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Abstract. In this article we obtain the geometric classification of singularities, finite and
infinite, for the three subclasses of quadratic differential systems with finite singulari-
ties with total multiplicity m f = 4 possessing exactly two finite singularities, namely:
(i) systems with two double complex singularities (18 configurations); (ii) systems with
two double real singularities (33 configurations) and (iii) systems with one triple and
one simple real singularities (123 configurations). We also give here the global bifurca-
tion diagrams of configurations of singularities, both finite and infinite, with respect to
the geometric equivalence relation, for these subclasses of systems. The bifurcation set of
this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space
of parameters and it is expressed in terms of invariant polynomials, which give an al-
gorithm for determining the geometric configuration of singularities for any quadratic
system.
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1 Introduction and statement of main results

We consider here differential systems of the form

dx
dt

= p(x, y),
dy
dt

= q(x, y), (1.1)
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where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1.1)
the integer m = max(deg p, deg q). In particular we call quadratic a differential system (1.1)
with m = 2. We denote here by QS the whole class of real quadratic differential systems.

The study of the class QS has proved to be quite a challenge since hard problems formu-
lated more than a century ago, are still open for this class. It is expected that we have a finite
number of phase portraits in QS. We have phase portraits for several subclasses of QS but to
obtain the complete topological classification of these systems, which occur rather often in ap-
plications, is a daunting task. This is partly due to the elusive nature of limit cycles and partly
to the rather large number of parameters involved. This family of systems depends on twelve
parameters but due to the group action of real affine transformations and time homothecies,
the class ultimately depends on five parameters which is still a rather large number of param-
eters. For the moment only subclasses depending on at most three parameters were studied
globally, including their global bifurcation diagrams (for example [1]). On the other hand we
can restrict the study of the whole quadratic class by focusing on specific global features of
the systems in this family. We may thus focus on the global study of singularities and their
bifurcation diagram. The singularities are of two kinds: finite and infinite. The infinite singu-
larities are obtained by compactifying the differential systems on the sphere, on the Poincaré
disk, or on the projective plane as defined in Subsection 2 (see [16, 20]).

The global study of quadratic vector fields began with the study of these systems in the
neighborhood of infinity [15,22,27,28]. In [7] the authors classified topologically (adding also
the distinction between nodes and foci) the whole quadratic class, according to configurations
of their finite singularities.

To reduce the number of phase portraits in half in topological classification problems of
quadratic systems, the topological equivalence relation was taken to mean the existence of a
homeomorphism of the phase plane carrying orbits to orbits and preserving or reversing the
orientation.

We use the concepts and notations introduced in [6] and [2] which we describe in Section
2. To distinguish among the foci (or saddles) we use the notion of order of the focus (or of the
saddle) defined using the algebraic concept of Poincaré–Lyapunov constants. We call strong
focus (or strong saddle) a focus (or a saddle) whose linearization matrix has non-zero trace.
Such a focus (or saddle) will be denoted by f (respectively s). A focus (or saddle) with trace
zero is called a weak focus (weak saddle). We denote by f (i) (s(i)) the weak foci (weak saddles)
of order i and by c and $ the centers and integrable saddles. For more notations see Subsection
2.5.

In the topological classification no distinction was made among the various types of foci or
saddles, strong or weak of various orders. However these distinctions of an algebraic nature
are very important in the study of perturbations of systems possessing such singularities.
Indeed, the maximum number of limit cycles which can be produced close to the weak foci of
a system in QS in perturbations inside the class QS depends on the orders of the foci.

There are also three kinds of simple nodes: nodes with two characteristic directions (the
generic nodes), nodes with one characteristic direction and nodes with an infinite number
of characteristic directions (the star nodes). The three kinds of nodes are distinguished alge-
braically. Indeed, the linearization matrices of the two direction nodes have distinct eigenval-
ues, they have identical eigenvalues and they are not diagonal for the one direction nodes,
and they have identical eigenvalues and they are diagonal for the star nodes (see [2, 4, 6]). We
recall that the star nodes and the one direction nodes could produce foci in perturbations.

Furthermore a generic node at infinity may or may not have the two exceptional curves
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lying on the line at infinity. This leads to two different situations for the phase portraits. For
this reason we split the generic nodes at infinity in two types as indicated in Subsection 2.5.

The geometric equivalence relation (see further below) for finite or infinite singularities, intro-
duced in [6] and used in [2–5], takes into account such distinctions. This equivalence relation
is also deeper than the qualitative equivalence relation introduced by Jiang and Llibre in [19]
because it distinguishes among the foci (or saddles) of different orders and among the various
types of nodes. This equivalence relation induces also a deeper distinction among the more
complicated degenerate singularities.

In quadratic systems weak singularities could be of orders 1, 2 or 3 [12]. For details
on Poincaré–Lyapunov constants and weak foci of various orders we refer to [20, 26]. As
indicated before, algebraic information plays a fundamental role in the study of perturbations
of systems possessing such singularities. In [31] necessary and sufficient conditions for a
quadratic system to have weak foci (saddles) of orders i, i = 1, 2, 3 are given in invariant form.

For the purpose of classifying QS according to their singularities, finite or infinite, we
use the geometric equivalence relation which involves only algebraic methods. It is conjectured
that there are about 2000 distinct geometric configurations of singularities. The first step in this
direction was done in [6] where the global classification of singularities at infinity of the whole
class QS, was done according to the geometric equivalence relation of configurations of infinite
singularities. This work was then (partially) extended to also incorporate finite singularities.
We initiated this work in [2] where this classification was done for the case of singularities
with a total finite multiplicity m f ≤ 1, continued it in [3] where the classification was done for
m f = 2 and in [4] and [5] where the classification was done for m f = 3.

In the present article our goal is to go one step further in the geometric classification of global
configurations of singularities by studying here the case of finite singularities with total finite
multiplicity four and exactly two finite singularities.

We recall below the notion of geometric configuration of singularities defined in [3] for both
finite and infinite singularities. We distinguish two cases:

1) Consider a system with a finite number of singularities, finite and infinite. In this case
we call geometric configuration of singularities, finite and infinite, the set of all these singularities
(real and complex) together with additional structure consisting of i) their multiplicities, ii)
their local phase portraits around real singularities, each endowed with additional geometric
structure involving the concepts of tangent, order and blow-up equivalence defined in Section
4 of [6] (or [2]) and Section 3 of [3].

2) If the line at infinity is filled up with singularities, in each one of the charts at infinity,
the corresponding system in the Poincaré compactification (see Section 2) is degenerate and
we need to do a rescaling of an appropriate degree of the system, so that the degeneracy
be removed. The resulting systems have only a finite number of singularities on the line at
infinity. In this case we call geometric configuration of singularities, finite and infinite, the set
of all points at infinity (they are all singularities) in which we single out the singularities at
infinity of the “reduced” system, taken together with their local phase portraits and we also
take the local phase portraits of finite singularities each endowed with additional geometric
structure to be described in Section 2.

Remark 1.1. We note that the geometric equivalence relation for configurations is much
deeper than the topological equivalence. Indeed, for example the topological equivalence
does not distinguish between the following three configurations which are geometrically non-
equivalent: 1) n, f ;(1

1)SN, c©, c©, 2) n, f (1);(1
1)SN, c©, c©, and 3) nd, f (1); SN, c©, c©where n and



4 J. C. Artés, J. Llibre, A. C. Rezende, D. Schlomiuk and N. Vulpe

nd mean singularities which are nodes, respectively two directions and one direction nodes,
capital letters indicate points at infinity, c© in case of a complex point and SN a saddle–node
at infinity and (1

1) encodes the multiplicities of the saddle-node SN. For more details see the
notation in Subsection 2.5.

The invariants and comitants of differential equations used for proving our main result
are obtained following the theory of algebraic invariants of polynomial differential systems,
developed by Sibirsky and his disciples (see for instance [9, 14, 24, 30, 33]).

Our results are stated in the following theorem.

Main Theorem. (A) We consider here all configurations of singularities, finite and infinite, of
quadratic vector fields with finite singularities of total multiplicity m f = 4 possessing exactly two
distinct finite singularities. These configurations are classified in the diagrams from Tables 1.1–1.3
according to the geometric equivalence relation. We have 174 geometrically distinct configurations
of singularities, finite and infinite. More precisely 18 geometrically distinct configurations with two
double complex finite singularities; 33 geometrically distinct configurations with two double real finite
singularities, and 123 with one triple and one simple real finite singularities.

(B) Necessary and sufficient conditions for each one of the 174 different geometric equivalence
classes can be assembled from these diagrams in terms of 20 invariant polynomials with respect to the
action of the affine group and time rescaling appearing in the Tables 1.1–1.3 (see Remark 1.2 for a source
of these invariants).

(C) The Tables 1.1–1.3 actually contain the global bifurcation diagrams in the 12-dimensional
space of parameters, of the global geometric configurations of singularities, finite and infinite, of these
subclasses of quadratic differential systems and provide an algorithm for finding for any given system
in any of the three families considered, its respective geometric configuration of singularities.

Remark 1.2. The diagrams are constructed using the invariant polynomials µ0, µ1, . . . which
are defined in Section 5 of [5] and may be downloaded from the web page:

http://mat.uab.es/~artes/articles/qvfinvariants/qvfinvariants.html

together with other useful tools. In Tables 1.1–1.3 the conditions on these invariant polyno-
mials are listed on the left side of the diagrams, while the specific geometric configurations
appear on the right side of the diagrams. These configurations are expressed using the nota-
tion described in Subsection 2.5.

2 Concepts and results in the literature useful for this paper

2.1 Compactification on the sphere and on the Poincaré disk

Planar polynomial differential systems (1.1) can be compactified on the 2-dimensional sphere
as follows. We first include the affine plane (x, y) in R3, with its origin at (0, 0, 1), and we
consider it as the plane z = 1. We then use a central projection to send the vector field to the
upper and to the lower hemisphere. The vector fields thus obtained on the two hemispheres
are analytic and diffeomorphic to our vector field on the (x, y) plane. By a theorem stated by
Poincaré and proved in [17] there exists an analytic vector field on the whole sphere which
simultaneously extends the vector fields on the two hemispheres to the whole sphere. We
call Poincaré compactification on the sphere of the planar polynomial system, the restriction of
the vector field thus obtained on the sphere, to the upper hemisphere completed with the

http://mat.uab.es/~artes/articles/qvfinvariants/qvfinvariants.html
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Table 1.1: Global configurations: the case µ0 6= 0, D = T = 0, PR < 0.

equator. For more details we refer to [16]. The vertical projection of this vector field defined
on the upper hemisphere and completed with the equator, yields a diffeomorphic vector field
on the unit disk, called the Poincaré compactification on the disk of the polynomial differential
system. By a singular point at infinity of a planar polynomial vector field we mean a singular
point of the vector field which is located on the equator of the sphere, also located on the
boundary circle of the Poincaré disk.

2.2 Compactification on the projective plane

For a polynomial differential system (1.1) of degree m with real coefficients we associate the
differential equation ω1 = q(x, y)dx− p(x, y)dy = 0. This equation defines two foliations with
singularities, one on the real and one on the complex affine planes. We can compactify these
foliations with singularities on the real respectively complex projective plane with homoge-
neous coordinates X, Y, Z. This is done as follows: Consider the pull-back of the form ω1

via the map r : K3 \ {Z = 0} → K2 defined by r(X, Y, Z) = (X/Z, Y/Z). We obtain a form
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Table 1.2: Global configurations: the case µ0 6= 0, D = T = 0, PR > 0.
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Table 1.3: Global configurations: the case µ0 6= 0, D = T = P = 0, R 6= 0.
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Table 1.3 (continued). Global configurations: the case µ0 6= 0, D = T = P = 0, R 6= 0.
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Table 1.3 (continued). Global configurations: the case µ0 6= 0, D = T = P = 0, R 6= 0.
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Table 1.3 (continued). Global configurations: the case µ0 6= 0, D = T = P = 0, R 6= 0.
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r∗(ω1) = ω̃ which has poles on Z = 0. Eliminating the denominators in the equation ω̃ = 0 we
obtain an equation ω = 0 of the form ω = A(X, Y, Z) dX + B(X, Y, Z) dY + C(X, Y, Z) dZ = 0
with A, B, C homogeneous polynomials of the same degree. The equation ω = 0 defines
a foliation with singularities on P2(K) which, via the map (x, y) → [x : y : 1], extends
the foliation with singularities, given by ω1 = 0 on K2 to a foliation with singularities
on P2(K) which we call the compactification on the projective plane of the foliation with
singularities defined by ω1 = 0 on the affine plane K2 (K equal to R or C). This is be-
cause A, B, C are homogeneous polynomials over K, defined by A(X, Y, Z) = ZQ(X, Y, Z),
Q(X, Y, Z) = Zmq(X/Z, Y/Z), B(X, Y, Z) = ZP(X, Y, Z), P(X, Y, Z) = Zm p(X/Z, Y/Z) and
C(X, Y, Z) = YP(X, Y, Z) − XQ(X, Y, Z). The points at infinity of the foliation defined by
ω1 = 0 on the affine plane are the singular points of the type [X : Y : 0] ∈ P2(K) and the line
Z = 0 is called the line at infinity of this foliation. The singular points of the foliation on P2(K)
are the solutions of the three equations A = 0, B = 0, C = 0. In view of the definitions of
A, B, C it is clear that the singular points at infinity are the points of intersection of Z = 0 with
C = 0. For more details see [20], or [6] or [2].

2.3 Assembling multiplicities of singularities in divisors of the line at infinity and
in zero-cycles of the plane

An isolated singular point p at infinity of a polynomial vector field of degree n has two types
of multiplicities: the maximum number m of finite singularities which can split from p, in
small perturbations of the system within polynomial systems of degree n, and the maximum
number m′ of infinite singularities which can split from p, in small such perturbations of
the system. We encode the two in the column (m, m′)t. We then encode the global informa-
tion about all isolated singularities at infinity using formal sums called cycles and divisors as
defined in [23] or in [20] and used in [2, 6, 20, 28].

