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Abstract. In this paper we establish the best constant of Lp Sobolev inequality for a
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1 Introduction

It is well-known that sharp Sobolev inequalities are very important in the study of partial and
ordinary differential equations, especially in the study of problems arising from geometry and
physics. They are relevant for the study of boundary value problems. In this paper, we treat
the anti-periodic case. Throughout the paper, we assume p > 1, a < b and 1

p +
1
q = 1, i.e.

q = p
p−1 > 1 is the conjugate exponent of p. For M = 1, 2, 3, . . . let us consider a sequence of

Sobolev spaces

WM =
{

u
∣∣∣ u(M) ∈ Lp(a, b), u(i)(a) + u(i)(b) = 0, 0 ≤ i ≤ M− 1

}
and the following one-dimensional Sobolev inequality:

‖u(x)‖∞ ≤ C‖u(M)(x)‖p, (1.1)

where u ∈WM and ‖ · ‖∞ and ‖ · ‖p are the usual L∞ and Lp norms.
When p = 2, the engineering meaning of this inequality is that the square of the maximum

bending of a string (M = 1) or a beam (M = 2) is estimated from above by the constant
multiple of the potential energy due to internal forces. Notice that anti-periodic boundary
value problems appear in physics also in other situations, see, for example [4, 8]. The purpose
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2 J. Kisel’ák

of this paper is to derive a Sobolev inequality corresponding to an anti-periodic boundary
value problem, and to obtain the best constant by using the property as the reproducing
kernel of Green function. As an application, we give Lyapunov-type inequalities for certain
half-linear higher order differential equations with anti-periodic boundary conditions.

1.1 Polynomials

To state the conclusion, we need to introduce the Appell polynomials (or sequences). The
sequence Pn(x) is Appel for g(t) if and only if

ext

g(t)
=

∞

∑
k=0

Pk(x)
tk

k!
, |t| < σ, 0 < σ < ∞ (1.2)

for all x in the field C of field characteristic 0 and 1
g(t) is analytic function, see [9], where

the author summarizes properties of more general Sheffer sequences and gives a number of
specific examples.

The Bernoulli polynomials have been studied since the 18th century. There are many ap-
plications in mathematics and physics. Many functions are used to obtain the generating
function of them, but also Euler and Genocchi polynomials. We first define Bernoulli polyno-
mials Bn(x) using the generating function (1.2) with g(t) = et−1

t , i.e.

text

et − 1
=

∞

∑
k=0

Bk(x)
tk

k!
, |t| < 2π. (1.3)

Similarly, we denote the Euler polynomials and Genocchi polynomials, which are defined by
means of the generating function (1.2) with g(t) = 1

2 (e
t + 1), g(t) = 1

2t (e
t + 1), as En(x) and

Gn(x) respectively, i.e.

2 etx

et + 1
=

∞

∑
k=0

Ek(x)
tk

k!
, |t| < π (1.4)

2t etx

et + 1
=

∞

∑
k=0

Gk(x)
tk

k!
, |t| < π (1.5)

Although it does not immediately yield their explicit form, the manipulation of (1.3), (1.4),
(1.5), along with the uniqueness theorem for power series expansions, leads to many proper-
ties of these polynomials. For example symmetry is easily obtained in this way. For k ∈ N0

and all x ∈ R we have

Pk(1− x) = (−1)kPk(x), (1.6)

Gk(1− x) = (−1)k+1Gk(x), (1.7)

(−1)kBk(−x) = Bk(x) + kxk−1, (1.8)

(−1)kEk(−x) = −Ek(x) + 2xk, (1.9)

(−1)k−1Gk(−x) = −Gk(x) + 2kxk−1, (1.10)

where Pk can be replaced by Bk or Ek. Since all these polynomial sequences are Appell se-
quences, also property concerning derivation must hold (it is sometimes used as an equivalent
definition). We summarize this:

d
dx

Pk(x) = kPk−1(x), k ≥ 1, (1.11)
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where Pk can be replaced by Bk, Ek or Gk. Notice that another convention followed by some
authors (see [1, p. 169]) defines this concept in a different way, conflicting with Appell’s
original definition, by using the identity

d
dx

Pk(x) = Pk−1(x)

instead. This is reflected in the fact that Bk(Ek, Gk) is 1
k! multiple of the “original” one. Various

interesting and potentially useful properties and relationships involving the Bernoulli, Euler
and Genocchi polynomials have been studied. We need only few of them, which can be
summarized in the following lemma, see e.g. [2].

