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1 Introduction

Consider the n−th order differential equations
(

1

an−1(t)

(

· · ·

(

1

a1(t)
x′

)′

· · ·

)′
)′

+ p(t)f(x(t)) = 0 (N)

(

1

a1(t)

(

· · ·

(

1

an−1(t)
u′

)′

· · ·

)′
)′

+ (−1)np(t)f(u(t)) = 0, (NA)

where

ai, p ∈ C0([0,∞), R), ai(t) > 0, i = 1, . . . , n − 1, p(t) 6= 0,

f ∈ C0(R, R), f(u)u > 0 for u 6= 0.
(H)

1This paper is in the final form and no version of it will be submitted for publication
elsewhere.
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The notation (NA) is suggested by the fact that in the linear case, i.e. for
equation

(

1

an−1(t)

(

· · ·

(

1

a1(t)
x′

)′

· · ·

)′
)′

+ p(t)x = 0 (L)

the adjoint equation to (L) is

(

1

a1(t)

(

· · ·

(

1

an−1(t)
u′

)′

· · ·

)′
)′

+ (−1)np(t)u = 0. (LA)

When, for some i ∈ {1, 2, .., n − 1} , the function ai is not suitably contin-
uously differentiable, then (N) is to be interpreted as a first order differential
system for the vector (x[0], x[1], ...., x[n−1]) given by

x[0](t) = x(t), x[1](t) =
1

a1(t)
x′(t), . . . , x[n−1](t) =

1

an−1(t)

(

x[n−2](t)
)′

.

The functions x[i], i = 0, 1, ..., n − 1 are called the quasiderivatives of x.
Similarly x[n] denote the function given by x[n](t) = (x[n−1](t))′. For (NA) we
may proceed in a similar way.

As usual, a function u defined on (t0,∞) (t0 ≥ 0) is said to be a proper
solution of (N) if for any t ∈ (t0,∞) it satisfies (N) and for any τ ∈ (t0,∞)

sup {|u(t)| : t ∈ [τ,∞)} > 0.

A proper solution of (N) is called oscillatory if it has a sequence of zeros
tending to ∞; otherwise it is called nonoscillatory.

The n−th order differential operator

Lnx ≡
d

dt

1

an−1(t)
. . .

d

dt

1

a1(t)

d

dt
x (1)

associated to (N) is disconjugate on the interval [0,∞), i.e. any solution of
Lnx = 0 has at most n−1 zeros on [0,∞). Differential equations associated to
disconjugate operators have been deeply studied: see, e.g., the monographs
[7, 10, 13, 14] and references contained therein. In particular, a classification
of solutions has been given in [2, 8] and the case n = 3 has been considered
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in [3, 4, 5]. For other references and related results we refer the reader to
these papers.

To study the asymptotic behavior of higher order differential equations
associated to disconjugate operators, in sixties, A. Kondratev and I. Kigu-
radze introduced the following definitions

Definition 1. A proper solution x of the equation (N) is said to be a Kneser
solution if it satisfies for all large t

x[i](t)x[i+1](t) < 0, i = 0, 1, . . . , n − 1. (2)

A proper solution x of the equation (N) is said to be strongly monotone
solution if it satisfies for all large t

x[i](t)x[i+1](t) > 0, i = 0, 1, . . . , n − 1. (3)

Definition 2. Assume p positive. Equation (N) is said to have property A
if, for n even, any proper solution x of (N) is oscillatory, and, for n odd, it is
either oscillatory or Kneser solution satisfying

lim
t→∞

x[i](t) = 0, i = 0, 1, . . . , n − 1. (4)

Assume p negative. Equation (N) is said to have property B if, for n even,
any proper solution x of (N) is either oscillatory or Kneser solution satisfying
(4) or strongly monotone solution satisfying

lim
t→∞

|x[i](t)| = ∞, i = 0, 1, . . . , n − 1, (5)

and, for n odd, any solution is either oscillatory or strongly monotone solution
satisfying (5).

When n = 3, in [4, 5] some comparison results for properties A and
B have been given jointly with some relationships between the linear and
nonlinear case. The aim of this paper is to extend such a study to nonlinear
higher order differential equations. More precisely, by using a linearization
device and a recent result [6] on equivalence between property A or B for
the linear equation (L) and its adjoint (LA), we will give some comparison
results concerning properties A or B. Our assumptions on nonlinearity are
related with the behavior of f only in a neighbourhood of zero and/or of
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infinity. No monotonicity conditions are required as well as no assumptions
involving the behavior of f in the whole R are supposed.