We have two formal sums (divisors on the line at infinity Z = 0 of the complex affine plane)
DS(P, Q; Z) = ∑w Iw(P, Q)w and DS(C, Z) = ∑w Iw(C, Z)w where w ∈ {Z = 0} and where
by Iw(F, G) we mean the intersection multiplicity at w of the curves F(X, Y, Z) = 0 and
G(X, Y, Z) = 0 on the complex projective plane. For more details see [20]. Following [28] we
encode the above two divisors on the line at infinity into just one but with values in the ring
Z2:

DS = ∑
ω∈{Z=0}

(
Iw(P, Q)

Iw(C, Z)

)
w.

For a system (1.1) with isolated finite singularities we consider the formal sum (zero-cycle
on the plane) DS(p, q) = ∑ω∈R2 Iw(p, q)w encoding the multiplicities of all finite singularities.
For more details see [1, 20].

2.4 Some geometrical concepts

Firstly we recall some terminology introduced in [6].

We call elemental a singular point with its both eigenvalues not zero.

We call semi-elemental a singular point with exactly one of its eigenvalues equal to zero.

We call nilpotent a singular point with both its eigenvalues zero but with its Jacobian
matrix at this point not identically zero.
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We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We use here
the term intricate to indicate the rather complicated behavior of phase curves around such a
singularity.

In this section we use the same concepts we considered in [2,3,5,6], such as orbit γ tangent
to a semi-line L at p, well defined angle at p, characteristic orbit at a singular point p, characteristic
angle at a singular point, characteristic direction at p. If a singular point has an infinite number
of characteristic directions, we will call it a star-like point.

It is known that the neighborhood of any isolated singular point of a polynomial vector
field, which is not a focus or a center, is formed by a finite number of sectors which could
only be of three types: parabolic, hyperbolic and elliptic (see [16]). It is also known that any
degenerate singular point can be desingularized by means of a finite number of changes of
variables, called blowups, into elemental and semi-elemental singular points (for more details
see the section on blowup in [6] or [16]).

Topologically equivalent local phase portraits can be distinguished according to the alge-
braic properties of their phase curves. For example they can be distinguished algebraically in
the case when the singularities possess distinct numbers of characteristic directions.

The usual definition of a sector is of topological nature and it is local, defined with respect
to a neighborhood around the singular point. We work with a new notion, namely of geometric
local sector, introduced in [6], based on the notion of borsec, term meaning “border of a sector”
(a new kind of sector, i.e. geometric sector) which takes into account orbits tangent to the
half-lines of the characteristic directions at a singular point. For example a generic or semi–
elemental node p has two characteristic directions generating four half lines at p. For each one
of these half lines at p there exists at least one orbit tangent to that half line at p and we pick
such an orbit (one for each half line). Removing these four orbits together with the singular
point, we are left with four sectors which we call geometric local sectors and we call borsecs these
four orbits. The notion of geometric local sector and of borsec was extended for nilpotent and
intricate singular points using the process of desingularization as indicated in [3]. We end up
with the following definition: We call geometric local sector of a singular point p with respect to
a sufficiently small neighborhood V, a region in V delimited by two consecutive borsecs. As
already mentioned, these are defined using the desingularization process.

A nilpotent or intricate singular point can be desingularized by passing to polar coordi-
nates or by using rational changes of coordinates. The first method has the inconvenience of
using trigonometrical functions, and this becomes a serious problem when a chain of blowups
is needed in order to complete the desingularization of the degenerate point. The second uses
rational changes of coordinates, convenient for our polynomial systems. In such a case two
blowups in different directions are needed and information from both must be glued together
to obtain the desired portrait.

Here for desingularization we use the second possibility, namely with rational changes
of coordinates at each stage of the process. Two rational changes are needed, one for each
direction of the blow-up. If at a stage the coordinates are (x, y) and we do a blow-up of a
singular point in y-direction, this means that we introduce a new variable z and consider the
diffeomorphism of the (x, y) plane for x 6= 0 defined by φ(x, y) = (x, y, z) where y = xz.
This diffeomorphism transfers our vector field on the subset x 6= 0 of the plane (x, y) on the
subset x 6= 0 of the algebraic surface y = zx. It can easily be checked that the projection
(x, xz, z) 7→ (x, z) of this surface on the (x, z) plane is a diffeomorphism. So our vector field
on the plane (x, y) for x 6= 0 is diffeomeorphic via the map (x, y) 7→ (x, y/x) for x 6= 0 to the
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vector field thus obtained on the (x, z) plane for x 6= 0. The point p = (0, 0) is then replaced
by the straight line x = 0 = y in the 3-dimensional space of coordinates x, y, z. This line is also
the z-axis of the plane (x, z) and it is called the blowup line.

The two directional blowups can be reduced to only one 1-direction blowup but making
sure that the direction in which we do a blowup is not a characteristic direction, not to lose
information by blowing up in the chosen direction. This can be easily solved by a simple
linear change of coordinates of the type (x, y) → (x + ky, y) where k is a constant (usually 1).
It seems natural to call this linear change a k-twist as the y-axis gets turned with some angle
depending on k. It is obvious that the phase portrait of the degenerate point which is studied
cannot depend on the values of k’s used in the desingularization process.

We recall that after a complete desingularization all singular points are elemental or semi–
elemental. For more details and a complete example of the desingularization of an intricate
singular point see [3].

Generically a geometric local sector is defined by two borsecs arriving at the singular point
with two different well defined angles and which are consecutive. If this sector is parabolic,
then the solutions can arrive at the singular point with one of the two characteristic angles,
and this is a geometric information that can be revealed with the blowup.

There is also the possibility that two borsecs defining a geometric local sector at a point
p are tangent to the same half-line at p. Such a sector will be called a cusp-like sector which
can either be hyperbolic, elliptic or parabolic denoted by Hf, Ef and Pf respectively. In the
case of parabolic sectors we want to include the information about how the orbits arrive at the
singular points namely tangent to one or to the other borsec. We distinguish the two cases by
writing

x
P if they arrive tangent to the borsec limiting the previous sector in clockwise sense,

or
y
P if they arrive tangent to the borsec limiting the next sector. In the case of a cusp-like

parabolic sector, all orbits must arrive with only one well determined angle, but the distinction
between

x
P and

y
P is still valid because it occurs at some stage of the desingularization and this

can be algebraically determined. Examples of descriptions of complicated intricate singular
points are

y
PE

x
P HHH and E

x
PfHH

y
PfE.

A star-like point can either be a node or something much more complicated with elliptic
and hyperbolic sectors included. In case there are hyperbolic sectors, they must be cusp-like.
Elliptic sectors can either be cusp-like, or star-like.

2.5 Notations for singularities of polynomial differential systems

In this work we limit ourselves to the class of quadratic systems with finite singularities of
total multiplicity four and exactly two singularities. In [6] we introduced convenient notations
which we also used in [2–5] some of which we also need here. Because these notations are
essential for understanding the bifurcation diagram, we indicate below the notations needed
for this article.

The finite singularities will be denoted by small letters and the infinite ones by capital
letters. In a sequence of singular points we always place the finite ones first and then the
infinite ones, separating them by a semicolon ‘;’.

Elemental points: We use the letters ‘s’,‘S’ for “saddles”; $ for “integrable saddles"; ‘n’,
‘N’ for “nodes”; ‘ f ’ for “foci”; ‘c’ for “centers” and c© (respectively c©) for complex finite
(respectively infinite) singularities. We distinguish the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);
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• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose Jacobian
matrix is not diagonal;

• ‘n∗’ (a star node) for a node with two identical eigenvalues whose Jacobian matrix is
diagonal.

The case nd (and also n∗) corresponds to a real finite singular point with zero discriminant.
In the case of an elemental infinite generic node, we want to distinguish whether the

eigenvalue associated to the eigenvector directed towards the affine plane is, in absolute value,
greater or lower than the eigenvalue associated to the eigenvector tangent to the line at infinity.
This is relevant because this determines if all the orbits except one on the Poincaré disk arrive
at infinity tangent to the line at infinity or transversal to this line. We will denote them as
‘N∞’ and ‘N f ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively strong
or weak saddles. The strong foci or saddles are those with non-zero trace of the Jacobian
matrix evaluated at them. In this case we denote them by ‘ f ’ and ‘s’. When the trace is
zero, except for centers, and saddles of infinite order (i.e. with all their Poincaré–Lyapounov
constants equal to zero), it is known that the foci and saddles, in the quadratic case, may have
up to 3 orders. We denote them by ‘ f (i)’ and ‘s(i)’ where i = 1, 2, 3 is the order. In addition
we have the centers which we denote by ‘c’ and saddles of infinite order (integrable saddles)
which we denote by ‘$’.

Foci and centers cannot appear as singular points at infinity and hence there is no need to
introduce their order in this case. In case of saddles, we can have weak saddles at infinity but
the maximum order of weak singularities in cubic systems is not yet known. For this reason,
a complete study of weak saddles at infinity cannot be done at this stage. Due to this, in [5,6]
and here we chose not even to distinguish between a saddle and a weak saddle at infinity.

All non-elemental singular points are multiple points, in the sense that there are pertur-
bations which have at least two elemental singular points as close as we wish to the multiple
point. For finite singular points we denote with a subindex their multiplicity as in ‘s(5)’ or
in ‘ês(3)’ (the notation ‘ ’ indicates that the saddle is semi-elemental and ‘̂ ’ indicates that the
singular point is nilpotent, in this case a triple elliptic saddle, i.e. it has two sectors, one elliptic
and one hyperbolic). In order to describe the two kinds of multiplicity for infinite singular
points we use the concepts and notations introduced in [28]. Thus we denote by ‘(a

b) . . . ’ the
maximum number a (respectively b) of finite (respectively infinite) singularities which can be
obtained by perturbation of the multiple point. For example ‘(1

1)SN’ means a saddle–node at

infinity produced by the collision of one finite singularity with an infinite one; ‘(0
3)S’ means a

saddle produced by the collision of 3 infinite singularities.
Semi-elemental points: They can either be nodes, saddles or saddle–nodes, finite or infi-

nite (see [16]). We denote the semi-elemental ones always with an overline, for example ‘sn’,
‘s’ and ‘n’ with the corresponding multiplicity. In the case of infinite points we put ‘ ’ on top
of the parenthesis with multiplicities.

Semi-elemental nodes could never be ‘nd’ or ‘n∗’ since their eigenvalues are always differ-
ent. In case of an infinite semi-elemental node, the type of collision determines whether the
point is an ‘N f ’ or an ‘N∞’. The point ‘(2

1)N’ is an ‘N f ’ and ‘(0
3)N’ is an ‘N∞’.

Nilpotent points: They can either be saddles, nodes, saddle–nodes, elliptic saddles, cusps,
foci or centers (see [16]). The first four of these could be at infinity. We denote the nilpotent
singular points with a hat ‘̂’ as in ês(3) for a finite nilpotent elliptic saddle of multiplicity 3,
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and ĉp(2) for a finite nilpotent cusp point of multiplicity 2.
When m f = 4 and there is more than one finite singularity there are neither nilpotent

singularities at infinity nor intricate singularities (finite and infinite). Also, for this class, the
line at infinity cannot be filled up with singularities. For these reasons we skip the notations
for these points in this paper. The interested could see these notations in [5, 6].

2.6 Affine invariant polynomials and preliminary results

Consider real quadratic systems of the form

dx
dt

= p0 + p1(x, y) + p2(x, y) ≡ P(x, y),

dy
dt

= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),
(2.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) in x, y which are defined as follows:

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coefficients of
systems (2.1) and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

It is known that on the set QS of all quadratic differential systems (2.1) acts the group
Aff (2, R) of affine transformations on the plane (cf. [28]). For every subgroup G ⊆ Aff (2, R)

we have an induced action of G on QS. We can identify the set QS of systems (2.1) with
a subset of R12 via the map QS−→ R12 which associates to each system (2.1) the 12-tuple
ã = (a00, . . . , b02) of its coefficients. We associate to this group action polynomials in x, y and
parameters which behave well with respect to this action, the GL-comitants, the T-comitants
and the CT-comitants. For their constructions we refer the reader to the paper [28] (see
also [30]). In the statement of our main theorem intervene invariant polynomials constructed
in these articles and which could also be found on the following associated web page:

http://mat.uab.es/~artes/articles/qvfinvariants/qvfinvariants.html

3 The proof of the Main Theorem

Consider real quadratic systems (2.1). According to [31] for a quadratic system (2.1) to have
finite singularities of total multiplicity four (i.e. m f = 4) the condition µ0 6= 0 must be satisfied.
We consider here the three subclasses of quadratic differential systems with m f = 4 possessing
exactly two finite singularities, namely:

• systems with two double complex singularities (µ0 6= 0, D = T = 0, PR < 0);

• systems with two double real singularities (µ0 6= 0, D = T = 0, PR > 0);

• systems with one triple and one simple real singularities (µ0 6= 0, D = T = P = 0,
R 6= 0).

We observe that the systems from each one in the above mentioned subclasses have finite
singularities of total multiplicity 4 and therefore by [6] the following lemma is valid.

http://mat.uab.es/~artes/articles/qvfinvariants/qvfinvariants.html


16 J. C. Artés, J. Llibre, A. C. Rezende, D. Schlomiuk and N. Vulpe

Lemma 3.1. The geometric configurations of singularities at infinity of the family of quadratic systems
possessing finite singularities of total multiplicity 4 (i.e. µ0 6= 0) are classified in the diagram from
Table 3.1 according to the geometric equivalence relation. Necessary and sufficient conditions for each
one of the 24 different equivalence classes can be assembled from these diagrams in terms of 9 invariant
polynomials with respect to the action of the affine group and time rescaling.

Table 3.1: Configurations of infinite singularities: the case µ0 6= 0.
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3.1 Systems with two double complex singularities

Assume that systems (2.1) have two double complex finite singularities. In this case according
to [31] we shall consider the family of systems

ẋ = a + aux + gx2 +2avxy + ay2,

ẏ = b + bux + lx2 + 2bvxy + by2,
(3.1)

with al− bg 6= 0, possessing the following two double distinct singularities: M1,2(0, i), M3,4(0,−i).