Lemma 1.1. We have

Gn(x) = 2n
[

Bn

(
x + 1

2

)
− Bn

( x
2

)]
, ∀n ∈N0 and ∀x ∈ R, (1.12)

Gn(x) = n En−1(x), ∀n ∈N and ∀x ∈ R. (1.13)

In the Table 1.1 we give explicit forms of the first four Bernoulli, Euler and Genocchi
polynomials.

n Bn(x) En(x) Gn(x)

0 1 1 0
1 x− 1

2 x− 1
2 1

2 x2 − x + 1
6 x2 − x 2x− 1

3 x3 − 3
2 x2 + 1

2 x x3 − 3
2 x2 + 1

4 3x2 − 3x
4 x4 − 2x3 + x2 − 1

30 x4 − 2x3 + x 4x3 − 6x2 + 1

Table 1.1: Explicit forms of the first four polynomials.

2 Boundary value problem

In this section, we present the main theorems of this paper. For the case p = 2, the problem of
finding the best constants of (1.1) is solved completely, whereas the method of maximizing the
diagonal value of reproducing kernels was used, see references in Table 2.1. For the general
case the difficulty of obtaining the best constants increases and cases of clamped and Dirichlet
boundary conditions remain unsolved, again see Table 2.1.

We consider the boundary value problem{
(−1)b

M+1
2 cu(M) = f (x), a < x < b

u(k)(a) + u(k)(b) = 0, 0 ≤ k ≤ M− 1.
(2.1)

In [14] the authors obtained a Green function for even M and a = 0, b = 1. As it is pointed out
in [13], using the method of reflection and some algebra one can show that for the problem
(2.1) the expression of the Green function has the form

G(2M; x, y) = (−1)M+1(2(b− a))2M−1
[

B2M

(
|x− y|

2(b− a)

)
− B2M

(
1
2
− |x− y|

2(b− a)

)]
.

Once the Green’s function is obtained, one can write down the solution of the problem (2.1)
very easily using an integral.
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Theorem 2.1. For any f ∈ BC(a, b) boundary value problem (2.1) has one and only one classical
solution u(x) given by

u(x) =
∫ b

a
G(M; x, y) f (y)dy, a ≤ x ≤ b,

where the Green function has the form

G(M; x, y) =
(−1)b

M−1
2 c(b− a)M−1

2(M− 1)!
EM−1

(
|x− y|
b− a

)
(sgn(x− y))M (2.2)

Proof. Differentiating u(x), the properties listed in Lemma 2.2 and the following fact yields
the existence and uniqueness of the solution. It is not difficult to show that for general M the
result from [13] should be modified to

G(M; x, y) = Ω
[

BM

(
|x− y|

2(b− a)

)
− (−1)MBM

(
1
2
− |x− y|

2(b− a)

)]
(sgn(x− y))M, (2.3)

where

Ω =
(−1)b

M+1
2 c

M!(2(b− a))1−M .

Due to the symmetry of Bernoulli polynomials it is true that Bn
( 1

2 − y
)
= (−1)nBn

( 1
2 + y

)
,

∀n ∈ N0, ∀y ∈ R. Using that fact together with (1.12) in Lemma 1.1 we have G(M; x, y) =

−2−MΩ GM
( |x−y|

b−a

)
(sgn(x− y))M. Now it is sufficient to use (1.13) in Lemma 1.1.

Lemma 2.2. The Green function G(M; x, y) defined by (2.2) satisfies the following properties.

