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1 Introduction

The differential equations involving reflection of the argument have applications in the study
of stability of differential-difference equations, see Sharkovskii [14], and such equations have
very interesting properties, so many authors worked on them. First-order equations with
constant coefficients and reflection have been studied in detail in [1, 11, 13, 15]. There is also
an indication ([13, p.169] and [15, p.241]) that “The problem is much more difficult in the case
of differential equations with reflection of order greater than one”. Wiener and Aftabizadeh
[16] initiated the study of boundary value problems for the second order differential equations
involving reflection of the argument. Gupta [6, 7] investigated two point boundary value
problems for this kind of equations under the Carathéodory conditions. In [11, 12], one of
the present authors investigated existence and uniqueness of periodic, almost periodic and
pseudo almost periodic solutions of the equations

ẋ(t) + ax(t) + bx(−t) = g(t), b 6= 0, t ∈ R

and
ẋ(t) + ax(t) + bx(−t) = f (t, x(t), x(−t)), b 6= 0, t ∈ R.

Recently Cabada et al. [2] studied the first order operator x′(t) + mx(−t) coupled with peri-
odic boundary value conditions, and described the eigenvalues of the operator and obtained
BCorresponding author. Email: dxpiao@ouc.edu.cn
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the expression of its related Green’s function in the non resonant case. Also Cabada et al.
[3], using the theory of fixed point index, established new results for the existence of nonzero
solutions of Hammerstein integral equations with reflections. They applied their results to a
first-order periodic boundary value problem with reflections. On the other hand, Layton [8]
studied the existence and uniqueness of Besicovitch almost periodic solutions for the delay
equation

ẋ(t) + g(x(t), x(t− τ)) = e(t)

under any Besicovitch almost periodic forcing term e(t). But as far as we know, there are
no works on the almost periodic solutions for such second-order equations. Motivated by
the above references, our present paper is devoted to investigate the existence of a unique
Besicovitch almost periodic solution of the second order nonlinear differential equation with
reflection of the argument

a0 ẍ(t) + b0 ẍ(−t) + a1 ẋ(t) + b1 ẋ(−t) + a2x(t) + b2x(−t) = f (t, x(t), x(−t)), t ∈ R. (1.1)

Remark 1.1. Mażbic-Kulma [10] investigated firstly the equation
n

∑
k=0

[akx(k)(t) + bkx(k)(−t)] = y(t).

The left hand side of equation (1.1) is a special case of this.

In order to develop our results, we review some facts about Bohr almost periodic and
Besicovitch almost periodic functions. For further knowledge on almost periodic functions we
refer the readers to the books [5, 4, 9].

We denote by AP(R) the set of all almost periodic functions in the sense of Bohr on
R. The Besicovitch space of almost periodic functions, B2(R) is the closure of trigonometric
polynomials of the form

n

∑
s=−n

aseiλst, as ∈ C, as = a−s, λ−s = −λs (1.2)

under the norm

‖ f ‖2 = lim
T→∞

1
2T

∫ T

−T
| f (t)|2 dt.

Here ‖ · ‖ on B2(R) is induced by the inner product

〈 f , g〉 = lim
T→∞

1
2T

∫ T

−T
f (t)g(t) dt.

Alternatively, B2(R) could be defined as the set of all f (t) = ∑∞
j=−∞ ajeiλjt with λ−j =

−λj, a−j = aj, and || f ||2 = ∑∞
−∞ |aj|2 < ∞. For Λ ⊂ R the closed subspace B2

Λ of B2 is
defined as

B2
Λ =

{
f (t) =

∞

∑
j=−∞

ajeiλjt
∣∣∣∣ λj ∈ Λ, λ−j = −λj, a−j = aj,

∞

∑
−∞
|aj|2 < ∞

}
.

The space B2,1(R) is defined to be the closure of the trigonometric polynomials (1.2) in the
norm

f (t) =
∞

∑
j=−∞

eneiλjt, ‖ f ‖2
1 =

∞

∑
j=−∞

(1 + |λj|2)|aj|2 < ∞. (1.3)

For Λ ⊂ R, B2,1
Λ is defined as B2

Λ ∩ B2,1. For details on some notations see Layton [8].