Lemma 3.2. The conditions θ = θ1 = 0 imply for a system (3.1) the condition θ3 = 0.

Proof. For systems (3.1) we have

θ = 64a(al − bg)(l + gv− bv2 − av3), µ0 = (al − bg)2, θ3 = a(al − bg)Û(a, b, g, l, u, v),

where Û(a, b, g, l, u, v) is a polynomial. As µ0 6= 0 the condition θ = 0 gives a(l + gv− bv2 −
av3) = 0.

If a = 0 then evidently we get θ3 = 0 and the statement of the lemma is valid.
Assume a 6= 0. Then l = −v(g− bv− av2) and calculation yield

θ = 0, θ1 = 64a(−g + av2)3, θ3 = a(b + av)2(g− av2)V̂(a, b, g, u, v),

where V̂(a, b, g, u, v) is a polynomial. Clearly in this case the condition θ1 = 0 implies again
θ3 = 0, and this completes the proof of the lemma.

3.1.1 The case η < 0

Then systems (3.1) possess one real and two complex infinite singular points and according
to Lemma 3.1 there could be only 4 distinct configurations at infinity. It remains to construct
corresponding examples:
• c©(2), c©(2); N∞, c©, c©: Example⇒ (a = 1, b = 1, g = 3, l = 0, u = 0, v = 1) (if θ < 0);
• c©(2), c©(2); N f , c©, c©: Example ⇒ (a = 1, b = −1, g = 1, l = 0, u = 0, v = 1) (if

θ > 0);
• c©(2), c©(2); Nd, c©, c©: Example ⇒ (a = 1, b = 1, g = 1, l = 0, u = 1, v = 0) (if

θ = 0, θ2 6= 0);
• c©(2), c©(2); N∗, c©, c©: Example ⇒ (a = 0, b = 1, g = 1, l = 1, u = 0, v = 0) (if

θ = 0, θ2 = 0).

3.1.2 The case η > 0

In this case systems (3.1) possess three real infinite singular points and taking into consider-
ation Lemma 3.3 and the condition µ0 > 0, by Lemma 3.1 we could have at infinity only 9
distinct configurations. Corresponding examples are:
• c©(2), c©(2); S, N∞, N∞: Example ⇒ (a = 1, b = 1, g = 35/16, l = 0, u = 0, v = 1) (if

θ < 0, θ1 < 0);
• c©(2), c©(2); S, N f , N f : Example ⇒ (a = 1, b = 1, g = 5/4, l = 0, u = 0, v = −2) (if

θ < 0, θ1 > 0);
• c©(2), c©(2); S, N∞, N f : Example⇒ (a = 1, b = 1, g = 5/4, l = 0, u = 0, v = 1) (if θ > 0);
• c©(2), c©(2); S, N∞, Nd: Example ⇒ (a = 1, b = 1, g = 6, l = 0, u = 1, v = 2) (if θ = 0,

θ1 < 0, θ2 6= 0);
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• c©(2), c©(2); S, N∞, N∗: Example ⇒ (a = 0, b = 1, g = 3, l = 0, u = 0, v = 1) (if θ = 0,
θ1 < 0, θ2 = 0);
• c©(2), c©(2); S, N f , Nd: Example ⇒ (a = 1, b = 1, g = 2, l = 0, u = 1, v = −2) (if

θ = 0, θ1 > 0, θ2 6= 0);
• c©(2), c©(2); S, N f , N∗: Example ⇒ (a = 0, b = 1, g = −1, l = 0, u = 0, v = 1) (if

θ = 0, θ1 > 0, θ2 = 0);
• c©(2), c©(2); S, Nd, N∗: Example⇒ (a = 0, b = 1, g = 1, l = 0, u = 1, v = 1) (if θ = 0, θ1 =

0, θ4 6= 0);
• c©(2), c©(2); S, N∗, N∗: Example ⇒ (a = 0, b = 1, g = 1, l = 0, u = 0, v = 1) (if θ = θ1 =

θ4 = 0).

3.1.3 The case η = 0

In this case systems (3.1) possess at infinity either one double and one simple real singular
points (if M̃ 6= 0), or one triple real singularity (if M̃ = 0). So by Lemma 3.1 we could have at
infinity exactly 5 distinct configurations. We have the following 4 configurations:

• c©(2), c©(2); (
0
2)SN, N∞: Example⇒ (a = 1, b = 3, g = 6, l = 0, u = 0, v = 1) (if θ < 0);

• c©(2), c©(2); (
0
2)SN, N f : Example⇒ (a = −1, b = 1, g = 2, l = 0, u = 0, v = 1) (if θ > 0);

• c©(2), c©(2); (
0
2)SN, Nd: Example ⇒ (a = 1, b = 1, g = 2, l = 0, u = 1, v = 1) (if

θ = 0, θ2 6= 0);
• c©(2), c©(2); (

0
2)SN, N∗: Example ⇒ (a = 1, b = 1, g = 2, l = 0, u = 0, v = 1) (if

θ = θ2 = 0),
if M̃ 6= 0; and one configuration

• c©(2), c©(2); (
0
3)N: Example⇒ (a = 1, b = 2, g = 4, l = 0, u = 0, v = 1)

if M̃ = 0.

3.2 Systems with two double real singularities

Assume that systems (2.1) possess two double real finite singularities. In this case according
to [31] we shall consider the family of systems

ẋ = cx + cuy− cx2 + 2cvxy + ky2,

ẏ = ex + euy− ex2 + 2evxy + ny2,
(3.2)

with cn − ek 6= 0, possessing the following two double distinct singularities: M1,2(0, 0),
M3,4(1, 0).

Following [7] for this family of systems we calculate

µ0 = (cn− ek)2, G1 = (cn− ek)2(c + eu)2(c− eu− 2ev)2, E2 = −e(ek− cn)2(u + v) (3.3)

and hence µ0 > 0. Moreover, according to [7] systems (3.2) possess: two saddle–nodes if
G1 6= 0; one saddle–node and one cusp if G1 = 0 and E2 6= 0 and two cusps if G1 = E2 = 0.

Lemma 3.3. The conditions θ = θ1 = 0 imply for a system (3.2) the condition θ3 = 0.

Proof. For systems (3.2) we have

θ = 64e(ek− cn)(k− nv + cv2 − ev3), θ3 = e(ek− cn)Û(c, e, k, n, u, v),
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where Û(c, e, k, n, u, v) is a polynomial. As µ0 6= 0 the condition θ = 0 gives e(k− nv + cv2 −
ev3) = 0.

If e = 0 then evidently we get θ3 = 0 and the statement of the lemma holds.
Assume e 6= 0. Then k = nv− cv2 + ev3 and calculations yield

θ = 0, θ1 = 64e(n + ev2)3, θ3 = e(c− ev)2(n + ev2)V̂(c, e, n, u, v),

where V̂(c, e, n, u, v) is a polynomial. Clearly in this case again the condition θ1 = 0 implies
θ3 = 0 and this completes the proof of the lemma.

Lemma 3.4. Assume that for a system (3.2) the condition E2 6= 0 holds. Then for this system we have
θ2 6= 0. Moreover if in addition the condition θ = 0 is satisfied, then the condition θ1 6= 0 holds.

Proof. For systems (3.2) we have

θ = 64e(ek− cn)(k− nv + cv2 − ev3), E2 = −e(ek− cn)2(u + v), θ2 = e(ek− cn)(u + v),

and evidently the condition E2 6= 0 implies θ2 6= 0.
Assume now θ = 0. As E2 6= 0 this yields k = nv− cv2 + ev3. Then we calculate

θ1 = 64e(n + ev2)3, E2 = −e(u + v)(c− ev)2(n + ev2)2,

and clearly the condition E2 6= 0 gives θ1 6= 0.

Lemma 3.5. The conditions G1 = E2 = 0 imply for systems (3.2) θ > 0 and M̃ 6= 0.

Proof. Considering (3.3) the conditions E2 = 0 and µ0 6= 0 imply e(u+ v) = 0. We observe that
the condition u = −v has to be satisfied, otherwise in the case e = 0 we obtain G1 = c6n2 and
µ0 = c2n2, and hence the condition µ0 6= 0 implies G1 6= 0. So u = −v and then calculations
yield

G1 = (ek− cn)2(c− ev)4, µ0 = (ek− cn)2.

Therefore as µ0 6= 0 the condition G1 = 0 gives c = ev and we obtain

G1 = E2 = 0, θ = 64e2(k− nv)2, µ0 = e2(k− nv)2,

M̃/8 = −3e(n + ev2)x2 + 3e(3k− nv + 2ev3)xy + (4env2 − n2 − 9ekv− 4e2v4)y2.

Hence the condition µ0 6= 0 implies θ > 0. On the other hand the condition M̃ = 0 gives
n = −ev2 and then we obtain:

M̃ = 72e(k + ev3)y(x− vy), µ0 = e2(k + ev3)2.

So the condition µ0 6= 0 implies M̃ 6= 0, and this completes the proof of the lemma.

Lemma 3.6. For systems (3.2) the condition G1 = 0 is equivalent to T4 = 0, and if G1 = 0 then the
condition E2 = 0 is equivalent to T2 = 0.

Proof. For systems (3.2) we have T4 = G1. Assuming G1 = 0 (i.e. T4 = 0) due to µ0 6= 0 we
obtain either

E2 = −e3(k + nu)2(u + v), T2 = 4e4(k + nu)2(u + v)2

if c = −eu, or

E2 = −e3(u + v)(k− nu− 2nv)2, T2 = 4e4(u + v)2(k− nu− 2nv)2

if c = e(u + 2v). In both cases we obtain that the condition E2 = 0 is equivalent to T2 = 0.
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Considering [7] and the above lemma we get the next remark.

Remark 3.7. Systems (3.2) possess two saddle–nodes if T4 6= 0; one saddle–node and one cusp
if T4 = 0 and T2 6= 0, and two cusps if T4 = T2 = 0.

3.2.1 The case T 4 6= 0

In this case both double finite singular points are saddle-nodes.

The subcase η < 0. Then systems (3.2) possess one real and two complex infinite singular
points and according to Lemma 3.1 there could be only 4 distinct configurations at infinity. It
remains to construct corresponding examples:
• sn(2),sn(2); N∞, c©, c©: Example ⇒ (c = −1, e = 1, k = 0, n = −3, u = 0, v = 1) (if

θ < 0);
• sn(2),sn(2); N f , c©, c©: Example ⇒ (c = 1, e = 1, k = 0, n = −3, u = 0, v = 1) (if

θ > 0);
• sn(2),sn(2); Nd, c©, c©: Example ⇒ (c = 1, e = −1, k = 0, n = 1, u = 2, v = 0) (if

θ = 0, θ2 6= 0);
• sn(2),sn(2); N∗, c©, c©: Example ⇒ (c = 1, e = 0, k = −1, n = 1, u = 0, v = 0) (if

θ = 0, θ2 = 0).

The subcase η > 0. In this case systems (3.2) possess three real infinite singular points and
taking into consideration Lemma 3.3 and the condition µ0 > 0, by Lemma 3.1 we could have
at infinity only 9 distinct configurations. Corresponding examples are:
• sn(2),sn(2); S, N∞, N∞: Example ⇒ (c = −4, e = 1, k = −1, n = −8, u = 0, v = 1) (if

θ < 0, θ1 < 0);
• sn(2),sn(2); S, N f , N f : Example ⇒ (c = −1, e = 1, k = 0, n = 1, u = 0, v = 1) (if

θ < 0, θ1 > 0);
• sn(2),sn(2); S, N∞, N f : Example⇒ (c = 1, e = 1, k = 0, n = 1, u = 0, v = 1) (if θ > 0);
• sn(2),sn(2); S, N∞, Nd: Example ⇒ (c = 3, e = 1, k = 0, n = −1, u = 1, v = 0) (if θ = 0,

θ1 < 0, θ2 6= 0);
• sn(2),sn(2); S, N∞, N∗: Example ⇒ (c = 1, e = 0, k = 1, n = 3, u = 0, v = 1) (if θ = 0,

θ1 < 0, θ2 = 0);
• sn(2),sn(2); S, N f , Nd: Example ⇒ (c = 2, e = 1, k = 0, n = 1, u = 1, v = 1) (if θ = 0,

θ1 > 0, θ2 6= 0);
• sn(2),sn(2); S, N f , N∗: Example ⇒ (c = 1, e = 0, k = 1, n = 1, u = 0, v = 1) (if θ = 0,

θ1 > 0, θ2 = 0);
•sn(2),sn(2); S, Nd, N∗: Example⇒ (c = 1, e = 0, k = 0, n = 1, u = 1, v = 0) (if θ = 0, θ1 =

0, θ4 6= 0);
• sn(2),sn(2); S, N∗, N∗: Example ⇒ (c = 1, e = 0, k = −2, n = 1, u = 1, v = −1) (if

θ = θ1 = θ4 = 0).

The subcase η = 0. In this case systems (3.2) possess at infinity either one double and
one simple real singular points (if M̃ 6= 0), or one triple real singularity (if M̃ = 0). So by
Lemma 3.1 we could have at infinity exactly 5 distinct configurations. We have the following
4 configurations:
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• sn(2), sn(2); (
0
2)SN, N∞: Example ⇒ (c = −3, e = 1, k = 0, n = −6, u = 0, v = 1) (if

θ < 0);
• sn(2), sn(2); (

0
2)SN, N f : Example⇒ (c = 1, e = 1, k = 0, n = 2, u = 0, v = 1) (if θ > 0);

• sn(2), sn(2); (
0
2)SN, Nd: Example ⇒ (c = −1, e = 1, k = 0, n = −2, u = 0, v = 1) (if

θ = 0, θ2 6= 0);
• sn(2), sn(2); (

0
2)SN, N∗: Example ⇒ (c = −1, e = 1, k = 0, n = −2, u = −1, v = 1) (if

θ = θ2 = 0),
in the case M̃ 6= 0; and one configuration
• sn(2),sn(2); (

0
3)N: Example⇒ (c = 3, e = 3, k = −1/9, n = −1, u = 0, v = 0)

if M̃ = 0.