(a) G(M; x, y) = (−1)MG(M; y, x) (a < x, y < b).

(b) ∂M
x G(M; x, y) = 0 (a < x, y < b, x 6= y).

(c) For 0 ≤ k ≤ M− 1, we have
∂k

xG(M; x, y)|x=b + ∂k
xG(M; x, y)|x=a = 0, (a < y < b),

(d) ∂k
xG(M; x, y)|y=x+ − ∂k

xG(M; x, y)|y=x− =

{
0, 0 ≤ k ≤ M− 2

(−1)b
M+1

2 c, k = M− 1, (a < x < b),

(e) ∂k
xG(M; x, y)|x=y− − ∂k

xG(M; x, y)|x=y+ =

{
0, 0 ≤ k ≤ M− 2

(−1)b
M+1

2 c, k = M− 1, (a < y < b).

Proof. Obviously (a) and (b) holds. Differentiating (2.2) k times with respect to x, we obtain

∂k
xG(M; x, y) = Ω̃ EM−1−k

(
|x− y|
b− a

)
(sgn(x− y))M+k (2.4)

for a < x, y < b, x 6= y and 0 ≤ k ≤ M− 1, where Ω̃ = (−1)bM−1
2 c(b−a)M−1−k

2(M−1−k)! . From (2.4) and
symmetry property (1.6), we have

∂k
xG(M; x, y)|x=b + ∂k

xG(M; x, y)|x=a

= Ω̃
[

EM−1−k

(
b− y
b− a

)
+ EM−1−k

(
y− a
b− a

)
(−1)M+k

]
= Ω̃

[
EM−1−k

(
b− y
b− a

)
+ EM−1−k

(
1− y− a

b− a

)
(−1)

]
= 0.
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So we have (c). Again from (2.4), it is true that

∂k
xG(M; x, y)|y=x+ − ∂k

xG(M; x, y)|y=x− = Ω̃ EM−1−k(0)
[
(−1)M−1−k + 1

]
,

for a < x < b, 0 ≤ k ≤ M − 1. Item (d) follows from symmetry property (1.9) and (e) is
equivalent to (d). This completes the proof.

2.1 Reproducing kernel

Thanks to the solution of the boundary value problem (2.1) we have found reproducing
kernel for some specific Hilbert space, which helps us to solve the problem of finding the best
constant for Sobolev inequality (1.1). We denote by W∗M the dual space of WM, i.e.

W∗M =
{

u
∣∣∣ u(M) ∈ Lq(a, b), u(i)(a) + u(i)(b) = 0, 0 ≤ i ≤ M− 1

}
.

We show that the Green function G(2M; x, y) is a reproducing kernel for function spaces
WM, W∗M and duality pairing 〈·, ·〉M defined as 〈u, v〉M =

∫ b
a u(M)(x)v(M)(x)dx on WM ×W∗M.

Lemma 2.3. (a) If u(M) ∈ Lp(a, b), then

∫ b

a
u(M)(x) ∂M

x G(2M; x, y)dx

= Θ
∫ b

a
u(M)(x) EM−1

(
|x− y|
b− a

)
(sgn(x− y))M dx

= −u(y) +
M−1

∑
j=0

(a− b)j

2j!
Ej

(
b− y
b− a

) [
u(j)(b) + u(j)(a)

]
, Θ =

(a− b)M−1

2(M− 1)!

(b) For any u ∈WM, we have the following reproducing relation

u(y) = 〈u(x), G(2M; x, y)〉M =
∫ b

a
u(M)(x) ∂M

x G(2M; x, y)dx

= −Θ
∫ b

a
u(M)(x) EM−1

(
|x− y|
b− a

)
(sgn(x− y))M dx, a ≤ y ≤ b.

