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Abstract. Using the barrier strip argument, we obtain the existence of solutions for the
nonlinear boundary value problem

(φ(u′))′ = f (t, u, u′), u(0) = A, u′(1) = B,

where φ is an increasing homeomorphism.
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1 Introduction

The purpose of this article is to obtain some existence results for nonlinear problems of the
form

(φ(u′))′ = f (t, u, u′), t ∈ [0, 1], (1.1)

u(0) = A, u′(1) = B, (1.2)

where f : [0, 1] ×R2 → R is continuous and φ : (−∞, ∞) → R is an increasing homeomor-
phism. Problems of this form are called classical.

A typical classical model is the well-known p-Laplacian equation

(φp(u′))′ = f (t, u, u′), t ∈ [0, 1]

where φp(s) := |s|p−2s (p > 1). Various two-point boundary value problems containing this
operator have received a lot of attention lately with respect to existence of solutions, see for
example, [10, 13, 14, 16, 20] and the references therein. The key condition in those works relies
on a growth restriction on f .

In 1994, Kelevedjiev [18], using the topological transversality theorem and the barrier strip
argument, studied the nonlinear non-homogeneous problem

u′′ = f (t, u, u′), t ∈ [0, 1] (1.3)

u(0) = A, u′(1) = B, (1.4)

BCorresponding author. Email: zhl992934235@163.com



2 R. Ma, L. Zhang and R. Liu

and obtained the following theorem.

Theorem A. Let f : [0, 1]×R2 → R be continuous, and let there exist constants Li, i = 1, 2, 3, 4,
such that L2 > L1 ≥ B, L3 < L4 ≤ B,

f (t, u, v) ≥ 0, (t, u, p) ∈ [0, 1]×R× [L1, L2], (1.5)

and

f (t, u, v) ≤ 0, (t, u, p) ∈ [0, 1]×R× [L3, L4]. (1.6)

Then problem (1.3)–(1.4) has at least one solution.

(1.5) and (1.6) are called barrier strip conditions. They control the behavior of u′ on [0, 1].
Depending on the sign of f (t, u, u′) the curve of u′(t) on [0, 1] crosses the strips [0, 1]× [L1, L2]

and [0, 1]× [L3, L4] not more than once. Therefore, the assumptions (1.5) and (1.6) are sufficient
conditions to obtain an a priori bound for u(t) and u′(t).

Very recently, Kelevedjiev and Tersian [19] generalized Theorem A to the following bound-
ary value problem with p-Laplacian

(φp(u′))′ = f (t, u, u′), u(0) = A, u′(1) = B;

the existence of C2-solution is proved under barrier strip conditions similar to (1.5) and (1.6).
This work raises the following question: “Can we replace the p-Laplacian operator by the
more general increasing homeomorphism (φ(u′))′?”. In the present paper, answering these
questions in the affirmative, we extend Theorem A to the case of φ-Laplacian. More precisely,
we prove the following theorem.

Theorem 1.1. Let φ : R → R be classical and an increasing homeomorphism. Assume that (1.5) and
(1.6) are fulfilled. Then (1.1)–(1.2) has at least one solution in C1[0, 1].

The rest of the paper is organized as follows. In Section 2, we state some notations and
the topological transversality theorem, which will be crucial in the proof of our main result.
Section 3 is devoted to the preparation of a priori bounds for the possible solutions of a suitable
family of problems, and finally we will prove the main result.

For other results concerning the φ-Laplacian operator we refer the reader to [1–9,11,12,17].

2 Notations and fixed point theorem

As usual, C[0, 1] is the Banach space of continuous functions defined on [0, 1] endowed with
the norm ‖ · ‖0, and C1[0, 1] is Banach space of continuously differentiable functions defined
on [0, 1] endowed with the norm ‖u‖1 = max{‖u‖0, ‖u′‖0}.

Let Y be a convex subset of Banach space E and U ⊂ Y be open in Y. Let L∂U(U, Y) be a
set of compact maps from U to Y which are fixed points free on ∂U; here, as usual, U and ∂U
are the closure of U and the boundary of U in Y, respectively.