3.2.2 The case T 4 = 0.

In this case we have at least one cusp.

The subcase T 2 6= 0. Then by Remark 3.7 systems (3.2) possess one saddle–node and one
cusp.

The possibility η < 0. In this case systems (3.2) possess one real and two complex
infinite singular points. Considering Lemmas 3.4, 3.6 and the condition µ0 > 0, by Lemma 3.1
there could be only 3 distinct configurations at infinity. It remains to construct corresponding
examples:
• sn(2), ĉp(2); N∞, c©, c©: Example ⇒ (c = 1, e = 3, k = 0, n = −3, u = 1, v = −1/3) (if

θ < 0);
• sn(2), ĉp(2); N f , c©, c©: Example ⇒ (c = −2, e = −1, k = 0, n = 1, u = 0, v = 1) (if

θ > 0);
• sn(2), ĉp(2); Nd, c©, c©: Example ⇒ (c = −1, e = −1, k = 0, n = 1, u = 1, v = 0) (if

θ = 0).

The possibility η > 0. In this case systems (3.2) possess three real infinite singular points
and taking into consideration Lemmas 3.4, 3.6 and the condition µ0 > 0, by Lemma 3.1 there
could be only 5 distinct configurations at infinity. Corresponding examples are:
• sn(2), ĉp(2); S, N∞, N∞: Example ⇒ (c = −5, e = 1, k = 0, n = −11, u = 5, v = 1) (if

θ < 0, θ1 < 0);
• sn(2), ĉp(2); S, N f , N f : Example ⇒ (c = 3, e = 1, k = 0, n = 1, u = −3, v = 1) (if

θ < 0, θ1 > 0);
• sn(2), ĉp(2); S, N∞, N f : Example⇒ (c = 1, e = 1, k = 0, n = 1, u = −1, v = 2) (if θ > 0);
• sn(2), ĉp(2); S, N∞, Nd: Example ⇒ (c = −3, e = 1, k = 0, n = −1, u = 3, v = 0) (if

θ = 0, θ1 < 0);
• sn(2), ĉp(2); S, N f , Nd: Example ⇒ (c = 1, e = 1, k = 0, n = 1, u = −1, v = 0) (if

θ = 0, θ1 > 0).

The possibility η = 0. In this case systems (3.2) possess at infinity either one double and
one simple real singular points (if M̃ 6= 0), or one triple real singularity (if M̃ = 0). So by
Lemmas 3.4, 3.6 and 3.1 we could have at infinity exactly 4 distinct configurations. We have
the following 3 configurations and corresponding examples:
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• sn(2), ĉp(2); (
0
2)SN, N∞: Example ⇒ (c = −3, e = 1, k = 0, n = −6, u = 3, v = 1) (if

θ < 0);
• sn(2), ĉp(2); (

0
2)SN, N f : Example⇒ (c = 2, e = 1, k = 0, n = 4, u = −2, v = 1) (if θ > 0);

• sn(2), ĉp(2); (
0
2)SN, Nd: Example ⇒ (c = −1, e = 1, k = 0, n = −2, u = 1, v = 1) (if

θ = 0)
in the case M̃ 6= 0; and one configuration
• sn(2), ĉp(2); (

0
3)N: Example⇒ (c = 3, e = 3, k = −1/9, n = −1, u = −1, v = 0)

if M̃ = 0.

The subcase T 2 = 0. Then by Remark 3.7 systems (3.2) possess two nilpotent cusps. On the
other hand by Lemma 3.5 the conditions θ > 0 and M̃ 6= 0 are satisfied. Therefore according
to Lemma 3.1 in this case we could have at infinity only 3 distinct configurations:
• ĉp(2), ĉp(2); N f , c©, c©: Example⇒ (c = 0, e = 1, k = 1, n = 0, u = 0, v = 0) (if η < 0);
• ĉp(2), ĉp(2); S, N∞, N f : Example ⇒ (c = −1, e = 1, k = 0, n = 1, u = 1, v = −1) (if

η > 0);
• ĉp(2), ĉp(2); (

0
2)SN, N f : Example⇒ (c = 1, e = 1, k = 0, n = 2, u = −1, v = 1) (if η = 0).

3.3 Systems with one triple and one simple real singularities

Assume that systems (2.1) possess one triple and one simple real finite singularities.
Then via an affine transformation we may assume that these systems possess as singulari-

ties the points M1(0, 0) and M2(1, 0) and the singular point M0 is triple. Moreover, as in this
case we have C2 6= 0 (otherwise we have m f ≤ 3) we may consider that there exists at least
one isolated real infinite singularity. We shall consider two possibilities: a) there exists a real
infinite singular point which does not coincide with N(1, 0, 0) (i.e. the end of the axis y = 0),
and b) there exists a unique real infinite singularity and it is located at the point N(1, 0, 0).

In the second case we get the systems

ẋ = cx + dy− cx2 + 2hxy + ky2, ẏ = f y + 2mxy + ny2, (3.4)

for which we calculate:

µ0 = c(cn2 − 4km2 + 4hmn), ∆1 = c f ,

and since we have to force the singular point M1(0, 0) to be triple we get ∆1 = 0, where ∆1 is
the corresponding determinant. Since µ0 6= 0 (i.e. c 6= 0) we have f = 0 and then we calculate:

µ4 = µ3 = 0, µ2 = c(cn− 2dm)y(2mx + ny).

So according to [11] the singular point M1(0, 0) of systems (3.4) is of multiplicity three if and
only if µ2 = 0, which is equivalent to c(cn− 2dm) = 0. As c 6= 0 we may assume c = 1 due to
a time rescaling and then we obtain n = 2dm. Thus we arrive at the family of systems

ẋ = x + dy− x2 + 2hxy + ky2, ẏ = 2my(x + dy), d ∈ {0, 1}, (3.5)

since in the case d 6= 0 we apply the rescaling y→ y/d.

Remark 3.8. We remark that since we have assumed that the singularity N(1, 0, 0) is the
unique real infinite singularity of this family of systems, then the condition either η < 0, or
M̃ = 0 must hold for these systems.
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We shall construct the normal form of systems in the case a), i.e. when there exists a real
infinite singular point which does not coincide with N(1, 0, 0). Then via a linear transforma-
tion (which keeps the singularities M1(0, 0) and M2(1, 0)) we may assume that this real point
is located at the point N1(0, 1, 0) (i.e. on the end of the axis x = 0) and we obtain the systems

ẋ = cx + dy− cx2 + 2hxy, ẏ = ex + f y− ex2 + 2mxy + ny2. (3.6)

We want M1(0, 0) to be triple so for its associated determinant we have ∆1 = c f − de = 0 and
we shall consider two cases: e 6= 0 and e = 0.

A. The case e 6= 0. Then we assume e = 1 (due to a time rescaling) and therefore the condition
∆1 = 0 gives d = c f . Herein we calculate

µ4 = µ3 = 0, µ2 = (2 f h− 2c f m + cn)y(2cmx− 2hx + cny),

and we split the examination in two subcases: f 6= 0 and f = 0.

A1. The subcase f 6= 0. In this case via the rescaling (x, y, t) 7→ (x, y/ f , t/ f ) we may assume
f = 1, and then the condition µ2 = 0 is equivalent to h = c(2m− n)/2. So we arrive at the
family of systems:

ẋ = cx + cy− cx2 + c(2m− n)xy, ẏ = x + y− x2 + 2mxy + ny2. (3.7)

A2. The subcase f = 0. Then the condition µ2 = 0 implies cn = 0 and as µ0 = n(4chm + c2n−
4h2) 6= 0 (i.e. n 6= 0) we get c = 0. This leads to the family of systems

ẋ = 2hxy, ẏ = x− x2 + 2mxy + ny2, m ∈ {0, 1} (3.8)

since in the case m 6= 0 we apply the rescaling (x, y, t) 7→ (x, y/m, t/m).

B. The case e = 0. Then the condition ∆1 = 0 implies c f = 0, and as µ0 = cn(4hm + cn) 6= 0
(i.e. c 6= 0) we get f = 0. In this case we calculate

µ4 = µ3 = 0, µ2 = c(cn− 2dm)y(2mx + ny), µ0 = cn(4hm + cn) 6= 0.

As c 6= 0 we may assume c = 1 due to a time rescaling and then the condition µ2 = 0 gives
n = 2dm 6= 0, and we may assume d = 1 due to the rescaling y → y/d. So we arrive at the
2-parameter family of systems

ẋ = x + y− x2 + 2hxy, ẏ = 2my(x + y). (3.9)

3.3.1 The family of systems (3.7)

This family of systems possesses the triple singular point M1,2,3(0, 0) and the elemental one
M4(1, 0), for which we have the following values for the traces ρi, for the determinants ∆i,
discriminants τi and for the linearization matricesM1,2,3 andM4:

M1 =M2 =M3 =

(
c c
1 1

)
, M4 =

(
−c c(1 + 2m− n)
−1 1 + 2m

)
,

ρ1 = ρ2 = ρ3 = 1 + c, ∆1 = 0; ρ4 = 1− c + 2m, ∆4 = −cn;

τi = ρ2
i − 4∆i, i = 1, 4.

(3.10)
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For this family we calculate

µ0 = α∆2
4, η = (2cm− n− cn)2[(c− 2m)2 + 4n(c + 1)

]
,

E3 = α∆3
4/4, G10 = −αρ3

1∆3
4/8, F1 = 3αρ1∆4;

T4 = α∆2
4ρ3

1ρ4, T3 = α∆2
4ρ2

1(ρ1 + 3ρ4), T2 = 3α∆2
4ρ1(ρ1 + ρ4),

T1 = α∆2
4(3ρ1 + ρ4), W4 = α2ρ6

1∆4
4τ4,

M̃ = −8(c2 − 2cm + 4m2 + 3nρ1)x2 + 8(c + 2m)(2cm− nρ1)xy− 8(2cm− nρ1)
2y2,

(3.11)

where α = (1 + 2m− n).

Lemma 3.9. If for a system (3.7):
(i) the condition M̃ = 0 holds, then ρ1 6= 0 and:

(i1) the condition µ0 < 0 implies E3 < 0, W4 < 0 and T4 6= 0;
(i2) the condition T4 = 0 implies E3 > 0;

(ii) the conditions η < 0 and ρ1 6= 0 are satisfied, then sign (µ0) = sign (c + 1) and sign (E3) =

sign (c);
(iii) the conditions θ = θ2 = 0 hold, then for this system we have µ0 = η. Moreover in this case

the condition µ0 > 0 implies W4 > 0;
(iv) the condition θ = 0 is fulfilled, then the condition θ1 = 0 is equivalent to θ2 = 0. Moreover if

θ1 = 0 then θ3 6= 0.

Proof. (i) First we observe that in the case M̃ = 0 the condition ρ1 = c + 1 6= 0 must hold.
Indeed, admitting c = −1 we have Coefficient[M̃, y2] = −32m2 = 0 and then M̃ = −8x2 6= 0.
So c + 1 6= 0 and considering (3.11) the condition M̃ = 0 yields m = −c/2 and n = −c2/(c +
1). Then we calculate

µ0 =
c6

(c + 1)3 , E3 =
c9

4(c + 1)4 , W4 =
c12(1− 3c)

c + 1
, T4 = c6(1− 2c),

and hence the condition µ0 < 0 gives c < −1 which obviously implies the validity of the
statement (i1).

On the other hand we observe that the condition T4 = 0 implies c = 1/2 and then E3 > 0.
This completes the proof of the statement (i).

(ii) Assume η < 0. Then considering (3.11) we conclude that the second factor of η is
negative and due to the condition ρ1 = c + 1 6= 0 we may assume

(c− 2m)2 + 4n(c + 1) = −v2 ⇒ n = −
[
(c− 2m)2 + v2]/(4(1 + c)).

Therefore we calculate

µ0 =
c2[(c− 2m)2 + v2]2[

(c + 2m + 2)2 + v2]
64(1 + c)3 ,

E3 =
c3[(c− 2m)2 + v2]3[

(c + 2m + 2)2 + v2]
1024(1 + c)4 ,

and obviously the statement (ii) of the lemma is proved.
(iii) Assume now that for systems (3.7) the conditions θ = θ2 = 0 are satisfied. For these

systems we have

θ = −8c(2m− n)n(4cm + 2c2m− 4m2 − 4n− 4cn− c2n),

θ2 = −cn(4 + 2c + 6m + 2cm− 2n− cn)/4,



Global configurations of singularities 25

and as µ0 6= 0 (i.e. cn 6= 0) we get the relations

(2m− n)
[
2m(2c + c2 − 2m)− n(c + 2)2] = 0 = (2 + c)(2 + 2m− n) + 2m.

We consider two subcases: c + 2 6= 0 and c + 2 = 0.
Assume first c+ 2 6= 0. Then from the second equation we get n = 2(2+ c+ 3m+ cm)/(2+

c), and we have

θ2 = 0, θ = −64c(2 + c + m)2(2 + c + 2m)(2 + c + 3m + cm)

(2 + c)2 ,

µ0 = −4c2(2 + c + 2m)(2 + c + 3m + cm)2

(2 + c)3 ,

and as µ0 6= 0 the condition θ = 0 gives m = −2− c. Therefore we obtain

θ2 = θ = 0, µ0 = 4c2(2 + c)2 = η, W4 = 16c4(1 + c)6(2 + c)4(9 + 2c + c2),

and we observe that W4 > 0.
Suppose now c = −2. Then we calculate

θ = −64m2(2m− n)n, θ2 = mn, µ0 = 4(1 + 2m− n)n2,

and as µ0 6= 0 (i.e. n 6= 0) the condition θ2 = 0 yields m = 0. Then we obtain:

θ2 = θ = 0, µ0 = 4(1− n)n2 = η, W4 = 16(1− n)2n4(9− 8n),

and it is clear that the condition µ0 > 0 implies W4 > 0. This completes the proof of the
statement (iii) of the lemma.

