)lP—Q + [ﬂ-(w)](t’ $)[¢(U1 )](t’ ‘T)P(g)gzl(COa Ca Mo, n)lT_Q’
bi (tv Zz, §7 407 Mo, 7); W, V1, v?) = §1|(7707 77)|p72 =+ [K,(’LU)](t, ZL')(t, 1')[19(’02 )](t’ ZL')R(&)T]J(C(), Mo, 77)|T72
where 1 < r < 4 and E3-E4 hold then it is easy to see that these functions satisfy conditions (A1)—-(A3), (A4*),
(A5)—(A6), (B1)-(B6), (AB) with p; = p» = p > max{2,r}. E.g. operators 7, ¢ may have the form
r(wlta) =) [ 0l +r(a), [o)t) = 50 [ Aot ) ds+ o (o).

where tlim x(t) =0, tlim X(t) =0 and d, oo, Yoo € L™®(Q),1 < ;1 < < 2. The other operators may have
similar form.
As an example for function f consider, e.g., f(t,z,&,{o;v) = — (& — w*(:v))/ |u(t, z)|? dz where 1 < 3 < 2.
Q
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