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Oscillation Criteria for Second Order
Nonlinear Retarded Differential Equations

DASA LACKOVA

Abstract

The aim of this paper is to deduce oscillatory and asymptotic be-
havior of the solutions of the second order nonlinear retarded differen-

tial equation
/

(@) [2() = p@ [r(0)]'|* ™ [2(t) = p2 [r@0)] )| +

-1

+a@®)|z[o®)]|* 2o (t)] =0,

where « is a positive constant and 7(t) and o(t) are delayed arguments.

1 Introduction

In this paper we are concerned with the problem of oscillatory properties of
the retarded differential equation of the form

[l = o0y @) * [o0) = pO) (0] ] +

)|z o] [o(t)] = 0. (E7)

For convenience and further references, we introduce the notation

t
1
R(t :/ ——ds, t>t,.

() torl/a(s) 0
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We suppose throughout the paper that the following hypotheses hold:
(H1) « is a positive constant;

(H2) 7(t),0(t) € C'[tg,0), T(t) < t, o(t) <, tlirglo 7(t) = o0, tlggo o(t) = oo,
a'(t) > 0;

(H3) r(t) € Ctg, ), r(t) >0, tlgglo R(t) = oc;

(H4) q(t),p(t) € Clto,00), q(t) > 0,0 < p(t) <p<1.

We put z(t) = x(t) — p(t)x[r(t)]. By a solution of Eq.(EF~) we mean a
function z(t) € C'[T, 00), T, > to, which has the property r(t)}z’(t)’a_lz’(t)
€ CYT,,00) and satisfies Eq. (E~) on [T}, 00). We consider only those solu-
tions x(t) of Eq. (£~) which satisfy sup{|z(¢)| :t > T} > 0 for all T > T,.
We assume that (E~) possesses such a solution.

A solution of (E7) is called oscillatory if it has arbitrarily large zeros on
[T, 00) and otherwise it is said to be nonoscillatory. Eq. (E~) is said to be
oscillatory if every its solution is oscillatory.

This paper is motivated by the papers [4, 7| where the oscillation of
differential equations of the form

Ol O 0] + )]z o) e o) = 0 (Er)

is studied and by the papers [1, 8] where the oscillation criteria for differential
equations of the form

] [ + p0) 0] fat) + pt) [r)])] +

)|z [o@)] |*x[o(t)] =0, (Es)

respectively
Ol +p0)z (¢ =) * fae) + pl0)e (0= 7))] +
+a(t)f (@o(®)]) =0 (E)

u
with M > (> 0 for u # 0, 3 is a constant, were presented.

|u|a71u —
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2 Main results

We need the following lemma.

Lemma 2.1 (See [5]) If A and B are nonnegative constants, then
AN = MABM+ (A -1)B*>0, A>1

and the equality holds if and only if A = B.

Proof. The case A = 0 holds evidently, so we can assume that A # 0. Then
the left side of the inequality can be written in the form

L-ACMP (A =1)CN, (1)

where C' = £. Denote (1) by f(C). Clearly (1) is satisfied for C = 0. On
the other hand, if C' # 0 then function f(C') is decreasing for C' € (0,1) and
increasing for C' € (1, 00) . Furthermore f(1) = 0. Hence the inequality holds
too. The proof is complete. []

The following theorem presents the oscillatory criterion for Eq. (E™).

Theorem 2.1 Let

A

w oo - (2 R[a(t"'“) ]dt:oo, )

a—+1

[ gl

Then every nonoscillatory solution of Eq. (E~) tends to zero as t — co.

Proof. Assume to the contrary that z(¢) is a nonoscillatory solution of
Eq. (F~). We may assume that x(t) > 0. The case of z(t) < 0 can be proved
by the same arguments.

Set

2(t) = (t) — p(t)z[r(t)). (4)

(
Then z(t) < z(t) and Eq. (E~) can be written in the following form
- /
r(6) [ (8)*7T 2 ()| + alt) 2 [o(8)] = 0. (5)
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We claim that x(¢) is bounded. To prove it we assume, on the contrary, that
x(t) is unbounded. Hence there exists a sequence {t,,} such that lim t,, =
m—0o0

oo moreover lim xz(t,,) = oo and z(t,,) = max{z(s);ty < s < t,,}. Since

m—0o0

7(t) — 00 as t — oo, we can choose sufficiently large m such that 7(t,,) > to.
As 7(t) <'t, we have

2(7(tm))

max{z(s); to < s < 7(tm)}
max{z(s); to < s <t} =z(ty).

