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Abstract

For a certain class of neutral differential equations it is shown
that these equations can serve as population models in the sense that
they can be interpreted as special cases or caricatures of the standard
Gurtin-MacCamy model for a population structured by age with birth
and death rate depending on the total adult population. The delayed
logistic equation does not belong to this class but the blowfly equation
does. These neutral delay equations can be written as forward systems
of an ordinary differential equation and a shift map. There are several
quite distinct ways to perform the transformation to a system, either
following a method of Hale or following more closely the renewal pro-
cess. Similarly to the delayed logistic equation, the neutral equation
(and the blowfly equation as a special case) exhibit periodic solutions,
although only for a restricted range of parameters.
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1 Introduction

The classical model for a single population is the Verhulst equation

u̇ = au(1 − u/K) (1.1)
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which is based on the idea of an a priori given carrying capacity K. An-
other approach uses a birth rate b(u) and a death rate µ(u) depending on
population size,

u̇ = b(u)u− µ(u)u. (1.2)

In this case a carrying capacity K can be defined a posteriori as the posi-
tive solution of the equation b(u) = µ(u) (provided the solution exists and
is unique). Experiments and field observations have suggested that isolated
populations can show oscillatory behavior even under constant nutrient sup-
ply. Such oscillations appear to differ from predator-prey cycles and they
have been explained as being caused by delays. The eminent ecologist G.E.
Hutchinson ([18], [19]) thought of a delayed response to diminishing resources
and suggested the equation

u̇(t) = au(t)

(

1 −
u(t− τ)

K

)

(1.3)

as a modification of (1.1) while others, starting from experiments [31], [32],
thought of a delay in maturation and arrived at what is now called the blowfly
equation [35],

u̇(t) = b(u(t− τ))u(t− τ) − µ(u(t))u(t). (1.4)

The blowfly equation has been investigated and extended in [10], [39], it has
been rediscovered many times, a recent example is [1].

The equations (1.3) and (1.4) behave quite differently with respect to the
onset of oscillations [12]. It seems difficult to justify Hutchinson’s equation in
terms of basic biological assumptions ([28], [29]) whereas the blowfly equation
can be derived from age-structure models.

Neutral delay equations have been suggested as population models oc-
casionally [22]. But usually they did not fit well into the available theory
of neutral delay equations. In general neutral delay equations have been
considered to be difficult in comparison with standard delay equations.

In [3] it has been shown that there is a large class of neutral delay equa-
tions of the general form

u̇(t) =
{

b1(u(t− τ))u(t− τ)

+b2(u(t− τ)) [u̇(t− τ) + µ1(u(t− τ))u(t− τ)]
}

−µ1(u(t))u(t) (1.5)
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which can be derived by projection from the Gurtin-MacCamy age struc-
ture model and thus can be justified in basic biological terms. The blowfly
equation is contained as a special (non-neutral) case for b2 = 0. It turns out
that this class of equations is more or less identical with a class of neutral
equations that have been studied by J. Hale and coauthors [17], [4], [16], and,
in particular, [15], p.35.

The equation (1.5) can be written (in many different ways) as a coupled
system of an ordinary differential equation and a shift map, for instance as
a system

u̇(t) = z(t) − µ1(u(t))u(t)

z(t) = b1(u(t− τ))u(t− τ) + b2((t− τ))z(t − τ) (1.6)

for the (adult) population size u and the rate z of entry into the adult class.
So, what does one achieve by replacing one infinite-dimensional system

(the Gurtin-MacCamy system) by another, i.e., (1.5) and (1.6)? First of all,
one can identify those delay equations which allow a viable interpretation as
population models. In particular, one finds a class of neutral equations with
this property. The derivation tells further, which biological mechanism causes
the neutral term, and that the neutral term always comes together with
another term (see the b2 term in (1.5)). This is to say, one cannot get a viable
model from just putting a neutral delay term into, say, the blowfly equation.
Second, systems of the form (1.6) are easy to handle for numerical analysis,
they depend on few parameters and they are amenable to the theory of delay
equations, see, e.g., [41]. Second, our approach distinguishes a somewhat
larger class of neutral delay equations (which we call quasi-linear) for which
a reduction to a system of a shift and an ordinary differential equations is
possible.