(2.5)

Proof. We first prove the first part. For any two smooth functions u and v, we have

u(M)v(M) = (−1)Mu v(2M) +

(
M−1

∑
j=0

(−1)M−1−ju(j) v(2M−1−j)

)′
. (2.6)

Now, we put v(x) = G(2M; x, y), y ∈ (a, b) and integrate this identity with respect to x over
intervals a < x < y and y < x < b, we obtain

∫ b

a
u(M)(x) ∂M

x G(2M; x, y)dx = Φ(y−)−Φ(y+) + Φ(b)−Φ(a),

where

Φ(z) :=
M−1

∑
j=0

(−1)M−1−ju(j)(x) ∂
2M−1−j
x G(2M; x, y)

∣∣∣∣∣
x=z

.
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Using Lemma 2.2 we have∫ b

a
u(M) ∂M

x G(2M; x, y)dx

= −u(y) +
M−1

∑
j=0

(a− b)j

2j!

[
u(j)(b)Ej

(
b− y
b− a

)
− u(j)(a)Ej

(
1− b− y

b− a

)
(−1)j+1

]
.

It suffices now to use symmetry property (1.6). The second part results directly from the fact
that u ∈WM.

BVP p = 2 p > 1 (general case) C(M)

Periodic [14] [3]

{
‖BM(x)‖Lq(0,1), M is odd

‖BM(α0; x)‖Lq(0,1), M is even

Anti-periodic [14] this paper (b−a)M− 1
p

2(M−1)! ‖EM−1(x)‖Lq(0,1)

Clamped [12] M = 1, 2, 3 [11] see [11]
Dirichlet [14] M = 2m [5], M = 1, 3, 5 [6] 22M−2‖δM(x)‖Lq(−1,1) and see [6]

Neumann [14] [7]

{
2M‖BM(x)‖Lq(0,1), M is odd

2M‖BM(α0; x)‖Lq(0,1), M is even
Dirichlet–Neumann [14] [15] 22M−1‖γM(x)‖Lq(0,1), M is odd

Table 2.1: Various boundary conditions and best constants.
Note that most of the authors solved specific problem on the interval [0, 1], but it can be simply

extended to [a, b]. We recall that α0 is the unique solution to the equation

∫ α

0

(
(−1)b

M−1
2 c[BM(x)− BM(α)]

)q−1
dx =

∫ 1
2

α

(
(−1)b

M
2 c[BM(x)− BM(α)]

)q−1
dx

in the interval (0, 1
2 ) and notation

γM(x) = (−1)M+1BM

(
1−x

4

)
+ BM

(
1+x

4

)
, δM(x) = BM

(
|x|
4

)
− BM

( 2−x
4
)

is used.

We now present the main result of the paper. The technique used in the proof of the
following theorem is much like that employed in [3].

Theorem 2.4. The best constant of the Sobolev inequality or the supremum of the Sobolev functional

C(M) = sup
u∈WM

u 6≡0

‖u(x)‖∞

‖u(M)(x)‖p

is given by the formula

C(M) =
(b− a)M− 1

p

2(M− 1)!
‖EM−1(x)‖Lq(0,1), (2.7)

where the supremum is attained for

u(x) =
(−1)b

M+1
2 c(b− a)M−1

2(M− 1)!

∫ b

a
EM−1

(
|x− y|
b− a

)
(sgn(x− y))M f (y)dy (a ≤ x ≤ b),

where f (x) = (−1)d
M−1

2 e ∣∣EM−1
( x−a

b−a

)∣∣q−1 sgn
(
EM−1

( x−a
b−a

))
.
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Proof. Applying Hölder’s inequality to the identity (2.5) in Lemma 2.3, we have

|u(y)| ≤ (b− a)M−1

2(M− 1)!

∥∥∥∥EM−1

(
|x− y|
b− a

)∥∥∥∥
Lq(a,b)

∥∥∥u(M)(x)
∥∥∥
Lp(a,b)

, a ≤ y ≤ b.