Therefore for all large m

2(tm) = x(tm) = pltm)2[T(tm)] = (1 = p(tm))2(tm)-

Thus z(t,,) — 0o as m — oc.

Eq. (5) implies, that function r(¢) |2/(¢)|*”" #/(t) is nonincreasing and we
get two possibilities for 2/(¢):

(i) () >0,

(ii) 2'(t) <0fort>t; >t.

The condition (ii) implies that for some positive constant M and V¢ >
1 >t
r(t) |2/ @) () < =M < 0.

Integrating the above inequality from t; to ¢, we obtain

Thus

2(t) < z(t) — M= (R(t) — R(ty)).

Letting t — oo in the above inequality and using (H3), we get z(t) — —oc.
This contradiction proves that (i) holds.

For the case (i) we obtain that z(¢) > 0 and r(¢) |2/(t)|* " 2/(t) = r(t) [2/(t)]*.
Combining these facts together with 2*(t) < z®(t), we are led to

[r(O) [Z@)]"] +a(t) = [0 ()] < 0 (6)

and

() [Z'@®)]"] <o.
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Therefore

which implies that

2 [o(#) r(t) )
20 Z<Hdm) @)
Define O OF
wlt) = o] 2 OE o ®)
for t > t;.

Differentiating w(t), we have

vy~ BT ) OO e [FOEGF]
T 0 B TT0)
gy TOE @I 0] /(1)
R o0 =) (9)
Using (6), (7) and (8), we have
w’ ao'(t) w(t) — R*[o
0 < e O Ol
__ad(t)  RHo()] T (@) 1)
Rlo(t)]ra [o(t)] zot o ()]
: ao(1) e 1 par
w(t) < wahﬂdm[mw—w )] - B o] ). (10

Set A = w(t) and B = )\ﬁ, where \ = O‘TH > 1. Applying the Lemma
2.1 to (10), we obtain

, a ™ o/ (1) .
1M@g( ) o — R [o()] q(t).

a1 Jr¥ [o(t)

Integrating the above inequality from ¢; to t, we get

Fﬂd%ﬂ@—(cy)wgb(ﬂﬁ wau>

a+1 )] ra [o(s)

t

wl) < wie) - |

t1
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Letting t — oo in (11), we get w(t) — —oo in view of (2). This contradicts
to positivity of w(t) and we conclude that z(¢) is bounded. Consequently, in
view of (4) z(t) is bounded too.

Eq. (5) implies, that function (¢) |2/(t)|*”" 2/(t) is nonincreasing and we
get two possibilities for 2/(¢):

(i) () >0,

(11) Zl(t) <0 fort >ty > 1.
The condition (ii) implies that for some positive constant N and V¢ > 1,

r(t) 26" 2 () < =N < 0.

Proceeding similarly as in the previous we obtain

Integrating the above inequality from ¢, to ¢, we obtain
2(t) < 2(ty) — N« (R(t) — R(ty)).

Letting t — oo in the above inequality and using (H3), we get z(t) — —oc.
This contradicts that z(¢) is bounded, e.g. (i) holds.

Now we shall discuss the following two cases:

1. z(t) >0,

2. z(t) <o.

Case 1. Let z(t) > 0.

Since z(t) is bounded and 2/(t) > 0, there exists

lim z(t) =2¢, 0<c¢<o0. (12)

t—o0

Integrating (6) from ¢ to oo and taking into account monocity of 2*[o(¢)] and
(12) one gets

W > e % / " g(s) ds.

Raising to é power and integrating from t3 to t we acquire

(1) zz(tg)—l—c/t ! [/uooq(s)dsrdu. (13)

ts 7o (u)

EJQTDE, Proc. 8th Coll. QTDE, 2008 No. 12, p. 6



Letting ¢ — oo in the previous inequality, we get z(t) — oo in view of (3)
and this contradicts the boundedness of the function z(t).

Case 2. Let z(t) < 0.