The paper is organized as follows. Section 2 summarizes the main results
on properties A and B for linear equations proved in [6] and section 3 is
devoted to nonlinear case: some comparison theorems are established jointly
with some results on the asymptotic behavior of nonoscillatory solutions.

We close the introduction with some notation. Let ui, 1 ≤ i ≤ n, be
positive and continuous functions on I. As in [8, 10, 17], put for r > s ≥ 0
and k = 1, . . . , n

I0 ≡ 1,

Ik(r, s; u1, . . . , uk) =

∫ r

s

u1(τ)Ik−1(τ, s; u2, . . . uk) dτ

that is,

Ik(r, s; u1, . . . , uk) =

∫ r

s

u1(τ1)

∫ τ1

s

· · ·

∫ τk−1

s

uk(τk) dτk . . . dτ1.

The class of Kneser and strongly monotone solutions will be denoted by
N0 and Nn, respectively. Remark that, taking into account the sign of x[n],
Kneser solutions of (N) and strongly monotone solutions of (NA) can exist
only in the cases

I) p positive, n odd; II) p negative, n even. (6)

Similarly Kneser solutions of (NA) and strongly monotone solutions of (N)
can exist only when p is negative.

Finally, in addition to (H), some of the following conditions in sections
3-4 will be assumed:

lim sup
u→0

f(u)

u
< ∞, (H1)

lim inf
|u|→∞

f(u)

u
> 0, (H2)

lim inf
u→0

f(u)

u
> 0, (H3)
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lim sup
|u|→∞

f(u)

u
< ∞, (H4)

and
∫ ∞

0

ai(t) dt = ∞ for i = 1, . . . , n − 1. (C)

We recall that, when (C) holds, the disconjugate operator Ln is called in
the canonical form , see, e.g., [21].

Assumptions (H1)-(H4) are motivated by the Emden–Fowler equation

(

1

an−1(t)

(

· · ·

(

1

a1(t)
x′(t)

)′

· · ·

)′
)′

+ p(t)|x(t)|λ sgnx(t) = 0, (EF)

where λ > 0. Clearly, nonlinearity in (EF) satisfies either (H1), (H2) (if
λ ≥ 1) or (H3), (H4) (if λ ∈ (0, 1]).

2 The linear case

Concerning the existence of Kneser solutions or strongly monotone solutions,
in the linear case the following holds:

Lemma 1. For the linear equation (L) it holds:
(a) Let n be odd and p(t) > 0. Then N0 6= ∅.
(b) Let n be even and p(t) < 0. Then N0 6= ∅, Nn 6= ∅.
(c) Let n be odd and p(t) < 0. Then Nn 6= ∅.

Proof. It follows from [12, 16].

In the linear case the properties of solutions of (L) are strictly related
with those of its adjoint (LA) (see, for instance, Th. 8.24, Th.8.33 in [10]
and, for n = 3, Ths.1.3–1.5 in [11]). In particular in [6], we have given an
equivalence result concerning properties A or B for (L) and its adjoint (LA).
The main result is the following:
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Theorem 1. (Equivalence Theorem)
(a) Let n be even and p(t) > 0. Equation (L) has property A if and only

if equation (LA) has property A.

(b) Let n be odd and p(t) > 0. Equation (L) has property A if and only
if equation (LA) has property B.

(c) Let n be even and p(t) < 0. Equation (L) has property B if and only
if equation (LA) has property B.

(d) Let n be odd and p(t) < 0. Equation (L) has property B if and only
if equation (LA) has property A.

Some applications of this result has been given in [6]. For instance, when
n is odd, it enables to obtain new criteria on property A from existing ones on
property B and vice versa. When n is even it permits to produce new criteria
on property A [B] from existing ones by interchanging roles of coefficients ai

and an−i.

A relationship between Kneser and strongly monotone solutions of (L)
and (LA) is given by the following:

Proposition 1. Let (6) be satisfied. The following statements are equiva-
lent:

(a) there exists a Kneser solution x of (L) satisfying limt→∞ x[i](t) = 0
for i = 0, 1, . . . , n − 1;

(b) every Kneser solution x of (L) satisfies limt→∞ x[i](t) = 0 for i =
0, 1, . . . , n − 1;

(c) it holds for t ≥ T ≥ 0

lim
t→∞

In(t, T ; ai, . . . , a1, p, an−1, . . . , ai+1) = ∞, i = 1, . . . , n − 1; (7)

(d) there exists a strongly monotone solution u of (LA) satisfying
limt→∞ |u[i](t)| = ∞ for i = 0, 1, . . . , n − 1.