(iv) Assume θ = 0. As µ0 6= 0 the condition θ = 0 implies one of the following three
relations: (a) n = 2m; (b) c + 2 6= 0 and n = 2

[
cm(c + 2) − 2m2]/(2 + c)2; (c) c = −2 and

m = 0.
In the case (a) we calculate:

µ0 = 4c2m2, θ1 = 256m3(2 + c + m), θ2 = −cm(2 + c + m),

and clearly due to µ0 6= 0 the condition θ1 = 0 is equivalent to θ2 = 0, and this yields
m = −(2 + c). However in this case we get θ3 = −2c3(2 + c)3 6= 0 since µ0 = 4c2(2 + c)2 6= 0.

Considering the case (b) we have

µ0 =
4c2(2c + c2 − 2m)2m2(2 + c + 2m)2

(2 + c)6 , θ1 =
256c3m3(2 + c + m)(2 + c + 2m)2

(2 + c)5 ,

θ2 = − c(2c + c2 − 2m)m(2 + c + m)(2 + c + 2m)

(2 + c)3 ,

and since µ0 6= 0 we obtain that the condition θ1 = 0 is equivalent to θ2 = 0, and this
again implies m = −(2 + c). And then we calculate θ3 = −2c3(2 + c)3 6= 0 because µ0 =

4c2(2 + c)2 6= 0.
In the case (c) (i.e. when c = −2 and m = 0) we obtain

θ1 = θ2 = 0, θ3 = 2(n− 1)n3, µ0 = −4(n− 1)n2 6= 0.

This completes the proof of the lemma.

Since µ0 6= 0 (then E3 6= 0) we consider two cases: µ0 < 0 and µ0 > 0.
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The case µ0 < 0. Then α < 0 and by (3.11) this implies sign (E3) = −sign (∆4).

The subcase E3 < 0. In this case the elemental singularity M4 is an anti-saddle (i.e. a
node, a focus or a center). On the other hand by [7] the type of this point is governed by the
invariant polynomials W4 or W1.

1) The possibility W4 < 0. Then from (3.11) it follows G10 6= 0 and according to [7, Table 1,
line 96] we have a focus and a semi-elemental triple node. And the focus could be weak only
if T4 = 0.

a) The case T4 6= 0. In this case we have a strong focus and considering Lemma 3.1 and the
condition C2 6= 0 we arrive at the following four configurations of singularities:
• n(3), f ; S, c©, c© : Example⇒ (c = −2, m = −1, n = 1) (if η < 0);
• n(3), f ; S, S, N∞ : Example⇒ (c = −6/5, m = −1/10, n = 1) (if η > 0);

• n(3), f ; (0
2)SN, S: Example⇒ (c = −5/4, m = −1/8, n = 1) (if η = 0, M̃ 6= 0);

• n(3), f ; (0
3)S: Example⇒ (c = −2, m = 1, n = 4) (if η = 0, M̃ = 0).

b) The case T4 = 0. Since by (3.11) the condition W4 6= 0 implies F1 6= 0 and ρ1 6= 0
we obtain ρ4 = 0, i.e. we have a first order weak focus. According to Lemma 3.9 in this
case the condition M̃ 6= 0 must hold. So considering Lemma 3.1 we get the following three
configurations of singularities:
• n(3), f (1); S, c©, c© : Example⇒ (c = −3, m = −2, n = 2) (if η < 0);
• n(3), f (1); S, S, N∞ : Example⇒ (c = −2, m = −3/2, n = 1/10) (if η > 0);

• n(3), f (1); (0
2)SN, S: Example⇒ (c = −3, m = −2, n = 1/8) (if η = 0).

2) The possibility W4 > 0. Since G10 6= 0 according to [7, Table 1, line 95] we have a node
(which is generic due to W4 6= 0) and a semi-elemental triple node.

Since by Lemma 3.9 the condition M̃ 6= 0 has to be satisfied, by Lemma 3.1 we arrive at
the following three configurations of singularities:
• n(3), n; S, c©, c© : Example⇒ (c = −2, m = −2/3, n = 1/4) (if η < 0);
• n(3), n; S, S, N∞ : Example⇒ (c = 1, m = −4, n = −2) (if η > 0);

• n(3), n; (0
2)SN, S: Example⇒ (c = 2, m = −2, n = −8/3) (if η = 0).

3) The possibility W4 = 0. In this case due to µ0 6= 0 we get ρ1τ4 = 0 and we consider two
cases: T4 6= 0 and T4 = 0.

a) The case T4 6= 0. Then ρ1 6= 0 and hence we have τ4 = 0, i.e. we have a node with coin-
ciding eigenvalues. Considering the corresponding linear matrixM4 from (3.10) we conclude
that this node is not a star node. Therefore considering Lemmas 3.1 and 3.9 we arrive at the
following three configurations of singularities:
• n(3), nd; S, c©, c© : Example⇒ (c = −4, m = 0, n = 25/16) (if η < 0);
• n(3), nd; S, S, N∞ : Example⇒ (c = −1/4, m = 0, n = 25/16) (if η > 0);

• n(3), nd; (0
2)SN, S: Example⇒ (c = −2, m = 9/2, n = 18) (if η = 0).

b) The case T4 = 0. Then ρ1ρ4 = 0 and considering the condition ρ1τ4 = 0 we obtain ρ1 = 0
(otherwise we get ρ4 = τ4 = 0 which is impossible for an elemental singular point). Thus
ρ1 = 0 (i.e. c = −1) and we calculate

µ0 = (1 + 2m− n)n2, η = 4m2(1 + 2m)2, G10 = 0,

E3 = (1 + 2m− n)n3/4, F1 = T4 = T3 = T2 = 0,

T1 = (1 + 2m− n)n2ρ4, W4 = 0, W1 = 4(1 + 2m− n)2n4τ4.

(3.12)
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As G10 = 0 by [7] the triple point is an elliptic saddle and the elemental one is an anti-saddle,
the type of which is governed by W1.

b1) The subcase W1 < 0. Then M4 is a focus which is strong if T1 6= 0 and it is weak if
T1 = 0. Moreover in the second case, i.e. when ρ1 = ρ4 = 0 (which implies c = −1 = m) we
calculate

µ0 = −n2(1 + n), E3 = −n3(1 + n)/4, η = 4,

θ = 8n(2 + n)2, θ1 = 16(2 + n)(2− 3n),

T4 = T3 = T2 = T1 = F = 0, σ = (2 + 3n)y,

H = −n(2 + 3n)2/2, B = −(2 + 3n)4/8.

(3.13)

So the conditions µ0 < 0 and E3 < 0 implies n > 0, and this gives σ 6= 0, H < 0 and B < 0.
By [31, Main Theorem, (e4), α] we obtain a center.

Thus considering Lemma 3.1 we get the following configurations of singularities:
• ês(3), f ; S, S, N∞ : Example⇒ (c = −1, m = −1/3, n = 1) (if η > 0, T1 6= 0 );
• ês(3), c; S, S, N∞ : Example⇒ (c = −1, m = −1, n = 1) (if η > 0, T1 = 0);

• ês(3), f ; (0
2)SN, S: Example⇒ (c = −1, m = −1/2, n = 1) (if η = 0).

b2) The subcase W1 > 0. Then M4 is a generic node and as η ≥ 0 we get the next two
configurations:
• ês(3), n; S, S, N∞ : Example⇒ (c = −1, m = −3, n = 2) (if η > 0);

• ês(3), n; (0
2)SN, S: Example⇒ (c = −1, m = −1/2, n = 1/5) (if η = 0).

b3) The subcase W1 = 0. Then M4 is a one–direction node and as η ≥ 0 we get the next two
configurations:
• ês(3), nd; S, S, N∞ : Example⇒ (c = −1, m = −1/3, n = 4/9) (if η > 0);

• ês(3), nd; (0
2)SN, S: Example⇒ (c = −1, m = −1/2, n = 1/4) (if η = 0).

The subcase E3 > 0 In this case the elemental singularity M4 is a saddle, whereas M1 is
a triple saddle, which could be semi-elemental or nilpotent. So at infinity we have 3 nodes.

1) The possibility T4 6= 0. Then ρ1ρ4 6= 0 and both saddles have non zero traces. In this case
we arrive at the configuration
• s(3), s; N f , N f , N f : Example⇒ (c = −2, m = −2, n = −2);

2) The possibility T4 = 0. We consider two cases: T3 6= 0 and T3 = 0.

a) The case T3 6= 0. According to (3.11) this implies ρ1 6= 0, and then F1 6= 0 and ρ4 = 0,
i.e. c = 2m + 1. Then we have a first order weak saddle and we get the configuration
• s(3), s(1); N f , N f , N f : Example⇒ (c = −3, m = −2, n = −2).

b) The case T3 = 0. This implies ρ1 = 0 (i.e. c = −1) and the triple saddle is nilpotent.
So we get the expressions (3.12), and in this case the conditions µ0 < 0 and E3 > 0 imply
1 + 2m < n < 0. Therefore depending on the value of the invariant polynomial T1 we arrive
at the following configurations:
• ŝ(3), s; N f , N f , N f : Example⇒ (c = −1, m = −2, n = −2) (if T1 6= 0);
• ŝ(3), $; N f , N f , N f : Example⇒ (c = −1, m = −1, n = −1/2) (if T1 = 0).

The case µ0 > 0. Then considering (3.11) we have α > 0 and this implies sign (E3) =

sign (∆4).
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The subcase E3 < 0. In this case the elemental singularity M4 is a saddle. On the other
hand by [7] the triple point could be either a semi-elemental triple node, or a nilpotent elliptic
saddle.

1) The possibility T4 6= 0. Then by (3.11) we get ρ1ρ4 6= 0 and G10 6= 0. In this case
by [7, Table 1, line 87] the triple point is a semi-elemental triple node and the saddle is strong.
Therefore considering Lemmas 3.1 and 3.9 we examine three cases: η < 0, η > 0 and η = 0.

a) The case η < 0. By Lemma 3.1 the configurations of infinite singularities are governed by
the invariant polynomials θ and θ2. According to Lemma 3.9 in this case the condition θ = 0
implies θ2 6= 0, otherwise we get µ0 = η which contradicts η < 0 and µ0 > 0. So considering
Lemma 3.1 we arrive at the following three configurations of singularities:
• n(3), s; N∞, c©, c©: Example⇒ (c = −1/2, m = 1, n = −29/8) (if θ < 0);
• n(3), s; N f , c©, c©: Example⇒ (c = −1/2, m = −1/2, n = −1/4) (if θ > 0);
• n(3), s; Nd, c©, c©: Example⇒ (c = −1/2, m = −5/4, n = −5/2) (if θ = 0).

b) The case η > 0. From Lemmas 3.9 and 3.1 we get the following 6 configurations:
• n(3), s; S, N∞, N∞: Example⇒ (c = −3/2, m = 0, n = −3) (if θ < 0, θ1 < 0);
• n(3), s; S, N f , N f : Example⇒ (c = 2, m = 7/4, n = 1/2) (if θ < 0, θ1 > 0);
• n(3), s; S, N f , N∞: Example⇒ (c = 2, m = 5/2, n = 2) (if θ > 0);
• n(3), s; S, N∞, Nd: Example⇒ (c = −3/2, m = −1/12, n = −1/6) (if θ = 0, θ1 < 0);
• n(3), s; S, N f , Nd: Example⇒ (c = −4, m = −1/2, n = −1) (if θ = 0, θ1 > 0);
• n(3), s; S, Nd, Nd: Example⇒ (c = −3/2, m = −1/2, n = −1) (if θ = 0, θ1 = 0).

c) The case η = 0. According to Lemma 3.9 in this case the conditions θ = 0 and θ2 = 0 are
incompatible (otherwise we get η = µ0 6= 0). So considering Lemma 3.1 we get the following
4 configurations:

• n(3), s; (0
2)SN, N∞: Example⇒ (c = −3/2, m = −1/6, n = −1) (if M̃ 6= 0, θ < 0);

• n(3), s; (0
2)SN, N f : Example⇒ (c = 1, m = 1, n = 1) (if M̃ 6= 0, θ > 0);

• n(3), s; (0
2)SN, Nd: Example⇒ (c = −1/2, m = 3/4, n = −3/2) (if M̃ 6= 0, θ = 0);

• n(3), s; (0
3)N: Example⇒ (c = −1/2, m = 1/4, n = −1/2) (if M̃ = 0).

2) The possibility T4 = 0. Then by (3.11) we get ρ1ρ4 = 0 and we consider two cases: T3 6= 0
and T3 = 0.

a) The case T3 6= 0. Then ρ1 6= 0 and by (3.11) this implies F1G10 6= 0. Therefore we get
ρ4 = 1− c + 2m = 0, i.e. the finite saddle is weak of order one (due to F1 6= 0).

a1) The subcase η < 0. So considering Lemmas 3.1 and 3.9 we arrive at the following three
configurations of singularities:
• n(3), s(1); N∞, c©, c©: Example⇒ (c = −1/2, m = −3/4, n = −2) (if θ < 0);
• n(3), s(1); N f , c©, c©: Example⇒ (c = −1/2, m = −3/4, n = −1) (if θ > 0);
• n(3), s(1); Nd, c©, c©: Example⇒ (c = −1/2, m = −3/4, n = −3/2) (if θ = 0).

a2) The subcase η > 0. From Lemmas 3.9 and 3.1 we can get up to 6 configurations.
Examples for five of them are:
• n(3), s(1); S, N∞, N∞: Example⇒ (c = −21/20, m = −41/40, n = −3) (if θ < 0, θ1 < 0);
• n(3), s(1); S, N f , N f : Example⇒ (c = 1/2, m = −1/4, n = 1/3) (if θ < 0, θ1 > 0);
• n(3), s(1); S, N f , N∞: Example⇒ (c = −2, m = −3/2, n = −4) (if θ > 0);
• n(3), s(1); S, N∞, Nd: Example ⇒ (c = −9/10, m = −19/20, n = −19/10) (if θ = 0,

θ1 < 0);
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• n(3), s(1); S, N f , Nd: Example⇒ (c = −2, m = −3/2, n = −3) (if θ = 0, θ1 > 0).
The sixth configuration corresponding to the case θ = θ1 = 0 can not be realizable. Indeed

setting ρ4 = 1− c + 2m = 0 (i.e. m = (c− 1)/2) we found that the common solutions (c, n)
of the equations θ = 0 and θ1 = 0 are the following ones: {(−1, 2), (−1/2,−1/2), (0,−1/4),
(0, 0), (1, 0)}. However all these solutions contradict the condition µ0 = c2n2(c− n) > 0.

a3) The subcase η = 0. According to Lemma 3.9 in this case the conditions θ = 0 and θ2 = 0
are incompatible (otherwise we get η = µ0 6= 0). Moreover since T4 = 0, and E3 < 0, by
Lemma 3.9 in this case we have M̃ 6= 0. So considering Lemma 3.1 we get the following 3
configurations:

• n(3), s(1); (0
2)SN, N∞: Example⇒ (c = −22/25, m = −47/50, n = −25/12) (if θ < 0);

• n(3), s(1); (0
2)SN, N f : Example⇒ (c = −4/5, m = −9/10, n = −5/4) (if θ > 0);

• n(3), s(1); (0
2)SN, Nd: Example ⇒ (c = −

√
3/2, m = −(2 +

√
3)/4, n = −1−

√
3/2) (if

θ = 0).

b) The case T3 = 0. This implies ρ1 = 0 (i.e. c = −1) and then G10 = 0). Therefore
by [7, Table 1, line 88] the triple singularity is an elliptic saddle (nilpotent). On the other hand
the elemental saddle could be a weak one and we shall consider two subcases: T1 6= 0 and
T1 = 0.

b1) The subcase T1 6= 0. Then we have a strong saddle and by (3.12) the condition η ≥ 0
holds.