Since
∫ b

a

∣∣EM−1
( |x−y|

b−a

)∣∣qdx = (b− a)
∫ 1

0 |EM−1(x)|q dx holds for all y ∈ [a, b], previous inequal-
ity can be rewritten as follows

sup
a≤y≤b

|u(y)| ≤ (b− a)M−1+ 1
q

2(M− 1)!
||EM−1(x)||Lq(0,1)

∣∣∣∣∣∣u(M)(x)
∣∣∣∣∣∣
Lp(a,b)

. (2.8)

This shows that the best constant is not greater than right-hand side of (2.7). Now, we prove
second part of the theorem. Let f be defined as above. Then u is the solution to the boundary
value problem (2.1). Note that u ∈WM. Interchanging x and y, we obtain

u(y) =
(−1)M+bM+1

2 c(b− a)M−1

2(M− 1)!

∫ b

a
EM−1

(
|x− y|
b− a

)
(sgn(x− y))M f (x)dx (a ≤ y ≤ b).

Moreover, we have

u(a) =
(−1)M+bM+1

2 c(b− a)M−1

2(M− 1)!

∫ b

a
EM−1

(
x− a
b− a

)
f (x)dx

and this yields

u(a) =
(b− a)M−1

2(M− 1)!

∫ b

a

∣∣∣∣EM−1

(
x− a
b− a

)∣∣∣∣q dx

=
(b− a)M−1

2(M− 1)!

∥∥∥∥EM−1

(
x− a
b− a

)∥∥∥∥q

Lq(a,b)

=
(b− a)M−1

2(M− 1)!

∥∥∥∥EM−1

(
x− a
b− a

)∥∥∥∥
Lq(a,b)

∥∥∥∥EM−1

(
x− a
b− a

)∥∥∥∥
q
p

Lq(a,b)

=
(b− a)M− 1

p

2(M− 1)!
‖EM−1(x)‖Lq(0,1)‖ f (x)‖Lp(a,b)

=
(b− a)M− 1

p

2(M− 1)!
‖EM−1(x)‖Lq(0,1)

∥∥∥u(M)(x)
∥∥∥
Lp(a,b)

.

Since u(a) ≤ supa≤y≤b |u(y)|, this together with (2.8) shows that we have constructed u in
which the supremum of Sobolev inequality is attained.

3 Application

The well-known Lyapunov inequality states that if r : [a, b]→ R is a continuous function, then
a necessary condition for the Dirichlet boundary value problem{

u′′ + r(t)u = 0, a < t < b

u(a) = u(b) = 0,
(3.1)
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M C(M)p u(x) on [a, b]

1 (b−a)p−1

2p
a+b

2 − x

2 (b−a)2p−1

22p(q+1)p−1
(b−a)(x− a+b

2 )
2q(q+1)

[
1

2q+1 −
|x− a+b

2 |
q+1

(b−a)q+1(q+2)

]
3 (b−a)3p−1Γ(1+q)2(p−1)

22pΓ(2q+2)p−1

∫ b
a sgn(x−y)[(b−y)(y−a)]q dy

4(b−a)2(q−1)

Table 2.2: Special cases of best constants and best functions.

to have nontrivial solutions is that ∫ b

a
|r(t)|dt >

4
b− a

(3.2)

and the constant 4 cannot be replaced by a larger number. Such result has found many
practical uses in problems as oscillation theory or eigenvalue problems (spectral properties
of differential equations). Several proofs and generalizations or improvements for various
boundary conditions have appeared in the literature. Recently, the author in [10] obtained a
new Lyapunov-type inequality, a generalization of (3.2), for a certain anti-periodic problem.

Theorem 3.1. Consider the following (m + 1)-order half-linear boundary value problem
(
|u(m)|p−2u(m)

)′
+ r(t)|u|p−2u = 0, a < t < b

u(k)(a) + u(k)(b) = 0, k = 0, 1, 2, . . . , m.
(3.3)

If u is its nonzero solution, then

∫ b

a
|r(t)|dt > 2

(
2

b− a

)m(p−1)

=:
1

C̃(m)p . (3.4)

We now introduce an assertion, which sharpen the result of [10]. In the Table 3.1 we show
how the inequality (3.6) improves (3.4).