How does our approach fit into the general theory of population models
with age (or size) structure? The Gurtin-MacCamy system has been analyzed
in great detail in [36], [42]. At present there are several rather independent
lines of research using operator semi-groups which still reflect the two classical
approaches, by integral equations (Sharpe-Lotka) and by partial differential
equations (McKendrick). The Volterra integral equations approach ([9], [6],
using adjoint semigroups, [7] [8]) states that “every reasonable structured
population model (not only age structured) can be written as a system of
Volterra integral equations (delay equations) of the form x(t) = F (xt) or
x(t) = F1(xt, yt), ẏ(t) = F2(xt, yt)” (xt is the usual t-segment of the func-
tion x). Of course (1.6) has this form. However, our goal is not further
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generalization but getting delay equations. The other approach is based on
operator semigroup theory following [36], [42]. The recent paper [26] based
on integrated semigroups includes an excellent review of earlier work, These
authors also discuss the relation between neutral delay equations and popu-
lation models exhibited in [3].

The paper is organized as follows. In section 2 we start from the Gurtin-
MacCamy model, assume that the coefficients are of a simple but highly
singular type, and derive a system of coupled delay equations. In section 3
we discuss the blow-fly equation as a special case. In section 4 we derive a
neutral equation as a special case and we present several equivalent systems
of a shift map coupled to an ordinary differential equation. In section 5 we
study a general class of neutral equations which we call “quasi-linear” and
we establish the connection to the theory in [15] [16]. In section 6 we address
forward continuation and in section 7 linear stability.

2 The Gurtin-MacCamy model

Linear models for mortality have been designed by Euler and Daniel Bernoulli
in the eighteenth century. Sharpe and Lotka included a birth law and de-
signed a model in the form of a Volterra integral equation or renewal equation.
McKendrick 1926 cast this model in the form of a hyperbolic differential equa-
tion. Feller 1941 proved for the Volterra equation a renewal theorem, i.e.,
convergence to the unique persistent (exponential) solution. The Sharpe-
Lotka-McKendrick model is linear and hence does not show a saturation
effect. Gurtin and MacCamy [11] modified the model by letting the birth
and death rates depend on total population size, We consider the following
system of Gurtin-MacCamy type

∂u(t, a)

∂t
+
∂u(t, a)

∂a
+ µ(a,W (t))u(t, a) = 0

u(t, 0) =

∫

∞

0

b(a,W (t))u(t, a)da

W (t) =

∫

∞

0

ρ(a)u(t, a)da (2.1)

where W is the weighted population size. It is well known that in some cases
this model can be “reduced” to a system of ordinary differential equations.
If the functions µ, b and ρ ≡ 1 do not depend on age a then the total
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population size U(t) =
∫

∞

0
u(t, a)da satisfies U̇ = b(U)U − µ(U)U . More

generally, if the functions b(a,W ), µ(a,W ) are exponential polynomials of
the variable a, with W as a parameter, and ρ ≡ 1, then certain functionals
Pi(t) =

∫

∞

0
pi(a)u(t, a)da satisfy a system of ordinary differential equations,

see [23] [24], [2] [30], [3]. If the exponential polynomials have many terms
then the system of ordinary differential equations gets cumbersome, and this
“chain trickery approach” is of little use, even more so, as the positive cone
of the o.d.e. system is not the image of the positive cone of the Gurtin-
MacCamy system under the reducing projection, see [3]. A similar reduction
works for delay equations with exponentially distributed delays.

Here we apply another reduction principle which has been used by several
authors [2] [37] [38] [40] (for a general view on reducible systems see [14]). We
assume that the coefficients are piece-wise constant functions of a. We even
allow that some of these functions have delta peaks. In general it does make
sense to study a hyperbolic system with delta peaks in the coefficients but
in the case of the Gurtin-MacCamy system these coefficients can be justified
if the system is reformulated in terms of renewal equations. We assume a
single jump or peak at the age a = τ where τ can be seen as the length of
the juvenile period. Hence the coefficients are

µ(a) = µ0(W ) + (µ1(W ) − µ0(W ))Hτ(a)

b(a) = b1(W )Hτ(a) + b2(W )δτ (a)

ρ(a) =
{α a < τ
β a ≥ τ

(2.2)

where δτ (a) is the delta peak at a = τ and Hτ (a) is the Heaviside function,
Hτ (a) = 0 for a < τ and Hτ (a) = 1 for a ≥ τ . Hence the mortality jumps
from µ0 to µ1; the fertility jumps from 0 to b1 with a delta peak at a = τ . In
[3] some juvenile fertility and a delta peak in the mortality have also been
allowed. Now introduce the variables

V (t) =

∫ τ

0

u(t, a)da, U(t) =

∫

∞

τ

u(t, a)da (2.3)

which represent the total juvenile population and the total adult population.
To ease the presentation here we have exchanged the roles of U and V with
respect to [3].