α) The possibility η > 0. Considering Lemmas 3.1 and 3.9 we can get up to 6 configurations.
Examples for five of them are:
• ês(3), s; S, N∞, N∞: Example⇒ (c = −1, m = −1/3, n = −1) (if θ < 0, θ1 < 0);
• ês(3), s; S, N f , N f : Example⇒ (c = −1, m = −21/25, n = −1) (if θ < 0, θ1 > 0);
• ês(3), s; S, N f , N∞: Example⇒ (c = −1, m = −4/5, n = −1) (if θ > 0);
• ês(3), s; S, N∞, Nd: Example⇒ (c = −1, m = −1/4, n = −1/2) (if θ = 0, θ1 < 0);
• ês(3), s; S, N f , Nd: Example⇒ (c = −1, m = −3/2, n = −3) (if θ = 0, θ1 > 0).
The sixth configuration corresponding to the case θ = θ1 = 0 can not be realized. Indeed,

considering (3.12) the conditions µ0 > 0 and E3 < 0 imply n < 0. On the other hand supposing
θ = 0 = θ1 we get the unique solution with n < 0 and namely (m, n) = (−1,−2). However in
this case we get T1 = 0 which enters in contradiction with the case under examination.

β) The possibility η = 0. In this case according to Lemma 3.9 the condition θ = 0 implies
θ2 6= 0. Moreover since ρ1 = 0, by Lemma 3.9 we have M̃ 6= 0. So considering Lemma 3.1 we
get the following 3 configurations:

• ês(3), s; (0
2)SN, N∞: Example⇒ (c = −1, m = 0, n = −1) (if θ < 0);

• ês(3), s; (0
2)SN, N f : Example⇒ (c = −1, m = −1/2, n = −1/2) (if θ > 0);

• ês(3), s; (0
2)SN, Nd: Example⇒ (c = −1, m = −1/2, n = −1) (if θ = 0).

b2) The subcase T1 = 0. In this case the saddle is weak and the conditions ρ1 = ρ4 = 0
yield c = −1 = m. Then we arrive at the formulas (3.13) and clearly the condition µ0 > 0
implies n < −1 (then E3 < 0), and therefore we obtain σ 6= 0, H > 0 and B < 0. By [31, Main
Theorem, (e3), α] we obtain an integrable saddle.

On the other hand from formulas (3.13) we observe that the condition θ ≤ 0 holds. Since
η > 0 considering Lemmas 3.1 and 3.9 we arrive at the following three configurations:
• ês(3), $; S, N∞, N∞: Example⇒ (c = −1, m = −1, n = −3) (if θ 6= 0, θ1 < 0);
• ês(3), $; S, N f , N f : Example⇒ (c = −1, m = −1, n = −3/2) (if θ 6= 0, θ1 > 0);
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• ês(3), $; S, Nd, Nd: Example⇒ (c = −1, m = −1, n = −2) (if θ = 0).

The subcase E3 > 0. In this case the elemental singularity M4 is an anti-saddle. On the
other hand by [7] the singular point M1(0, 0) is a triple saddle (semi-elemental or nilpotent).

1) The possibility W4 < 0. Then from (3.11) it follows G10 6= 0 and according to [7, Table
1, line 91] we have a focus and a semi-elemental triple saddle. And the focus could be weak
only if T4 = 0.

a) The case T4 6= 0. In this case we have a strong focus.

a1) The subcase η < 0. By Lemma 3.1 the configurations of infinite singularities are gov-
erned by the invariant polynomials θ and θ2. According to Lemma 3.9 in this case the con-
dition θ = 0 implies θ2 6= 0 and considering Lemma 3.1 we arrive at the following three
configurations of singularities:
• s(3), f ; N∞, c©, c©: Example⇒ (c = 2, m = −11/8, n = −2) (if θ < 0);
• s(3), f ; N f , c©, c©: Example⇒ (c = 2, m = −1/2, n = −2) (if θ > 0);
• s(3), f ; Nd, c©, c©: Example⇒ (c = 2, m = −1, n = −2) (if θ = 0).

a2) The subcase η > 0. We claim that in this case instead of 10 possible configurations
indicated in Table 3.1 there could be realized only 3. More precisely we claim that if µ0 > 0,
W4 < 0 and η > 0, then the condition θ ≤ 0 implies θ1 < 0, and in the case θ = 0 we have
θ2 6= 0.

Indeed, it can be proved directly that if the conditions µ0 > 0, W4 < 0 (i.e. τ4 < 0) and
η > 0 hold, then the surfaces θ = 0 and θ1 = 0 do not intersect in real points. So it is sufficient
to take any slice in the 3-dimensional space of the parameters (c, m, n) which intersects the
region where the conditions hold, and to check that at a point where θ1 = 0 the polynomial θ

is positive.
It remains to observe, that in the case θ = 0 by Lemma 3.9 (see statement (iii)) the condition

θ2 6= 0 must hold. This completes the proof of our claim.

Remark 3.10. We point out that the above arguments hold regardless of the value of T4. So
the same reasons could be used when T4 = 0.

Thus by Lemma 3.1 the remaining three configurations of singularities are:
• s(3), f ; S, N∞, N∞: Example⇒ (c = 20, m = −17/2, n = −65/4) (if θ < 0⇒ θ1 < 0);
• s(3), f ; S, N f , N∞: Example⇒ (c = 545/64, m = 127/128, n = −65/64) (if θ > 0);
• s(3), f ; S, N∞, Nd: Example⇒ (c = 137/16, m = −65/32, n = −65/16) (if θ = 0 ).

a3) The subcase η = 0. According to Lemma 3.9 in this case the condition θ = 0 implies θ2 6=
0 and considering Lemma 3.1 we arrive at the following four configurations of singularities:
• s(3), f ; (0

2)SN, N∞: Example⇒ (c = 5/4, m = −7/8, n = −1) (if M̃ 6= 0, θ < 0);

• s(3), f ; (0
2)SN, N f : Example⇒ (c = 65/16, m = 47/32, n = −1/16) (if M̃ 6= 0, θ > 0);

• s(3), f ; (0
2)SN, Nd: Example⇒ (c = 5/4, m = −1/8, n = −1/4) (if M̃ 6= 0, θ = 0);

• s(3), f ; (0
3)N: Example⇒ (c = 5/11, m = −5/22, n = −25/176) (if M̃ = 0).

b) The case T4 = 0. Then by (3.11) we get ρ1ρ4 = 0 and as W4 6= 0 implies ρ1F1 6= 0 we
obtain ρ4 = 0 (i.e. 1− c + 2m = 0). So we have a first order weak focus.

Considering Remark 3.10 it remains to present the examples for the realizations of the next
10 configurations.

b1) The subcase η < 0.
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• s(3), f (1); N∞, c©, c©: Example⇒ (c = 1/2, m = −1/4, n = −1/3) (if θ < 0);
• s(3), f (1); N f , c©, c©: Example⇒ (c = 1/2, m = −1/4, n = −1) (if θ > 0);
• s(3), f (1); Nd, c©, c©: Example⇒ (c = 1/2, m = −1/4, n = −1/2) (if θ = 0).

b2) The subcase η > 0. Considering Lemmas 3.1 and 3.9 we arrive at the following 3
configurations of singularities:
• s(3), f (1); S, N∞, N∞: Example⇒ (c = 1/2, m = −1/4, n = −8/50) (if θ < 0);
• s(3), f (1); S, N f , N∞: Example⇒ (c = 1/2, m = −1/4, n = −6/50) (if θ > 0);
• s(3), f (1); S, N∞, Nd: Example⇒ (c = 1/2, m = −1/4, n = −7/50) (if θ = 0).
Considering the graphic θ1 = 0 we observe that we can not have any branch inside the

region defined by the conditions µ0 > 0, E3 > 0 and θ < 0.

b3) The subcase η = 0.
• s(3), f (1); (0

2)SN, N∞: Example⇒ (c = 1/3, m = −1/3, n = −3/16) (if M̃ 6= 0, θ < 0);

• s(3), f (1); (0
2)SN, N f : Example⇒ (c = 1, m = 0, n = −1/8) (if M̃ 6= 0, θ > 0);

• s(3), f (1); (0
2)SN, Nd: Example ⇒ (c =

√
3/2, m = (

√
3− 2)/4, n = (

√
3− 2)/2) (if

M̃ 6= 0, θ = 0);
• s(3), f (1); (0

3)N: Example⇒ (c = 1/2, m = −1/4, n = −1/6) (if M̃ = 0).

2) The possibility W4 > 0. In this case G10 6= 0 and according to [7, Table 1, line 89] we have
a generic node and a semi-elemental triple saddle.

a) The case η < 0. Therefore considering Lemmas 3.1 and 3.9 (the statement (iii)) we arrive
at the following three configurations of singularities:
• s(3), n; N∞, c©, c©: Example⇒ (c = 5/2, m = −23/8, n = −5) (if θ < 0);
• s(3), n; N f , c©, c©: Example⇒ (c = 1, m = 5/4, n = −1/2) (if θ > 0);
• s(3), n; Nd, c©, c©: Example⇒ (c = 1, m = −5/2, n = −5) (if θ = 0).

b) The case η > 0. So by Lemmas 3.1 and 3.9 (the statement (iv)) we obtain the following
six configurations:

• s(3), n; S, N∞, N∞: Example⇒ (c = 1, m = −14849
5000

, n = −59/10) (if θ < 0, θ1 < 0);

• s(3), n; S, N f , N f : Example⇒ (c = 1, m = −65/18, n = −8) (if θ < 0, θ1 > 0);
• s(3), n; S, N f , N∞: Example⇒ (c = 1, m = −29/50, n = −1/5) (if θ > 0);
• s(3), n; S, N∞, Nd: Example⇒ (c = 1, m = −59/20, n = −59/10) (if θ = 0, θ1 < 0);
• s(3), n; S, N f , Nd: Example⇒ (c = 1, m = −61/20, n = −61/10) (if θ = 0, θ1 > 0);
• s(3), n; S, Nd, Nd: Example⇒ (c = 1, m = −3, n = −6) (if θ = 0, θ1 = 0).

c) The case η = 0. In this case considering Lemmas 3.1 and 3.9 we get the following four
configurations:

• s(3), n; (0
2)SN, N∞: Example⇒ (c = 1/5, m = −1/30, n = −1/90) (if M̃ 6= 0, θ < 0);

• s(3), n; (0
2)SN, N f : Example ⇒ (c = 1/5, m = −31/120, n = −31/360) (if M̃ 6= 0,

θ > 0);
• s(3), n; (0

2)SN, Nd: Example⇒ (c = 1/5, m = −11/60, n = −11/180) (if M̃ 6= 0, θ = 0);

• s(3), n; (0
3)N: Example⇒ (c = 1/4, m = −1/8, n = −1/20) (if M̃ = 0).

3) The possibility W4 = 0. In this case due to µ0 6= 0 we get ρ1τ4 = 0 and we consider two
cases: T4 6= 0 and T4 = 0.

a) The case T4 6= 0. Then ρ1 6= 0 and hence we obtain τ4 = 0, i.e. we have a node with
coinciding eigenvalues which by (3.10) is not a star node.
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a1) The subcase η < 0. In this case considering Lemmas 3.1 and 3.9 (the statement (iii)) we
arrive at the following three configurations of singularities:
• s(3), nd; N∞, c©, c©: Example⇒ (c = 1, m = −3/2, n = −9/4) (if θ < 0);
• s(3), nd; N f , c©, c©: Example⇒ (c = 1, m = −3, n = −9) (if θ > 0);
• s(3), nd; Nd, c©, c©: Example⇒ (c = 1, m = −2, n = −4) (if θ = 0).

a2) The subcase η > 0. Then by Lemmas 3.1 and 3.9 (the statements (iii) and (iv)) we
could have 5 possible configurations of singularities. For three of them we give corresponding
examples:
• s(3), nd; S, N∞, N∞: Example⇒ (c = 5/2, m = −1/2, n = −5/8) (if θ < 0, θ1 < 0);
• s(3), nd; S, N f , N∞: Example⇒ (c = 1, m = −1/2, n = −1/4) (if θ > 0);
• s(3), nd; S, N∞, Nd: Example⇒ (c = 9/4, m = −1/8, n = −1/4) (if θ = 0, θ1 < 0).
We claim that the remaining two configurations (defined respectively by the conditions

θ < 0, θ1 > 0 and θ = 0, θ1 > 0) could not be realizable. More exactly we prove below that the
condition θ ≤ 0 implies in this case θ1 < 0.