Since z(t) is bounded and 2/(t) > 0, there exists

lim z(t) =¢, —oo<c<O0. (14)

t—o00

The boundedness of x(t) yields limsup z(t) = a, 0 < a < oco. Then there
t—o0

exists a sequence {{;} such that klim t, = oo, klim z(ty) = a. If a > 0,

choosing € = 61(12—;]’) we see that z[7(t)] < a + ¢, eventually. Moreover

0> lim z(t;) > lim (z(tx) —pla+e€)) = g(l —p) > 0.

k—o0 k—o0
Thus a = 0 and that is tlim z(t)=0. 0
Now we provide easily verifiable oscillatory criterion for Eq. (E~).

Corollary 2.1 Let (3) holds and

RMW¢Mwﬂﬂmww>(aiJ“ﬂ (15)

lim fnf (1)

Then every nonoscillatory solution of Eq. (E~) tends to zero as t — oo.
Proof. Let (15) holds. Then there exists ¢ > 0 such that for all large ¢,

say t > tq
R [o(t)] ra [o(t)] q(t) a \*“"
(D) Z(a+J e

which follows that

RﬂdMﬁﬂ—(

[e% )a+1 U,(t) > ¢ U,(t) )
at+1) Rlo@)]rs[o(t)] ~ Rlo(t)]rs [o(t)]

Integrating the above inequality from t; to ¢, we obtain

/t: R*[o(s)] q(s) — <a i 1>a+1R [U(:]I(:) [0_<8)]] ds >

>e[lnR[o(t)) —InR[o(t)]] > 00 as t— oo.

Now the assertion of Corollary 2.1 follows from Theorem 2.1. [

Q=
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Corollary 2.2 If

t/w[w@n%x@——(ail)M1Z£3]ds=oq (16

[ e = oo, an

then every nonoscillatory solution of Eq. (18)

/

| [2t) = p® @) '|" [ot) = pt)z [r(0)])| +
+q@®)]z o] [ot)] =0 (18)
tends to zero as t — 0.

Proof. 1t is easy to see that the conditions (2) and (3) reduce to (16) and
(17) for r(t) = 1. O

Corollary 2.3 If

/Oo [R [o(s)] q(s) — v [O_ZSI)(]? [a(s)]] ds = oo, (19)
/wﬁ/uooq(s)dsdu:oo, (20)

then every nonoscillatory solution of Eq. (21)
) [a(t) ~ p0)x r0]]] + et o) = 0 (21)
tends to zero ast — oo.

Proof. Tt is easy to see that (2) and (3) reduce to (19) and (20) for o = 1.
U

Corollary 2.4 Let (2) and (3) hold. If p(t) oscilates, then Eq.(E~) is os-
cillatory.
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Proof. Let z(t) is a positive solution of (F~). Arguing exactly as in the
proof of Theorem 2.1 we can show that z(¢) < 0. If {t;} is a sequence of
zeros of p(t), then

0> Z(tk) = .T(tk) — p(tk)l’(T(tk)) > 0.
That is a contradiction. [J

Now we will use so-called the integral averaging technique. Let us con-
sider a function H (¢, s) satisfying the following properties

(i) H(t,s)>0fort>s>t,

(i) H(t,t) =0 and 218 < 0.

Denote
8H(t 5)
h(t, :
“ = i
Qt,s) = HI(t, 3) (1) — h(t,s), fort>s.

Theorem 2.2 Let o > 1 and (3) holds. Assume that for some k € (0, 1)

lﬁgpmiﬁllH@$mb@M@
_ Rlo(s)]r= [0(s)]

dako’(s) Q*(t:)

ds = oo. (22)

Then every nonoscillatory solution of Eq. (E~) tends to zero ast — oo.