(e) every strongly monotone solution u of (LA) satisfies limt→∞ |u[i](t)| =
∞ for i = 0, 1, . . . , n − 1.

Proof. The assertion is an easy consequence of Lemma 1 and Lemmas 3-5
in [6]. More precisely, from Lemma 1, (L) and (LA) have both Kneser and
strongly monotone solutions. The statement (a) =⇒ (c) follows from Lemma
3-(a), (c) =⇒ (b) from Lemma 4-(a). From Lemma 5-(a), we get (d) =⇒
(c) and (c) =⇒ (e). Obviously, (b) =⇒ (a) and (e) =⇒ (d). Therefore, all
statements are equivalent.
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3 The nonlinear case

This section is devoted to nonlinear equations (N) and (NA). The first result,
similar to Proposition 1, establishes some asymptotic properties for Kneser
and strongly monotone solutions in the nonlinear case and generalizes some
results for Emden–Fowler equation (EF), where ai = 1, i = 1, . . . , n − 1, see
[13, Th.s.16.2, 16.3].

Theorem 2. Let (6) be satisfied.
(a) Assume (H1). If there exists a Kneser solution x of (N) such that

limt→∞ x[i](t) = 0 for i = 0, 1, . . . , n − 1, then (7) holds.
(b) Assume (H3). If (7) holds, then every Kneser solution x of (N) (if it

exists) satisfies limt→∞ x[i](t) = 0 for i = 0, 1, . . . , n − 1.
(c) Assume (H4). If there exists a strongly monotone solution u of (NA)

such that limt→∞ |u[i](t)| = ∞ for i = 0, 1, . . . , n − 1, then (7) holds.
(d) Assume (H2). If (7) holds, then every strongly monotone solution u

of (NA) (if it exists) satisfies limt→∞ |u[i](t)| = ∞ for i = 0, 1, . . . , n − 1.

Proof. Claim (a). Let F the function given by

F (t) =
f(x(t))

x(t)

and consider, for t sufficiently large, the linearized equation
(

1

an−1(t)

(

· · ·

(

1

a1(t)
w′

)′

· · ·

)′
)′

+ p(t)F (t)w = 0 . (LF )

Because w ≡ x is an its solution, (LF ) has a Kneser solution such that
limt→∞ w[i](∞) = 0 for i = 0, 1, . . . , n − 1. By Proposition 1, we obtain

lim
t→∞

In(t, T ; ai, . . . , a1, Fp, an−1, . . . , ai+1) = ∞, i = 0, 1, . . . , n − 1. (8)

Because (H1) holds, there exists a constant m such that

0 < F (t) < m for all large t

and so

In(t, T ; ai, . . . , a1, Fp, an−1, . . . , ai+1) ≤

≤ mIn(t, T ; ai, . . . , a1, p, an−1, . . . , ai+1), i = 0, 1, . . . , n − 1. (9)
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Hence (8) gives the assertion.
Claim (b). Suppose that there exists an eventually positive Kneser solu-

tion x of (N) such that for some k ∈ {0, 1, . . . , n− 1} limt→∞(−1)kx[k](t) > 0
and consider the linearized equation (LF ): by Proposition 1 there exists
i ∈ {0, 1, . . . , n − 1} such that

lim
t→∞

In(t, T ; ai, ai−1, . . . , a1, Fp, an−1, . . . , ai+1) < ∞. (10)

Two cases are possible: I) x(∞) > 0, II) x(∞) = 0. If I) holds, because x is
an eventually positive decreasing function, there exists a positive constant h
such that

F (t) > h for all large t. (11)

If II) holds, in virtue of (H3), (11) holds too. Hence, taking into account
(10), we obtain

lim
t→∞

In(t, T ; ai, ai−1, . . . , a1, p, an−1, . . . , ai+1) < ∞, (12)

which contradicts (7).
Claim (c). Let u be a strongly monotone solution u of (NA) satisfying

limt→∞ |u[i](t)| = ∞ for i = 0, 1, . . . , n − 1. Consider the function G given by

G(t) =
f(u(t))

u(t)
.

In virtue of (H4), there exists a positive constant H such that

G(t) < H for all large t.

Consider, for t sufficiently large, the linearized equation equation

(

1

a1(t)

(

· · ·

(

1

an−1(t)
w′

)′

· · ·

)′
)′

+ (−1)np(t)G(t)w(t) = 0. (LA
G)

Using an argument similar to this given in claim (a), we get the assertion.
Claim (d). Suppose there exists an eventually positive strongly monotone

solution u of (NA) such that for some k ∈ {0, 1, . . . , n− 1} limt→∞ |u[k](t)| <

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 4, p. 8



∞ and consider the linearized equation (LA
G). By Proposition 1 there exists

i ∈ {0, 1, . . . , n − 1} such that

lim
t→∞

In(t, T ; ai, ai−1, . . . , a1, Gp, an−1, . . . , ai+1) < ∞. (13)

In virtue of (H2), there exists a positive constant M such that

G(t) > M for all large t.