Besicovitch almost periodic solutions 3

2 The linear problem

For e(t) ∈ B2,

e(t) =
∞

∑
n=−∞

eneiλnt,

consider the problem of finding a solution x(t) ∈ B2 to the linear equation

La,bx ≡ a0 ẍ(t) + b0 ẍ(−t) + a1 ẋ(t) + b1 ẋ(−t) + a2x(t) + b2x(−t) = e(t), t ∈ R. (2.1)

Let Λ be the Fourier exponents of e(t), then formally, the solution x(t) ∈ B2
Λ to (2.1) is

given by

x(t) =
∞

∑
n=−∞

xneiλnt. (2.2)

Putting it into equation (2.1), we obtain

− a0λ2
nxn − b0λ2

nxn + ia1λnxn − ib1λnxn + a2xn + b2xn = en. (2.3)

Let xn = αn + iβn and en = ξn + iηn, comparing the coefficients of eiλnt, we have

(−a0λ2
n − b0λ2

n + a2 + b2)αn + (−a1λn + b1λn)βn = ξn,

(a1λn − b1λn)αn + (−a0λ2
n + b0λ2

n + a2 − b2)βn = ηn.
(2.4)

We denote the coefficient determinant of the system (2.4) by d(λn), then

d(λn) = (a2
0 − b2

0)λ
4
n − [(a1 − b1)

2 + 2a0a2 − 2b0b2]λ
2
n + (a2

2 − b2
2) (2.5)

Lemma 2.1. If (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)

2] < 0, then d(λn) 6= 0 and
is bounded away from zero.

Proof. If (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)

2] < 0, then

∆ ≡ [(a1 − b1)
2 + 2a0a2 − 2b0b2]

2 − 4(a2
0 − b2

0)(a2
2 − b2

2)

= (a1 − b1)
4 + 4[(a0b2 − a2b0)

2 + (a0a2 − b0b2)(a1 − b1)
2]

< 0.

And this implies a2
0 − b2

0 6= 0.

d(λn) = (a2
0 − b2

0)

[
λ2

n +
(a1 − b1)

2 + 2a0a2 − 2b0b2

2(a2
0 − b2

0)

]2

+
4(a2

0 − b2
0)(a2

2 − b2
2)− [(a1 − b1)

2 + 2a0a2 − 2b0b2]2

4(a2
0 − b2

0)

= (a2
0 − b2

0)

[
λ2

n +
(a1 − b1)

2 + 2a0a2 − 2b0b2

2(a2
0 − b2

0)

]2

− ∆
4(a2

0 − b2
0)

.

It is easy to see that

d(λn) ≥ −
∆

4(a2
0 − b2

0)
> 0,

provided a2
0 − b2

0 > 0. While

d(λn) ≤ −
∆

4(a2
0 − b2

0)
< 0,

provided a2
0 − b2

0 < 0. So |d(λn)| ≥ |∆/(4(a2
0 − b2

0))| > 0. That is d(λn) is bounded away from
zero.
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Remark 2.2.

(i) The condition of Lemma 2.1 is possible, for example a0 = 1, b0 = 2, a1 = 2, b1 = 1,
a2 = 0, b2 = 1, and ∆ = −3 < 0.

(ii) From the proof of Lemma 2.1, we see that (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)

×(a1 − b1)
2] < 0 implies |a0| 6= |b0| and |a2| 6= |b2|.

If (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)]

2 < 0, then

αn =
1

d(λn)

∣∣∣∣ ξn (b1 − a1)λn

ηn (b0 − a0)λ2
n + a2 − b2

∣∣∣∣
=

1
d(λn)

{[(b0 − a0)λ
2
n + a2 − b2]ξn + (a1 − b1)λnηn},

βn =
1

d(λn)

∣∣∣∣ −(a0 + b0)λ2
n + a2 + b2 ξn

(a1 − b1)λn ηn

∣∣∣∣
=

1
d(λn)

{[−(a0 + b0)λ
2
n + a2 + b2]ηn + (b1 − a1)λnξn}

and

d2(λn)(α
2
n + β2

n) = [(b0 − a0)λ
2
n + a2 − b2]

2ξ2
n + (a1 − b1)

2λ2
nη2

n

+ [−(a0 + b0)λ
2
n + a2 + b2]

2η2
n + (a1 − b1)

2λ2
nξ2

n

+ 2[(b0 − a0)λ
2
n + a2 − b2](a1 − b1)λnξnηn

+ 2[−(a0 + b0)λ
2
n + a2 + b2](b1 − a1)λnηnξn.