Indeed, as ∆4 6= 0 (i.e. cn 6= 0) the condition τ4 = 0 yields n = −(1− c + 2m)2/(4c) and
then the invariant polynomials θ = θ(c, m) and θ1 = θ1(c, m) depend on 2 parameters c and
m. Considering the system of the equations θ(c, m) = 0 and θ1(c, m) = 0 we detect that the
only real solutions of this system are (−2, 0) and (1, 0). However in these points we have
µ0 = −81/128 < 0 and µ0 = 0, respectively.

On the other hand in this case we calculate

µ0 =
(1− c + 2m)4(1 + c + 2m)2

64c
,

η =
(1 + c + 2m)2[(c− 1)2 + 2(1 + c)m

]2[c2 + c− (1 + 2m)2]
16c3 ,

and as µ0 > 0 we get c > 0. So it is enough to check in the region defined by c > 0 and
c2 + c − (1 + 2m)2 > 0 the signs of θ and θ1, and to verify that in any point of this region
where θ ≤ 0 and θ1 6= 0 we have θ1 < 0.

In order to check the conditions we need to find out the intersections of the graphic θ1 = 0
with the component c2 + c− 1− 4m− 4m2 = 0. We obtain only one point (c, m) with c > 0,
namely (1/3,−1/6), and this is a contact point of θ1 = 0 and η = 0 which does not produce
any new region inside η > 0.

a3) The subcase η = 0. In this case considering Lemmas 3.1 and 3.9 we get the following
four configurations of singularities:

• s(3), nd; (0
2)SN, N∞: Example⇒ (c = 9/16, m = −31/32, n = −1) (if M̃ 6= 0, θ < 0);

• s(3), nd; (0
2)SN, N f : Example⇒ (c = 49/72, m = 5/144, n = −1/18) (if M̃ 6= 0, θ > 0);

• s(3), nd; (0
2)SN, Nd: Example⇒ (c = 9/16, m = −1/32, n = −1/16) (if M̃ 6= 0, θ = 0);

• s(3), nd; (0
3)N: Example⇒ (c = 1/3, m = −1/6, n = −1/12) (if M̃ = 0).

b) The case T4 = 0. Then ρ1ρ4 = 0 and considering the condition ρ1τ4 = 0 (as W4 = 0) we
obtain ρ1 = 0 (otherwise we get ρ4 = τ4 = 0 which is impossible for an elemental singular
point). Thus ρ1 = 0 (i.e. c = −1) and we arrive at the relations (3.11). As G10 = 0 by [7]
the triple point is a nilpotent saddle and the elemental one is an anti-saddle. We claim that
the condition µ0 > 0 implies τ4 > 0. Indeed considering (3.11) the condition µ0 > 0 gives
1 + 2m− n > 0 and therefore τ4 = (1 + 2m− n) + m2 > 0. So our claim is proved and hence
the elemental singular point is a generic node.
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We observe also that the conditions µ0 > 0 and E3 > 0 imply 0 < n < 2m + 1. Then
considering the graphics θ = 0 and θ1 = 0 it is easy to detect that they do not intersection for
n > 0 and that the condition θ < 0 implies θ1 > 0.

On the other hand by (3.11) we have η ≥ 0. Moreover due to the condition E3 > 0 we
could have η = 0 only if m = 0 (otherwise in the case m = −1/2 we get E3 = −n4/4 < 0).
And in the case m = 0 we obtain M̃ = −8x2 6= 0 and θ = 8n3 > 0 as n > 0. Thus considering
Lemma 3.1 we arrive at the following configurations of singularities:
• ŝ(3), n; S, N f , N f : Example⇒ (c = −1, m = 2, n = 1) (if η > 0, θ < 0);
• ŝ(3), n; S, N f , N∞: Example⇒ (c = −1, m = 1, n = 9/4) (if η > 0, θ > 0);

• ŝ(3), n; (0
2)SN, N f : Example⇒ (c = −1, m = 0, n = 1/2) (if η = 0).

3.3.2 The family of systems (3.8)

So we consider the family of systems

ẋ = 2hxy, ẏ = x− x2 + 2mxy + ny2, m ∈ {0, 1}, (3.14)

which possess the triple nilpotent singular point M1(0, 0) and the elemental one M4(1, 0). For
the second singularity we have

M4 =

(
0 2h
−1 2m

)
, ρ4 = 2m, ∆4 = 2h; τ4 = 4(m2 − 2h). (3.15)

For this family we calculate

µ0 = −n∆2
4, η = 4(2h− n)2(m2 + n− 2h), E3 = −n∆3

4/4,

G10 = 0, T4 = T3 = T2 = 0, T1 = −n∆2
4ρ4, F1 = 0,

F = m(h + n)2∆4 W4 = 0, W1 = n2∆4
4τ4,

M̃ = 8(6h− 4m2 − 3n)x2 + 16m(2h− n)xy− 8(2h− n)2y2.

(3.16)

Lemma 3.11. If for a system (3.14):

(i) the condition M̃ = 0 holds, then T1 = θ1 = 0, E3 < 0 and sign (θ) = −sign (µ0);

(ii) the conditions θ = 0 and T1 6= 0 hold, then for this system we have η ≥ 0, θ1θ2 6= 0.

Proof. (i) By (3.16) we obtain that the condition M̃ = 0 is equivalent to n− 2h = m = 0 and
we obtain:

T1 = θ1 = 0, E3 = −4h4, µ0 = −8h3, θ = 64h3.

Evidently statement (i) follows immediately.
(ii) Setting a new parameter u = h − n we have θ = 64(n + u)(m2n + u2) and µ0 =

−4n(n + u)2 6= 0. So due to m 6= 0 (as T1 6= 0) the condition θ = 0 gives n = −u2/m2. Then
we calculate

η =
4(m2 − u)2(2m2 − u)2u2

m6 , θ1 =
256(m2 − u)3u2

m4 , θ2 =
(m2 − u)u2

m2 , µ0 =
4(m2 − u)2u4

m6 ,

and this completes the proof of the lemma as µ0 6= 0.

We observe that for systems (3.8) the parameter m ∈ {0, 1}, and as the condition m = 0 is
equivalent to T1 = 0 we consider two cases.
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The case T 1 6= 0. Then m = 1 and the condition µ0 6= 0 implies E3 6= 0.

The subcase µ0 < 0. Therefore n > 0 and we obtain sign (E3) = −sign (∆4).

1) The possibility E3 < 0. In this case by [7, Table 1, lines 97–99] the nilpotent point is an
elliptic saddle whereas the elemental singularity M4 is an anti-saddle. Therefore since the sum
of the indexes of the finite singularities equals +2 we conclude that the sum of the indices of
the infinite singularities must be −1.

On the other hand by [7] the type of the elemental singularity is governed by the invariant
polynomial W1.

a) The case W1 < 0. Then the elemental singular point is a strong focus and considering
Lemmas 3.1 and 3.11 we arrive at the next three configurations
• ês(3), f ; S, c©, c©: Example⇒ (h = 2, m = 1, n = 1) (if η < 0);

ês(3), f ; S, S, N∞ (if η > 0), or ês(3), f ; (0
2)SN, S (if η = 0).

We observe that only the configuration corresponding to η < 0 is a new one, other two
being realizable for the family (3.7) in the case µ0 < 0, E3 < 0, W4 = 0, T4 = 0, W1 < 0, T1 6= 0
and η ≥ 0. It remains to remark that according to (3.12) for the family (3.7) in the case we
consider we could not have η < 0.

b) The case W1 > 0. Under this condition we have a generic node. Moreover the above
conditions imply n > 0, h > 0 and h < 1/2 and this gives η > 0. So by Lemma 3.1 we get the
unique configuration ês(3), n; S, S, N∞ which already is obtained for the previous family.

c) The case W1 = 0. Then τ4 = 0 and considering the matrixM4 from (3.15) we have a node
nd. We get h = 1/2 and this implies η > 0 and we arrive at the configuration ês(3), nd; S, S, N∞,
obtained earlier.

2) The possibility E3 > 0. In this case by [7] we have a nilpotent triple saddle and a saddle.
So this implies at infinity the existence of three nodes and according to Lemma 3.1 we get the
configuration ŝ(3), s; N f , N f , N f , which is already obtained.

The subcase µ0 > 0. Therefore n < 0 and we obtain sign (E3) = sign (∆4).

1) The possibility E3 < 0. Then h < 0 and in this case the elemental singularity M4 is a
saddle (which is strong due to m 6= 0) and by [7, Table 1, line 88] the triple point is a nilpotent
elliptic saddle.

a) The case η < 0. According to Lemma 3.11 the condition θ 6= 0 holds, otherwise we
get η ≥ 0. Moreover we observe that the condition η < 0 implies θ < 0. Indeed, as η < 0
(i.e. n − 2h + 1 < 0) we set n − 2h + 1 = −u2 (i.e. n = 2h − 1− u2) and then we calculate
θ = 64h

[
(u2 − h)2 + u2] < 0 due to h < 0. Thus θ < 0 and by Lemma 3.1 we get the unique

configuration, which is a new one:
• ês(3), s; N∞, c©, c©: Example⇒ (h = −1/4, m = 1, n = −2).

b) The case η > 0. It was proved for the previous family (see the subsection defined by
the conditions µ0 > 0, E3 > 0, T4 = T3 = 0 and T1 6= 0) that there could exist only 6
configurations. More precisely the possibilities with θ = 0, and either θ1 6= 0 and θ2 = 0 or
θ1 = θ3 = 0 can not be realizable. However according to Lemma 3.11 none of these cases can
be realizable for the family (3.14).

c) The case η = 0. Since M̃ 6= 0, in this case according to Lemma 3.1 at infinity we can have
in this case four configurations. We have proved (see the same subsection above mentioned)
that for the previous family (3.7) all cases are realizable, with the exception of θ = θ2 = 0
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because the condition θ = 0 implies θ2 6= 0. We observe that for systems (3.14) by Lemma 3.11
the condition θ = 0 also implies θ2 6= 0 and hence we can not obtain new configurations of
singularities.

2) The possibility E3 > 0. As µ0 > 0 considering (3.16) we get n < 0 and h > 0. In this
case by [7, Table 1, lines 90, 92, 93] the triple singular point is a saddle, whereas the elemental
singularity M4 is an anti-saddle, the type of which is governed by the invariant polynomial
W1.

a) The case W1 < 0. Then τ4 = 4(1− 2h) < 0 and the elemental singular point is a strong
focus. On the other hand considering (3.16) the conditions n < 0 and h > 1/2 imply η < 0
and θ > 0. So by Lemma 3.1 we arrive at the next new configuration:
• ŝ(3), f ; N f , c©, c©: Example⇒ (h = 1, m = 1, n = −2).

b) The case W1 > 0. We have a generic node and considering the conditions n < 0,
0 < h < 1/2 and the graphics 2h− 1− n = 0 (for η) and (h− n)2 + n = 0 (for θ) we obviously
obtain that the condition η < 0 implies θ > 0. Moreover, the conditions η > 0 and θ < 0 give
θ1 > 0, and the condition η = 0 (i.e. n = 2h− 1) yields θ = 64h3 > 0. So considering Lemma
3.1 we get the next configurations:
• ŝ(3), n; N f , c©, c©: Example⇒ (h = 1/5, m = 1, n = −1) (if η < 0);
ŝ(3), n; S, N f , N f (if η > 0, θ < 0); ŝ(3), n; S, N f , N∞ (if η > 0, θ > 0) and

ŝ(3), n; (0
2)SN, N f (if η = 0).

In such a way we get a unique new configuration which is realizable if the conditions
µ0 > 0, E3 > 0, W4 = 0, T4 = 0, W1 > 0, T1 6= 0 and η < 0 hold and this allows to include it in
the diagram in the corresponding place.

c) The case W1 = 0. Then h = 1/2 (in this case we have a node with one direction) and we
calculate

µ0 = −n = 4E3, η = 4n(n− 1)2, θ = 8(1 + 4n2) > 0.

Therefore as the condition µ0 > 0 implies η < 0 we only get one configuration it is a new one:
• ŝ(3), nd; N f , c©, c©: Example⇒ (h = 1/2, m = 1, n = −1).

The case T 1 = 0. Then m = 0 and since n 6= 0 due to the rescaling (x, y, t) 7→ (x, |n|−1/2y, |n|−1/2t)
we may assume n ∈ {−1, 1}.

The subcase µ0 < 0. Then n > 0 and assuming n = 1 we get the family of systems

ẋ = 2hxy, ẏ = x− x2 + y2, (3.17)

for which we have

µ0 = −4h2, E3 = −2h3, η = 4(1− 2h)3, W1 = −128h5,

T4 = T3 = T2 = T1 = F = F1 = 0, σ = 2(h + 1)y,

H = −4h(h + 1)2, B = −2(h + 1)4, M̃ = 8(2h− 1)(3x2 − 2hy2 + y2).

(3.18)

1) The possibility E3 < 0. Then h > 0 and this implies σ 6= 0, H < 0, B < 0. We observe
that the condition η = 0 implies M̃ = 0. So by [31] and [7] we have a center and an elliptic
saddle and considering Lemma 3.1 we get the following configurations:
• ês(3), c; S, c©, c© : Example⇒ (h = 2, m = 0, n = 1) (if η < 0);
ês(3), c; S, S, N∞: (if η > 0);
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• ês(3), c; (0
3)S: Example ⇒ (h = 1/2, m = 0, n = 1) (if η = 0). Thus we obtain two new

configurations, which are defined by the conditions µ0 < 0, E3 < 0, W4 = 0, T4 = 0, W1 < 0,
T1 = 0 and either η < 0 or η = 0.

2) The possibility E3 > 0. In this case by [7] we have a triple nilpotent saddle and a weak
saddle which is integrable. Since the condition h < 0 implies η > 0 we only get one configu-
ration ŝ(3), $; N f , N f , N f which is already obtained for the previous family.