Suppose u(t, a) is a solution of the system (2.1) with coefficients (2.2).
For 0 < t < τ the variables V and U satisfy a non-autonomous system of
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ordinary differential equations whereby the coefficients depend on the history,
i.e., on the values of the initial data u(0, a) = u0(a) in the interval 0 ≤ a ≤ τ .
For t > τ the variables U and V satisfy an autonomous system of neutral
delay differential equations

V̇ (t) = b1(W (t))U(t) − µ0(W (t))V (t)

+(b2(W (t)) − 1)
{

b1(W (t))U(t)

+b2(W (t))
[

U̇(t− τ) + µ1(W (t− τ))U(t− τ)
] }

× exp{−

∫ τ

0

µ0(W (t− τ + σ))dσ}

U̇(t) =
{

b1(W (t− τ))U(t− τ)

+b2(W (t− τ))
[

U̇(t− τ) + µ1(W (t− τ))U(t− τ)
] }

× exp{−

∫ τ

0

µ0(W (t− τ + σ))dσ} − µ1(W (t))U(t)

W (t) = αV (t) + βU(t). (2.4)

For the initial system we refer to [3]. Here we assume that the population
has evolved at least for a time interval of length τ such that (2.4) applies.

Suppose that W depends only on the adult population, i.e., α = 0, β = 1.
Then the system (2.4) decomposes and the equation for U does not depend
on V . We get a scalar neutral differential delay equation

U̇(t) =
{

b1(U(t− τ))U(t− τ)

+b2(U(t− τ))
[

U̇(t− τ) + µ1(U(t− τ))U(t − τ)
] }

× exp{−

∫ τ

0

µ0(U(t− τ + σ))dσ} − µ1(U(t))U(t) (2.5)

with a point delay and a (nonlinear) distributed delay. The distributed delay
describes the effect of the adult population on juvenile mortality. Of course
cannibalism is known in some fish and reptile species but for most inver-
tebrate and even vertebrate species such effect does not exist. The system
becomes much simpler if µ0 is a constant.
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3 The blowfly equation

Assume that µ0 is a constant and that b2 ≡ 0. Then the equation (2.5)
reduces to

u̇(t) = b1(u(t− τ))u(t− τ)e−µ0τ − µ1(u(t))u(t). (3.1)

This is the blowfly equation (1.4) with b(u) = b1(u)e
−µ0τ and µ(u) = µ1(u).

The formula (3.1) has a very natural interpretation. The equation (3.1) is
essentially an equation of the form (1.2) applied to the adult population
only. Adults produce offspring with a birth rate b1 but this offspring enters
the adult population only after time τ and with a discount factor e−µ0τ that
accounts for juvenile mortality.

Hence we can state: The blowfly equation describes the dynamics of the
Gurtin-MacCamy system for the special case where the juvenile mortality is
a constant and the adult mortality and the adult fertility depend only on the
adult population density.

In [35] the coefficients have been adapted to data, the special case in [1]
has perhaps the simplest coefficients: the birth rate decreases like 1/u and
the death rate increases like 1 + u.

Finally we comment on the further history of Hutchinson’s and the blowfly
equations. Hutchinson’s equation can be carried into Wright’s equation
ẋ(t) = −αx(t − τ)(1 + x(t)), and then to ẋ(t) = f(x(t − τ)) with f(x) =
−α(exp{x} − 1). Motivated by applications from biology, an instantaneous
feedback term has been introduced into such equation (see [25], [13]) lead-
ing to the equation ẋ(t) = f(x(t − τ)) − νx(t), and then parameters have
been rescaled to achieve the form εẋ(t) = f(x(t − 1)) − x(t) that suggests
comparison with the discrete map x(t) = f(x(t − 1)). In spite of seminal
papers by Nussbaum [33] [34] on the existence of periodic solutions and the
considerable progress in understanding the dynamics of this equation, see
the overview [41], and the extension to state-depending delays [27], the basic
equation (1.3) remains a somewhat dubious biological model.