Simple fact of ξnηn ≤ (ξ2
n + η2

n)/2 implies

d2(λn)(α
2
n + β2

n) ≤ [(b0 − a0)λ
2
n + a2 − b2]

2ξ2
n + (a1 − b1)

2λ2
nη2

n

+ [−(a0 + b0)λ
2
n + a2 + b2]

2η2
n + (a1 − b1)

2λ2
nξ2

n

+ [(b0 − a0)λ
2
n + a2 − b2](a1 − b1)λn(ξ

2
n + η2

n)

+ [−(a0 + b0)λ
2
n + a2 + b2](b1 − a1)λn(ξ

2
n + η2

n)

= P1(λn)ξ
2
n + P2(λn)η

2
n,

where P1(λ) and P2(λ) are polynomials of λ with degree 4. Since d2(λ) is a polynomial of λ

with degree 8, limλ→∞ Pk(λ)/d2(λ) = 0, k = 1, 2. On the other hand, by the proof of Lemma
2.1, |d2(λ)| ≥ |∆/(4(a2

0 − b2
0))|2 > 0. So there exists a constant M > 0, such that

max{|P1(λ)|, |P2(λ)|} ≤ M2

and
α2

n + β2
n ≤ M2(ξ2

n + η2
n),

so
|αn + iβn| ≤ M|en|.

Hence, the infinite series ∑∞
n=−∞(αn + iβn)eiλnt is absolutely convergent, so we have next the-

orem.
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Theorem 2.3. If (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)]

2 < 0, then L−1
a,b exists on

B2. The solution x(t) to (2.1) exists, is an element of B2
Λ, is unique (up to a function with B2-norm

zero) and is given by (2.2). Furthermore, there exists a constant M > 0, such that

‖L−1
a,b e‖ ≤ M‖e‖, (2.6)

and so ‖L−1
a,b‖ ≤ M.

Remark 2.4. The assumption (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)]

2 < 0 is a
sufficient condition for the existence of a unique B2-solution of the equation (2.1), but not
a necessary one for just the existence of B2-solutions. As an example, let a1 be any real
number, and set λ0 = 1/(a2

1 + 2)1/2. Then the function x(t) defined by x(t) = (1 + a1λ0i)eiλ0t

+(1 − a1λ0i)e−iλ0t belongs to the space B2 with ‖x‖2 = 2(1 + a2
1λ2

0) > 0. We can easily
check that ẍ(t) + ẍ(−t) + a1 ẋ(t) + x(−t) = 0 and hence x(t) is a solution of equation (2.1)
with a0 = b0 = b2 = 1, b1 = 0, a2 = 0 and e(t) = 0. But if |a1| ≥ 2, then (a1 − b1)

4

+4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)]
2 = a2

1(a2
1 − 4) + 4 ≥ 4 > 0.

Lemma 2.5. If (a1− b1)
4 + 4[(a0b2− a2b0)2 + (a0a2− b0b2)(a1− b1)]

2 < 0, then L−1
a,b maps B2 into

B2,1 continuously.

Proof.

‖L−1
a,b e‖2

1 =
∞

∑
j=−∞

(1 + |λj|)2(α2
j + β2

j )

≤
∞

∑
j=−∞

1
d2(λj)

(1 + |λj|)2
{
{[(b0 − a0)λ

2
j + a2 − b2]ξ j + (a1 − b1)λjηj}2

+ {[−(a0 + b0)λ
2
j + a2 + b2]ηj + (b1 − a1)λjξ j}2

}
≤

∞

∑
j=−∞

1
d2(λj)

(1 + |λj|)2[P1(λj)ξ
2
j + P2(λj)η

2
j ].

Since d2(λ) is a polynomial of λ with degree 8, limλ→∞(1 + |λ|)2Pk(λ)/d2(λ) = 0, k = 1, 2.
Utilizing the fact d2(λ)| ≥ |∆/(4(a2

0 − b2
0))|2 > 0 we conclude that there exists a constant

C > 0 such that

‖L−1
a,b e‖2

1 ≤
∞

∑
j=−∞

C(ξ2
j + η2

j ) = C
∞

∑
j=−∞

|ej|2.