A map F in L∂U(U, Y) is essential if every map G in L∂U(U, Y) such that G|∂U = F|∂U has a
fixed point in U. It is clear, in particular, every essential map has a fixed point in U.

Theorem B (Topological transversality theorem, [15]). Let Y be a convex subset of a Banach space
E and U ⊂ Y be open. Assume that

(a) F, G : U → Y are compact maps;
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(b) G ∈ L∂U(U, Y) is essential;

(c) H(u, λ), λ ∈ [0, 1], is a compact homotopy joining F and G; i.e.,

H(u, 1) = F(u), H(u, 0) = G(u);

(d) H(u, λ), λ ∈ [0, 1], is fixed point free on ∂U.

Then H(u, λ), λ ∈ [0, 1], has at least one fixed point in U and in particular there is a u0 ∈ U such
that u0 = F(u0).

Theorem C. Let l ∈ U be fixed and F ∈ L∂U(U, Y) be the constant map F(u) = l for u ∈ U, then F
is essential.

3 Auxiliary results, proofs of the main results

For λ ∈ [0, 1], we consider the family of boundary value problems

(φ(u′))′ = λ f (t, u, u′), t ∈ [0, 1], (3.1)

u(0) = A, u′(1) = B, (3.2)

Our first auxiliary result gives an a priori bound for the solutions of the problem (3.1)–(3.2).

Lemma 3.1. Let φ be an increasing homeomorphism, (1.5) and (1.6) hold and u ∈ C1[0, 1] be a solution
of the problem (3.1)–(3.2). Then there exists a constant M independent of λ and u such that

‖u‖1 < M.

Proof. Suppose the set

S0 = {t ∈ [0, 1] : L1 < u′(t) ≤ L2} and S1 = {t ∈ [0, 1] : L3 ≤ u′(t) < L4}

are not empty. Let t0 ∈ S0, t1 ∈ S1 be fixed. Assume that there are t′0 ∈ (t0, 1] and t′1 ∈ (t1, 1]
such that

u′(t′0) < u′(t0), u′(t′1) > u′(t1). (3.3)

The continuity of u′(t) allows us to take t′0 and t′1 correspondingly from (t0, 1] ∩ S0 and
(t1, 1] ∩ S1. On the other hand, from (1.5) and (1.6) we have respectively

(φ(u′))′ = λ f (t, u, u′) ≥ 0 for t ∈ S0 and (φ(u′))′ = λ f (t, u, u′) ≤ 0 for t ∈ S1

and, since φ is increasing, we obtain that u′(t) is monotone increasing for t ∈ S0 and monotone
decreasing for t ∈ S1. Thus,

u′(t′0) ≥ u′(t0), u′(t′1) ≤ u′(t1).

This contradicts (3.3). Consequently

u′(t) ≥ u′(t0) for t ∈ (t0, 1], u′(t) ≤ u′(t1) for t ∈ (t1, 1],

and in particular

u′(1) ≥ u′(t0) > L1 ≥ B, u′(1) ≤ u′(t1) < L4 ≤ B.
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The contradiction obtained shows that S0 and S1 are empty. Since u′ ∈ C[0, 1], then
L4 ≤ u′(t) ≤ L1 for t ∈ [0, 1], i.e.,

|u′(t)| ≤ max{|L1|, |L4|}, t ∈ [0, 1].

On the other hand for each t ∈ [0, 1], we have

u(t)− u(0) =
∫ t

0
u′(s) ds,

which provides
|u(t)| ≤ M2 for t ∈ [0, 1],

where M2 = M1 + |A|, M1 = max{|L1|, |L4|}.
So, we obtained that each solution u of (3.1)–(3.2), satisfies

‖u‖1 < M := max{M1, M2}+ 1,

where M is independent of λ and u. This completes the proof of Lemma 3.1.

Now, we introduce the set C1
BC[0, 1] = {u ∈ C1[0, 1] : u(0) = A, u′(1) = B} and the

operator L : C1
BC[0, 1]→ C[0, 1] defined by

Lu = (φ(u′))′.