Theorem 3.2. If u is a nonzero solution of
(
|u(m)|p−2u(m)

)′
+ r(t)|u|p−2u = 0, a < t < b

u(k)(a) + u(k)(b) = 0, k = 0, 1, 2, . . . , m,
(3.5)

then the inequality ∫ b

a
|r(t)|dt >

1
C(m)p−1C(1)

(3.6)

holds.

Proof. Multiplying the first equation in (3.5) by u(m−1)(t) and integrating over [a, b], we have∫ b

a
|u(m)(t)|p dt =

∫ b

a
r(t)|u(t)|p−2u(t)u(m−1)(t)dt.
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Applying Theorem 2.4 to u and u(m−1) respectively, yields

∫ b

a
|u(m)(t)|p dt ≤

∫ b

a
|r(t)|dt C(1)

(∫ b

a
|u(m)(t)|p dt

) 1
p

Cp−1(m)

(∫ b

a
|u(m)(t)|p dt

) p−1
p

.

Since u is nonzero solution, by dividing both sides by
∫ b

a |u
(m)(t)|p dt, we obtain inequality

(3.6). Moreover, this inequality is strict, since u(t) is not a constant.

m 1 2 3 4 5

C̃(m)2 b−a
4

(b−a)2

8
(b−a)3

16
(b−a)4

32
(b−a)5

64

C(m)C(1) b−a
4

√
3(b−a)2

24

√
30(b−a)3

240

√
595(b−a)4

3360

√
2170(b−a)5

20160

m 1 2 3

C̃(m)p (b−a)p−1

2p
(b−a)2p−2

22p−1
(b−a)3p−3

23p−2

C(m)p−1C(1) (b−a)p−1

2p
(b−a)2p−2

22p−1(q+1)
p−1

q

(b−a)3p−1Γ(q+1)
2(p−1)

q

22p−1Γ(2q+2)
p−1

q

Table 3.1: Comparison of constants of Lyapunov inequalities in Theorems 3.1, 3.2.

Now we establish a Lyapunov-type inequality for the half-linear equation of higher order
with anti-periodic boundary value conditions. Notice that for m = 1 problems (3.5) and (3.7)
coincide.

Theorem 3.3. If u is a nonzero solution of
(
|u(m)|p−2u(m)

)(m)
+ r(t)|u|p−2u = 0, a < t < b

u(k)(a) + u(k)(b) = 0, k = 0, 1, 2, . . . , 2m− 1,
(3.7)

then the following inequality holds: ∫ b

a
|r(t)|dt >

1
C(m)p . (3.8)

Proof. Let u be a solution of (3.7). Multiplying both sides of the first equation in (3.7) by
(−1)mu and integrating from a to b we have

(−1)m
∫ b

a
u(t)v(m)(t)dt = (−1)m+1

∫ b

a
r(t)|u(t)|p dt,

where v(t) = |u(m)|p−2u(m). Integrating by parts the left-hand side of the former equation we
obtain (notice that by a solution we mean a classical one, thus u, v belong to Cm([a, b]))

m−1

∑
i=0

[
(−1)m+iu(i)(t)v(m−i−1)(t)

]b

a
+
∫ b

a
|u(m)|p dt = (−1)m+1

∫ b

a
r(t)|u(t)|p dt.

Moreover using the anti-periodic boundary conditions from (3.7) and the fact that v(k)(a) +
v(k)(b) = 0, k = 1, 2, . . . , m− 1, we have∫ b

a
|u(m)|p dt = (−1)m+1

∫ b

a
r(t)|u(t)|p dt ≤

∫ b

a
|r(t)|dt

(
sup

a≤t≤b
|u(t)|

)p

.
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Now we use Sobolev inequality from Theorem 2.4:(
sup

a≤t≤b
|u(t)|

)p

C(m)p ≤
∫ b

a
|r(t)|dt

(
sup

a≤t≤b
|u(t)|

)p

.

Dividing both sides by
(

supa≤t≤b |u(t)|
)p, we obtain desired inequality. Again this inequality

is strict.
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