4 The neutral delay equation

Now consider the equation (2.5) with constant µ0 and general b2. We get a
neutral delay differential equation

U̇(t) =
{

b1(U(t− τ))U(t− τ)
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+b2(U(t− τ))
[

U̇(t− τ) + µ1(U(t− τ))U(t − τ)
] }

e−µ0τ

−µ1(U(t))U(t). (4.1)

So far our approach has shown three things: There is a large class of neutral
delay equations which can be seen as population models. This class does not
contain Hutchinson’s equation. This class is still special within the set of all
nonlinear neutral delay equations.

For a solution U(t) of (4.1) define the function

Z(t) = U̇(t) + µ1(U(t))U(t). (4.2)

With the variable Z we can rewrite the neutral equation as a system

U̇(t) = Z(t) − µ1(U(t))U(t)

Z(t) =
[

b1(U(t− τ))U(t− τ) + b2(U(t− τ))Z(t− τ)
]

e−µ0τ . (4.3)

The variable Z can be interpreted as the number of entries per time into the
adult class. Hence the first equation of (4.3), which is an ordinary differential
equation, says that surviving juveniles enter the adult class and then die with
death rate µ1(U). The second equation is essentially a shift map which yields
new values for Z in terms of the history of U and Z. This system is perhaps
the most transparent formulation of the neutral equation in biological terms
and also well suited for numerical simulations.

We know that a second order differential equation can be written as a first
order system in various ways. A neutral delay equation is somewhat similar
to a second order equation because of the leading term U̇(t−τ). Hence there
are various other ways to write (4.1) as a system of an ordinary differential
equation and a shift map. For example, introduce a new variable

B2(U) =

∫ U

0

b2(V )dV e−µ0τ . (4.4)

Then the equation (4.1) is equivalent with the system

U(t) = X(t) +B2(U(t− τ))

Ẋ(t) = −µ1

(

X(t) +B2(U(t− τ)
)(

X(t) +B2(U(t− τ)
)

. (4.5)

Here U is again the adult population whereas X is the adult population
without those individuals which have been produced by the delta peak. Of
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course, from a biological point of view, the system (4.3) is more transparent
than (4.5). However, from a mathematical point of view, the system (4.5) fits
better into the general pattern of quasilinear equations which will be defined
in the next section.

5 Quasilinear neutral delay equations

Now we are leaving biological models and we enter the discussion of general
neutral delay equations. Therefore, and in accordance with section 1, we
use lower case letters for the dependent variable. The equation (4.1) has the
general form

u̇(t) = g(t, u(t− τ))u̇(t− τ) + h(t, u(t), u(t− τ)) (5.1)

where in the particular case the coefficient functions g and h are given by

g(t, v) = b2(v)e
−µ0τ ,

h(t, u, v) = (b1(v) + b2(v)µ1(v))e
−µ0τ − µ1(u)u. (5.2)

The distinctive feature of equation (5.1) is that the term u̇(t−τ) (the “highest
derivative”) occurs linearly. For this reason we call this neutral equation
a “quasi-linear” neutral equation, similar to the notion “quasi-linear” for
parabolic and elliptic partial differential equations.

In comparison with equation (5.1) the equation (4.1) is special insofar as
the function h splits into a sum of an instant term and a delayed term, i.e.,
(4.1) has the form

u̇(t) = g(t, u(t− τ))u̇(t− τ) + q(t, u(t)) + h0(t, u(t− τ)). (5.3)

In [15], p.35, equations of the form (5.1) have been distinguished as a special
class of neutral delay equations for which there is a coherent theory [4], [17].
We think it important to stress that there is a close connection between this
class of “easy” neutral delay equations and population models. The theory of
such equations has been extended to equations with distributed delays [16].

Here we present the nucleus of this theory and relate it to the systems
studied in section 4. Similar transitions from neutral equations to systems
have been used in [20] [21], and in [43], p. 55.
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Assume that in equation (5.1) the functions g and h are continuously
differentiable. We introduce the primitive of the coefficient function g as

G(t, u) =

∫ u

0

g(t, z)dz. (5.4)

Let

Gt(t, u) =

∫ u

0

gt(t, z)dz, Gu(t, u) = g(t, u) (5.5)

denote the partial derivatives of the function G with respect to the first and
second variable. Define the function

F (t, v, z) = h(t, v +G(t, z), z) −Gt(t, z). (5.6)

The following proposition establishes a connection between the scalar
equation and a system. The connection is local. We do not impose conditions
which would ensure global existence of solutions.