The subcase µ0 > 0. Then n < 0 and assuming n = −1 we get the family of systems

ẋ = 2hxy, ẏ = x− x2 − y2, (3.19)

for which we have

µ0 = 4h2, E3 = 2h3, η = −4(1 + 2h)3, W1 = −128h5,

T4 = T3 = T2 = T1 = F = F1 = 0, σ = 2(h− 1)y,

θ = 64h(1 + h)2, θ1 = −64(1 + h)(1 + 2h)(1 + 5h), θ3 = −h(5h2 + 2h− 1),

H = −4h(h− 1)2, B = −2(h− 1)4, M̃ = 8(2h + 1)(3x2 − 2hy2 − y2).

(3.20)

1) The possibility E3 < 0. Then h < 0 and the elemental singularity is an integrable saddle,
whereas the triple point is an elliptic saddle. We observe that in this case we have θ ≤ 0 and
the condition η = 0 implies M̃ = 0. So we arrive at the following configurations (two of which
are new ones):
• ês(3), $; N∞, c©, c© : Example⇒ (h = −1/3, m = 0, n = −1) (if η < 0);
ês(3), $; S, N∞, N∞: (if η > 0, θ 6= 0, θ1 < 0);

ês(3), $; S, N f , N f : (if η > 0, θ 6= 0, θ1 > 0);

ês(3), $; S, Nd, Nd: (if η > 0, θ = 0);

• ês(3), $; (0
3)N: Example⇒ (h = −1/2, m = 0, n = −1) (if η = 0).

2) The possibility E3 > 0. In this case h > 0 and the elemental singular point is a center,
which exists besides a nilpotent triple saddle. We observe that the condition h > 0 implies
η < 0, θ > 0 and we get the unique configuration, which is a new one:
• ŝ(3), c; N f , c©, c© : Example⇒ (h = 1, m = 0, n = −1).

3.3.3 The family of systems (3.9)

So we consider the family of systems

ẋ = x + y− x2 + 2hxy, ẏ = 2my(x + y), (3.21)

which possess the triple semi-elemental singular point M1,2,3(0, 0) and the elemental one
M4(1, 0). For the second singularity we have

M4 =

(
−1 1 + 2h
0 2m

)
, ρ4 = 2m− 1, ∆4 = −2m; τ4 = (2m + 1)2. (3.22)
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For this family we calculate

µ0 = (1 + 2h)∆2
4, η = 4(h−m)2(2m + 1)2,

E3 = (1 + 2h)∆3
4/4, G10 = −(1 + 2h)∆3

4/8, F1 = 0;

T4 = (1 + 2h)∆2
4ρ4, T3 = 2(1 + 2h)∆2

4(3m− 1),

T2 = −3(1 + 2h)∆3
4, W4 = (1 + 2h)2∆4

4τ4,

M̃ = −8(1 + 2m)2x2 + 16(h−m)(1 + 2m)xy− 32(h−m)2y2,

θ = 32h(h− 2m− 2m2)∆4, θ2 = (1 + h + m)∆4/2,

θ1 = 64(h2 − 2hm + 6h2m− 14hm2 + 4h2m2 + 4m3 − 12hm3 + 4m4),

θ3 = (1 + 2h)(m2 + 2m− 1)∆4/2.

(3.23)

Lemma 3.12. For a system (3.21) with µ0 6= 0 the following statements hold: (i) the conditions
E3G10M̃ 6= 0, η ≥ 0 and W4 ≥ 0 are fulfilled; (ii) if θ = 0 then the condition θ1 = 0 is equivalent to
θ2 = 0 and in the last case θ3 6= 0.

Proof. (i) The conditions E3G10 6= 0, η ≥ 0 and W4 ≥ 0 follow directly from (3.23). Assume
M̃ = 0. By (3.23) this implies m = −1/2 and then we calculate M̃ = −8(1 + 2h)2y2 6= 0 due
to µ0 6= 0.

(ii) Assume θ = 0. Then we obtain either α) h = 0, or β) h = 2m(m + 1). Then the
calculations yield

θ1 = 256m3(1 + m), θ2 = −m(1 + m), θ3 = −m(m2 + 2m− 1), µ0 = 4m2,

in the case α) and

θ1 = 256m3(1 + m)(1 + 2m)2, θ2 = −m(1 + m)(1 + 2m),

θ3 = −m(m2 + 2m− 1)(1 + 2m)2, µ0 = 4m2(1 + 2m)2,

in the case β). Clearly in both cases due to µ0 6= 0 the condition θ1 = 0 is equivalent to θ2 = 0
and in the case θ1 = 0 we get θ3 6= 0.

The case µ0 < 0.

The subcase E3 < 0. Since by Lemma 3.12 we have G10 6= 0 and W4 ≥ 0, according to [7]
the triple singularity is a semi-elemental node and the elemental one is a node.

1) The possibility W4 6= 0. Then we have a generic node. As by Lemma 3.12 we have η ≥ 0,
according to Lemma 3.1 this leads to the two configurations which were previously detected
for the family (3.7).

2) The possibility W4 = 0. In this case τ4 = 0 which implies m = −1/2. So we have a
node with two coinciding eigenvalues which could not be a star node because µ0 6= 0 (i.e.
2h + 1 6= 0 and this appears in the matrix M4 from (3.22)). In this case we have η = 0 and
since by Lemma 3.12 the condition M̃ 6= 0 holds, we get the unique configuration n(3), nd; (0

2)S,
which was previously detected by the same invariant conditions.
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The subcase E3 > 0. By [7] we have a semi-elemental triple saddle and a saddle which
could be a weak one. At infinity we have three nodes (i.e. η > 0), and then in the case T4 6= 0
we obtain the same configuration previously found. Assuming T4 = 0 we get m = 1/2 and
then we calculate

T4 = F1 = 0, FT3 = (1 + 2h)2/8, F2 = −3(1 + 2h)2/2. (3.24)

Therefore due to µ0 6= 0 we have FT3 > 0 and F2 6= 0 and according to [31] we have a
weak saddle of order two. Considering the condition η > 0 and Lemma 3.1 we get only one
configuration and it is a new one:
• s(3), s(2); N f , N f , N f : Example⇒ (h = −1, m = 1/2).

The case µ0 > 0.

The subcase E3 < 0. By [7] we have a triple semi-elemental node and an elemental
saddle.

1) The possibility T4 6= 0. In this case the saddle is strong. It was shown early (see page
28) that in the case µ0 > 0, E3 < 0, T4 6= 0 and η ≥ 0, for the family (3.7) all the possible
configurations for the infinite singularities are realizable except the cases θ = θ2 = 0, θ1 6= 0
and θ = θ1 = θ3 = 0. However by Lemma 3.12 none of cases can be realizable for the family
(3.21).

2) The possibility T4 = 0. We obtain m = 1/2 and we arrive at the relations (3.24). According
to [31, Main Theorem, (b2)] we have a weak saddle of order two. In this case we have

θ = 16h(3− 2h), θ1 = 16(3− 24h + 20h2), θ2 = −(3 + 2h)/4,

E3 = −(1 + 2h)/4, η = 4(2h− 1)2.

We observe that the condition θ ≤ 0 implies θ1 > 0 and in the case θ = 0 we have θ2 6= 0. So
considering Lemmas 3.12 and 3.1 we get the following new configurations of singularities in
the case η 6= 0 (i.e. η > 0):
• n(3), s(2); S, N f , N f : Example⇒ (h = 2, m = 1/2) (if θ < 0);

• n(3), s(2); S, N f , N∞: Example⇒ (h = 1, m = 1/2) (if θ > 0);

• n(3), s(2); S, N f , Nd: Example⇒ (h = 0, m = 1/2) (if θ = 0).
In the case η = 0 we have h = 1/2 and this implies θ > 0. So we get the new configuration

• n(3), s(2); (0
2)SN, N f : Example⇒ (h = 1/2, m = 1/2).

The subcase E3 > 0. By [7] the triple point is a semi-elemental saddle and the elemental
singular point is an anti-saddle, which must be a node due to τ4 ≥ 0.

It was shown earlier (see page 31) that in the case µ0 > 0, E3 > 0, η ≥ 0 and W4 > 0 for the
family (3.7) all the possible configurations for the infinite singularities are realizable except
the cases θ = θ2 = 0 and θ = θ1 = θ3 = 0. However by Lemma 3.12 none of cases can be
realizable for the family (3.21).

In the case W4 = 0 we get m = −1/2 and then η = 0 and θ2 + θ2
2 6= 0 and again no new

configurations appear.
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3.3.4 The family of systems (3.5)

So we consider the family of systems

ẋ = x + dy− x2 + 2hxy + ky2, ẏ = 2my(x + dy), d ∈ {0, 1}, (3.25)

which possess the triple semi-elemental singular point M1,2,3(0, 0) and the elemental one
M4(1, 0). For the second singularity we have

M4 =

(
−1 d + 2h
0 2m

)
, ρ4 = 2m− 1, ∆4 = −2m; τ4 = (2m + 1)2. (3.26)

For this family we calculate

µ0 = α∆2
4, η = 4(1 + 2m)2[(h− dm)2 + k(2m + 1)

]
,

E3 = α∆3
4/4, G10 = −α∆3

4/8, F1 = 0;

T4 = α∆2
4ρ4, T3 = 2α∆2

4(3m− 1), W4 = α2∆4
4τ4,

M̃ = −8(1 + 2m)2x2 + 16(1 + 2m)(h− dm)xy− 8(4h2 + 3k− 8dhm + 6km + 4d2m2)y2,

(3.27)

where α = (d2 + 2dh− k). We observe that due to µ0 6= 0 for the above systems the conditions
E3G10 6= 0 and W4 ≥ 0 are satisfied.

According to Remark 3.8 we have to consider only two cases: η < 0 and M̃ = 0.

The case η < 0. Then 1 + 2m 6= 0 (i.e. τ4 > 0) and the elemental singular point is either a
generic node or a saddle.

The subcase µ0 < 0. Then E3 < 0 otherwise by [7] the systems possess two finite saddles
(one triple and one elemental) and this implies the existence of three nodes at infinity, i.e.
η > 0. So E3 < 0 and according to [7] systems (3.25) possess a semi-elemental triple node
and a generic node. Considering the condition η < 0 by Lemma 3.1 we arrive at the unique
configuration n(3), n; S, c©, c©, previously detected.

The subcase µ0 > 0. As we are interested in the case η < 0, according to Lemma 3.1 in
this case the invariant polynomial θ is necessary to be taken into consideration. We calculate

θ = −64m
[
k(m + 1)2 − 2hdm(m + 1) + h2],

and we claim that the conditions µ0 6= 0 and η < 0 imply θ 6= 0. Indeed, if m + 1 6= 0 then
setting θ = 0 we obtain k =

[
2hdm(m + 1)− h2]/(m + 1)2. However in this case we get

η = 4m2(1 + 2m)2(d + h + dm)2/(1 + m)2 ≥ 0,

which contradicts to η < 0.
Assume now m = −1. Then the condition θ = 64h2 = 0 gives h = 0 and we obtain

η = 4(d2 − k) = µ0, and clearly the condition µ0 > 0 imply η > 0. The contradiction obtained
completes the proof of our claim and in what follows we assume θ 6= 0.

1) The possibility E3 < 0. According to [7] systems (3.25) have a semi-elemental triple node
and an elemental saddle.



40 J. C. Artés, J. Llibre, A. C. Rezende, D. Schlomiuk and N. Vulpe

a) The case T4 6= 0. Then the saddle is strong and by [7] we obtain two configurations:
n(3), s; N∞, c©, c© if θ < 0) and n(3), s; N f , c©, c© if θ > 0. However both configurations were
previously constructed.

b) The case T4 = 0. Then ρ4 = 0 (i.e. m = 1/2) and we obtain:

T4 = F1 = 0, T3F = (d2 + 2dh− k)2/8, F2 = −3(d2 + 2dh− k)2/2,

µ0 = d2 + 2dh− k, η = 4
[
(d− 2h)2 + 8k

]
, θ = 8(6dh− 4h2 − 9k).

So the condition µ0 6= 0 implies T3F > 0 and F2 6= 0 and by [31, Main Theorem, (b2)] we
have a weak saddle of the second order.

Since for (3.25) we have d ∈ {0, 1}, we observe that in both cases the functions η = 0 and
θ = 0 represent two parabolas having a contact point of multiplicity two. Moreover the region
{η = 0} ⊂ {θ ≥ 0} and the region {θ = 0} ⊂ {η ≥ 0} and hence the condition η < 0 implies
θ > 0. So considering [7] we arrive at the following new configuration:
• n(3), s(2); N f , c©, c©: Example⇒ (d = 0, h = 0, k = −1, m = 1/2).

2) The possibility E3 > 0. By [7] systems (3.25) have a semi-elemental triple saddle and an
elemental node. We observe that due to η < 0 the condition τ4 6= 0 (i.e. W4 6= 0) holds. Then
the node is generic and we can have only the following two configurations: s(3), n; N∞, c©, c© if
θ < 0 and s(3), s; N f , c©, c© if θ > 0. However these configurations were previously detected.

The case M̃ = 0. Considering (3.27) the condition M̃ = 0 is equivalent to m = −1/2 and
d = −2h and by (3.26) the elemental singular point is a star node. Since in this case we have
µ0 = −k and E3 = −k/4, according to [7] and Lemma 3.1 we get the following two new
configurations:

• n(3), n∗; (0
3)S: Example⇒ (d = 0, h = 0, k = 1, m = −1/2) (if µ0 < 0);

• s(3), n∗; (0
3)N: Example⇒ (d = 0, h = 0, k = −1, m = −1/2) (if µ0 > 0).

In both cases we have U3 = 0, whereas for the family (3.7) with M̃ = 0 (which is equivalent
to m = −c/2 and n = −c2/(1 + c)) we have Coefficient[U3, y5] = 3c7/(1 + c)3 6= 0. Therefore
the invariant polynomial U3 will distinguish in both cases the existence of a star node from
the existence of a node nd.

We remark that the condition U3 = 0 is equivalent to M̃ = 0 for systems (3.25). Moreover
it is not difficult to check that for the families of systems (3.7), (3.8) and (3.21) the condition
U3 = 0 can not be satisfied.

As all the cases are examined, we have constructed all 174 possible configurations for the
family of quadratic systems with m f = 4 possessing exactly two finite singularities. Therefore
our main theorem is completely proved.
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