Proof. Assume to the contrary that z(t) is a nonoscillatory solution of
Eq.(E~). Without loss of generality we may assume that z(t) > 0. Pro-
ceeding similarly as in the proof of Theorem 2.1 we have z(t) > 0, 2/(t) > 0

and using the fact that [r(¢) (2/ (t))O‘]é is nonincreasing, we see that for any
k1 € (0,1) and for all large ¢ (t > t;)

2o(t)] > /U(t /U(t T;S ( s)zf<s)) ds
_R(t

> ra[o(t) 2 [o(t)] (R[o(t)] — R(t1))
> kRo(t ()]ré [o(t)] 2 [o(1)]. (23)

Q\»—‘
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Taking into account (23) and the monotonicity of r(t) [2/(t)]*, we conclude
that

o) _ 1 ][ le®)]]" (z[cr(t)])a_l
z[o(1)] rlo(t)] 2 [o(t)] 2 [o(t)]
r(t)[2/(t }a kR [o(t )] k
= ; > - w(t) (24
I Ol (03] R[a@)]ﬂ [o(1)] e

where k = k¢ € (0,1).
Using the function w(t) defined in (8), w'(¢) in (9) and the inequality (24)
we obtain

= Rl o)
—aRe foft)]o'( 0 E ;

w(t) = B [o(t)] q(t)

ao’(t ako'(t
< O y(t)— R (0] alt) - o
Rlo(t)]re[o(t)] Rlo(t)]re[o(t)]
Multiplying this inequality with H(t,s) > 0 and following integrating
from t; to ¢ we have

w(t).

/ H(t ) '< 0_<8)] (s)ds
/tl H(t,s)R[a(i;O 3—/ H(t, s)w

Now integrating (per partes) from ¢; to ¢ and using definition of the functions
h(t,s) and Q(t,s) we are led to

/t H(t,s)R* [o(s)] q(s)ds <

< H{t, t)w(t) — /t H(t, s) g];]a;gig(s)]w2(s)ds
+/t VH(t,s) [\/H(t, s) - R[a(j)(]j;(?[a(s)] — h(t,s)| w(s)ds <
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< H(t,t))w(ty)

akao'(s) w? t
/1 s (s)ds—k/tl VH $)Q(t, s)w(s)ds

Consequently

\/H(t, ) [ ako'(s) w(s) — 1\/1&’[0(5)]7@ [0<8)]Q(t, s)] s,

Rl o] 2V ako'l)
Therefore
dei ] [H(t, )R [o(5)] a(s)

_ Rlo(s)] 7+ [o(s)]
dako!(s)

Q*(t, 5)] ds < w(ty).

Letting t — oo we get the contradiction with (22). The rest of proof is similar
to the proof of Theorem 2.2. []

Let us have H(t,s) defined by (25).
H(t,s)=(t—s)", n is a positive integer. (25)
Then Theorem 2.2 provides the following criterion:

Theorem 2.3 Let o > 1 and (3) holds. Assume that for some k € (0, 1)

t—oo (E=11)" Jy

lim sup / [(t — 8)"R%[0(s)] q(s)

o R [0(5)] Té [U(S)] QQ(t, 8)

Jako'(3) ds = o0, (26)
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where

N3

s ad'(s) . n
Qs =1 )<R[a<s>]ré[a<sn t—s)'

Then every nonoscillatory solution of Eq. (E~) tends to zero as t — oo.

Remark 1 Theorem 2.1 extends results presented for neutral differential
equations of the forms

(x(t) = pa(t = 7))" + a(D)z [o(t)] = 0,

(x(t) £ p(&)x [r(0)]) ™ + q()z [0(1)] = 0,
(2(t) — p(&)x [r(0)])™ + q(t) f (z [o(£)] ) = 0
presented in [3], [2] and [6].

Remark 2 Putting p(t) = 0, Theorem 2.1 generalizes results presented in
[4] and [7], where the differential equations of the form (E,) are studied.

Remark 3 Theorems 2.1, 2.2 and 2.3 complement results presented in [1, 8],
where authors deal with the neutral differential equations of the form (E,),
respectively (Es).

Example 1 We consider differential equation

[-w )T o ()]

20,3%(2p — 1)° i
,Eai ) |2(68)]" 2 (Bt) = 0, (27)

witht >0, r(t) =1, 7(t) =L, pt) =p, s <p<1l,0() =06t 0<p <1,
Q(t)zmﬂz(ﬁ#. If

o a+1
20(2p — 1) > (M 1) ,

+

then by Theorem 2.1 every nonoscillatory solution of Eq.(27) tends to zero
1

ast — 0o. One of the solutions of Eq. (27) is for example x(t) = 1.
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