Proposition 5.1 For every solution u of the equation (5.1) there is a func-
tion v such that the pair (u, v) is a solution of the system of an ordinary
differential equation and a shift map

u(t) = v(t) +G(t, u(t− τ))

v̇(t) = F (t, v(t), u(t− τ)). (5.7)

Conversely, if a solution of the system (5.7) is given with a differentiable
function u then this function is a solution of equation (5.1).

Proof: We write the equation (5.1) as

d

dt

(

u(t) −G(t, u(t− τ))
)

= h(t, u(t), u(t− τ)) −Gt(t, u(t− τ)). (5.8)

Then we introduce a new dependent variable v by

v(t) = u(t) −G(t, u(t− τ)). (5.9)

Then (5.8) becomes

v̇(t) = h(t, u(t), u(t− τ)) −Gt(t, u(t− τ)). (5.10)
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We use the definition (5.9) as a dynamic equation for u,

u(t) = v(t) +G(t, u(t− τ)) (5.11)

and get a system

u(t) = v(t) +G(t, u(t− τ))

v̇(t) = h(t, u(t), u(t− τ)) −Gt(t, u(t− τ)). (5.12)

In the second equation we replace u(t) from the first equation and get

u(t) = v(t) +G(t, u(t− τ))

v̇(t) = h
(

t, v(t) +G(t, u(t− τ)), u(t− τ)
)

−Gt(t, u(t− τ)). (5.13)

Finally use the definition (5.6) and get (5.7).
Now suppose a solution of (5.7) is given with differentiable u. Differentiate

the first equation,

u̇(t) = v̇(t) +Gt(t, u(t− τ)) +Gu(t, u(t− τ))u̇(t− τ),

replace v̇(t) from the second equation, use the definition of F as given by
(5.6) and again use the first equation of (5.7) to replace v(t).

2

Next we look at the special equation (5.3).

Proposition 5.2 The equation (5.3) is equivalent with the system

u(t) = v(t) +G(t, u(t− τ)) (5.14)

v̇(t) = q(t, v(t) +G(t, u(t− τ))) + h0(t, u(t− τ)) −Gt(t, u(t− τ))

and also with the system

u̇(t) = z(t) − q(t, u(t)) (5.15)

z(t) = g(t, u(t− τ))
[

z(t− τ) + q(t− τ, u(t− τ))
]

+ h0(t, u(t− τ)).

Proof: (5.14) follows by applying Proposition 5.1 to (5.3) while (5.15) is
obtained by applying the first method of section 4 to (5.3).

2
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Hence we have two different systems, both consisting of an ordinary dif-
ferential equation and a shift map, for the neutral differential equation (5.3).

The common idea of both approaches is the following. Because of the
term u̇(t − τ) the neutral equation has the character of a “second order
equation”. In general, to carry a second order equation into a system one
introduces the first derivative as a new variable. Here the “first derivative”
is either the difference v(t) = u(t) − G(u(t − τ)) or the modified derivative
z(t) = u̇(t) + q(t, u(t)).

In order to better understand these different systems we take a look at
the linear non-autonomous equation.

Linear non-autonomous equations

Consider a general linear neutral equation

u̇(t) = a(t)u̇(t− τ) + b(t)u(t− τ) + c(t)u(t) + f(t) (5.16)

with continuously differentiable a, continuous b, c, and a constant delay τ > 0.
The system (5.14) becomes

u(t) = v(t) + a(t)u(t− τ)

v̇(t) = c(t)v(t) + [b(t) − ȧ(t) + a(t)c(t)]u(t− τ) + f(t) (5.17)

whereas the system (5.15) becomes

u̇(t) = z(t) + c(t)u(t)

z(t) = a(t)z(t − τ) + [b(t) + a(t)c(t− τ)]u(t− τ) + f(t). (5.18)

For (5.18) continuity of the coefficient a suffices.

6 Forward continuation

We assume, for simplicity, that the function h in (5.1) has a global Lipschitz
constant with respect to the second variable u(t).

For the equation (5.1) we have the equivalent system (5.7) and for the
special equation (5.3) we have even two equivalent systems (5.14) and (5.15).
In each of these systems a shift map is joined to an ordinary differential
equation. Here we look at suitable state spaces and forward continuation.
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For the system (5.7) a natural choice of a state variable is (ut, v(t)) ∈
C[−τ, 0] × IR. If (φ, ψ) is an initial data in this space then we can find a
unique forward continuation (ut, v(t)) with (u0, v(0)) = (φ, ψ) in the following
manner. First solve the differential equation for v with the initial condition
v(0) = ψ in the interval 0 ≤ t ≤ τ . Then use the first equation (v(t) is now
known) to determine u in the interval 0 < t ≤ τ .