3 The nonlinear equation

Now let us consider the nonlinear equation

a0 ẍ(t) + b0 ẍ(−t) + a1 ẋ(t) + b1 ẋ(−t) + a2x(t) + b2x(−t) = f (t, x(t), x(−t)), t ∈ R. (3.1)

The next lemma is an extension of Lemma 4.1 of [8].

Lemma 3.1. If f (t, x, y) is uniformly almost periodic in t in the sense of Bohr, and satisfies Lipschitz
condition

| f (t, x1, y1)− f (t, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|)
for some constant L > 0, then f (t, ·, ·) : B2 ×B2 → B2 is continuous.
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Proof. Every x, y ∈ B2 is the B2-limit of a sequence {pn}, {qn} of trigonometric polynomials.
Each pn, qn ∈ AP(R) (i.e. almost periodic in the sense of Bohr). Since f (t, ·, ·) is uniformly
continuous and uniformly almost periodic in t in the sense of Bohr, f (t, pn(t), qn(t)) ∈ AP(R).
Hence f (t, pn(t), qn(t)) ∈ B2.

Also since f is Lipschtz,

1
2T

∫ T

−T
| f (t, pn, qn)− f (t, x, y)|2 dt

≤ L2 1
2T

∫ T

−T
(|pn − x|+ |qn − y|)2 dt

≤ 2L2 1
2T

∫ T

−T
(|pn − x|2 + |qn − y|2) dt,

therefore
‖ f (t, pn, qn)− f (t, x, y)‖2 ≤ 2L2(‖pn − x‖2 + ‖qn − y‖2),

and f (t, x(t), y(t)) ∈ B2.

It is easy to see that the following lemma holds.

Lemma 3.2. If x(t) ∈ B2, then x(−t) ∈ B2.

Theorem 3.3. Suppose (a1− b1)
4 + 4[(a0b2− a2b0)2 + (a0a2− b0b2)(a1− b1)]

2 < 0. If f (t, x, y) is
uniformly almost periodic in t in the sense of Bohr, and satisfies Lipschitz condition

| f (t, x1, y1)− f (t, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|)

for some constant L and 2ML < 1, then the equation (3.1) has a unique Besicovitch almost periodic
solution x(t), and x(t) ∈ B2,1.

Proof. For every φ ∈ B2, f (t, φ(t), φ(−t)) ∈ B2 by Lemma 3.1 and 3.2. From Theorem 2.3, the
equation

a0 ẍ(t) + b0 ẍ(−t) + a1 ẋ(t) + b1 ẋ(−t) + a2x(t) + b2x(−t) = f (t, φ(t), φ(−t)) (3.2)

has a unique solution Tφ ∈ B2. So T : B2 → B2. For every φ, ψ ∈ B2, Tφ− Tψ is a solution of

a0 ẍ(t) + b0 ẍ(−t) + a1 ẋ(t) + b1 ẋ(−t) + a2x(t) + b2x(−t)

= f (t, φ(t), φ(−t)− f (t, ψ(t), ψ(−t)).
(3.3)

According to Theorem 2.3, we have

‖Tφ− Tψ‖
= ‖L−1

a,b [ f (t, φ(t), φ(−t))− f (t, ψ(t), ψ(−t))]‖
≤ M‖ f (t, φ(t), φ(−t)))− f (t, ψ(t), ψ(−t))‖
≤ 2ML‖φ− ψ‖.

Since 2ML < 1, T is a contraction mapping. So T has a unique fixed point in B2. Since
f (t, x(t), x(−t)) ∈ B2 and x = L−1

a,b f (t, x(t), x(−t)), x ∈ B2,1 by Lemma 2.5.

Remark 3.4. If the condition (a1 − b1)
4 + 4[(a0b2 − a2b0)2 + (a0a2 − b0b2)(a1 − b1)]

2 < 0 is not
satisfied, then d(λn) may become arbitrarily close to zero. That means we will meet the so-
called small denominator problem. We will consider this case in future by means of KAM
theory.
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