Introduce also the operator K : C[0, 1]→ C1
BC[0, 1] defined by

Kv = A +
∫ t

0
φ−1

[ ∫ τ

1
v(s) ds + φ(B)

]
dτ.

Lemma 3.2. The operator K : C[0, 1]→ C1
BC[0, 1] is well-defined and continuous.

Proof. It is clear that for each v ∈ C[0, 1], the function h(t) :=
∫ t

1 v(s) ds + φ(B) is continuous
for t ∈ [0, 1]. Since φ is an increasing homeomorphism, so φ−1(h(t)) is also continuous for
t ∈ [0, 1].

Thus (Kv)′(t) = φ−1(h(t)) is in C[0, 1]. Finally, it is easy to check that

(Kv)(0) = A, (Kv)′(1) = B,

which means (Kv)(t) ∈ C1
BC[0, 1]. The continuity of K follows from the continuity of

A +
∫ t

0 φ−1[
∫ τ

1 v(s) ds + φ(B)] dτ on [0, 1].

Lemma 3.3. The operator K is the inverse operator of L.

Proof. Clearly, each function u ∈ C1
BC[0, 1] has a unique v = Lu ∈ C[0, 1]. Also, each function

v ∈ C[0, 1] has a unique inverse image u ∈ C1
BC[0, 1] of the form

u = A +
∫ t

0
φ−1

[ ∫ τ

1
v(s) ds + φ(B)

]
dτ,

which is the solution of the boundary value problem

(φ(u′))′ = v(t), t ∈ [0, 1],

u(0) = A, u′(1) = B.
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So, the operator L is one-to-one. Further, to show that K is an invertible map, let Lu = v, i.e.,
φ(u′)′ = v. Then

Kv = K(Lu) = A +
∫ t

0
φ−1

[ ∫ τ

1
(φ(u′(s)))′ ds + φ(B)

]
dτ

= A +
∫ t

0
φ−1[φ(u′(τ))− φ(u′(1)) + φ(B)

]
dτ

= A +
∫ t

0
u′(τ) dτ

= u(t).

Proof of Theorem 1.1. At first, we introduce the set

U =
{

u ∈ C1
BC[0, 1] : ‖u‖1 < M

}
.

According to Lemma 3.1, all solutions of problem (3.1)–(3.2) are interior points of U. Introduce
also the map

N : C1[0, 1]→ C[0, 1], defined by (Nu)(t) = f (t, u(t), u′(t)),

for t ∈ [0, 1] and u(t) ∈ U.
Now, we consider the homotopy

Hλ : U × [0, 1]→ C1
BC[0, 1],

defined by H(u, λ) ≡ Hλ(u) = λKN(u) + (1− λ)l, where l = Bt + A is the unique solution of

(φ(u′))′ = 0, t ∈ [0, 1],

u(0) = A, u′(1) = B.

Since K and N are continuous, using the Arzelà–Ascoli theorem it is not difficult to see that
K is compact. Therefore the homotopy Hλ : U × [0, 1] → C1

BC[0, 1] is compact. According to
Lemma 3.1, H(u, λ), λ ∈ [0, 1], is fixed point free on ∂U. Besides, H0(u) ≡ l, ∀u ∈ U; i.e., it is
a constant map and so is essential, by Theorem C.

So, by Theorem B we get the map H1(u) has a fixed point in U. It is easy to see that it is a
solution of the boundary value problem (3.1)–(3.2) obtained for λ = 1 and, what is the same,
of (1.1)–(1.2).

Example 3.4. Consider the boundary value problem

(φ(u′))′ = u′2 − 4u′ + 3, t ∈ [0, 1],

u(0) = 0, u′(1) = B.

where 2 < B < 3 and φ(s) = s3

1+s2 .
It is not difficult to verify that φ is an increasing homeomorphism, f (t, u, u′) = u′2− 4u′+ 3,

has two simple zeros 1 and 3.
So, we can choose L1 = 4, L2 = 5, L3 = 5

4 , L4 = 3
2 to see (1.5)–(1.6) hold and so the

considered problem has at least one solution.
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