Proposition 6.1 For the system (5.14) the u component of the solution is
continuous at t = 0. The function v is continuous at t = 0 if and only if

φ(0) = ψ +G(0, φ(−τ)). (6.1)

The u component is continuously differentiable at t = 0 if and only (6.1) is
satisfied and also φ ∈ C1[−τ, 0] and

φ̇(0) = g(0, φ(−τ))φ̇(−τ) + h(0, φ(0), φ(−τ)). (6.2)

Proof: Continuity at t = 0 says u(0) = v(0)+G(0, u(−τ)). Use u(0) = φ(0)
and v(0) = ψ to get (6.1). Continuity of u̇ at t = 0 says

u̇(0) = v̇(0) +Gt(0, u(−τ)) + g(0, u(−τ))u̇(−τ)).

Replace v̇(0) (the Gt term cancels) and get (6.2).
2

The condition (6.2) just says that the initial data satisfy the neutral dif-
ferential equation (5.1) which makes sense. Continuity and differentiability,
respectively, at t > 0 implies the same property at t = τ, 2τ, . . ..

Now consider the system (5.15). In this case a natural choice of a state
is (u(t − τ), zt) ∈ IR × C[−τ, 0]. If (u(−τ), z0) = (ψ, φ) is given, then use
the first equation to compute u(t) for −τ ≤ t ≤ 0 and then use the second
equation to compute z(t) for 0 < t ≤ τ . Then z is not necessarily continuous
at t = 0.

Proposition 6.2 For the system (5.15) the function u is continuous at t = 0
by construction. The function z is continuous at t = 0 if and only if

φ(0) = g(0, ψ)[φ(−τ) − q(−τ, ψ)] + h0(0, ψ). (6.3)

If this condition is satisfied then u̇ is also continuous at t = 0.
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Again, continuity at t = 0 implies continuity at t = τ, 2τ, . . ..
In particular, for the population model (4.3) we find the compatibility

condition
φ(0) = [b1(ψ)ψ + b2(ψ)φ(−τ)]e−µ0τ . (6.4)

Finally look at the linear equation (5.16). Then the conditions (6.1)(6.2)
become

φ(0) = ψ − a(0)φ(−τ) (6.5)

φ̇(0) = a(0)φ̇(−τ) + b(0)φ(−τ) + c(0)φ(0) (6.6)

while (6.3) becomes simply

φ(0) = a(0)φ(−τ) + a(0)c(−τ)ψ + b(0)ψ. (6.7)

7 Stability

Hutchinson’s goal as well as that of the authors [35] of the blowfly equation
has been to explain population oscillations in terms of delays. Hutchinson’s
equation has stable non-constant periodic solutions for aτ > π/2. The ques-
tion of the largest lower bound on aτ for such solutions to exist seems of
mainly academic interest (there are no such solutions for aτ < 3/2). Hence
Hutchinson’s model suggests that oscillations are most likely to occur once
the delay is sufficiently large. In [5] the effect of maturation periods on
stability has been studied.

The blowfly equation and the more general neutral equation send the
message that not always a large delay causes instability. In [12] it has been
shown that the constant solution ū > 0 of the blowfly equation (1.4) becomes
unstable and gives rise to periodic oscillations for some τ > 0 if and only if
the inequality

d

du
[(b1(u) + µ1(u))u]

∣

∣

∣

u=ū
< 0 (7.1)

holds. Since b1(u) is a decreasing function and µ1 is an increasing function,
this inequality can only be satisfied if b′

1
(ū) is strongly negative. According

to the blowfly model, stable periodic oscillation occur if the birth rate is
strongly decreasing with increasing population size and if the delay is large.

The corresponding inequality for the neutral equation (1.5) reads

d

du
[(b1(u) + (b2(ū) + 1)µ1(u))u]

∣

∣

∣

u=ū
< 0. (7.2)
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Hence we have a similar situation as in the blowfly equation. Notice that
the equilibrium ū in both equations is not the same. The term b2µ1 may be
increasing or decreasing. Hence there is no simple statement as to whether
the neutral equation is more stable than the blowfly equation or conversely.
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