Hence from (13) we obtain (12), which contradicts (7).

From now we will suppose that the disconjugate operator Ln is in the
canonical form, i.e. (C) holds. Then the set N of all nonoscillatory solutions
of (N) can be divided into the following classes (see, e.g., [8, Lemma 1]):

N = N1 ∪N3 ∪ · · · ∪ Nn−1 for n even, p(t) > 0,

N = N0 ∪N2 ∪ · · · ∪ Nn−1 for n odd, p(t) > 0,

N = N0 ∪N2 ∪ · · · ∪ Nn for n even, p(t) < 0,

N = N1 ∪N3 ∪ · · · ∪ Nn for n odd, p(t) < 0,

(14)

where x ∈ Nl if and only if for all large t

x(t)x[i](t) > 0, 0 ≤ i ≤ l,

(−1)i+lx(t)x[i](t) > 0, l ≤ i ≤ n − 1.

We recall that solutions in class N0 are Kneser solutions and solutions in
class Nn are strongly monotone solutions. The asymptotic properties of
these solutions are described in the following lemma, which proof is based
on a similar argument as in the proof of [19, 20]. For the completeness, we
present it with the proof.

Lemma 2. Assume (C) and let x be a nonoscillatory solution of (N).
(a) If x ∈ N0, then x[i](∞) = 0 for i = 1, 2, .., n − 1.
(b) If u ∈ Nn, then

∣

∣u[i](∞)
∣

∣ = ∞ for i = 0, 1, .., n − 2.

Proof. Claim (a). Without loss of generality, assume x eventually posi-
tive. Then there exists tx such that the functions (−1)ix[i], i = 0, 1, ..n − 1,
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are positive decreasing. Assume there exists k ∈ {1, 2, .., n − 1} such that
x[k](∞) 6= 0, i.e.

(−1)kx[k](∞) = ck > 0.

From x[k](t) = 1
ak(t)

(

x[k−1](t)
)′

we obtain (t ≥ tx)

x[k−1](t) − x[k−1](tx) =

∫ t

tx

ak(s)x
[k](s)ds.

Because (−1)kx[k] is positive decreasing, we obtain

(−1)kx[k−1](t) − (−1)kx[k−1](tx) =

∫ t

tx

ak(s)(−1)kx[k](s) ds > ck

∫ t

tx

ak(s) ds.

Taking into account (C), as t → ∞ we obtain (−1)k−1x[k−1](∞) < 0, that is
a contradiction.

Claim (b). Without loss of generality, assume u eventually positive. Then
there exists tx such that the functions u[`], ` = 0, 1, ..n − 1, are positive in-
creasing. From u[i+1](t) = 1

ai+1(t)

(

u[i](t)
)′

we obtain (t ≥ tx)

u[i](t) − u[i](tx) =

∫ t

tx

ai+1(s)u
[i+1](s)ds.

Because u[i+1], i = 0, 1, .., n − 2 are positive increasing, we obtain

u[i](t) − u[i](tx) > u[i+1](tx)

∫ t

tx

ai(s)ds, i = 0, 1, .., n − 2.

As t → ∞, we get the assertion.

If (C) holds, in view of Lemma 2, properties A and B can be formulated
by the following way:

Property A for (N)

n even, p > 0 : Property A ⇐⇒ N = ∅.

n odd, p > 0 : Property A ⇐⇒

{

N = N0,
x ∈ N0 =⇒ x(∞) = 0.
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Property B for (N)

n even, p < 0 : Property B ⇐⇒







N = N0 ∪ Nn,
x ∈ N0 =⇒ x(∞) = 0,

u ∈ Nn =⇒
∣

∣u[n−1](∞)
∣

∣ = ∞.

n odd, p < 0 : Property B ⇐⇒

{

N = Nn,
u ∈ Nn =⇒

∣

∣u[n−1](∞)
∣

∣ = ∞.

Remark 1. In the nonlinear case property A [B] does not ensure the ex-
istence of all type of solutions occuring in its definition, as Emden–Fowler
equation shows [13, Th.s. 16.15, 16.8, Cor. 16.1].

Concerning the existence of Kneser solutions in the nonlinear case, the
following holds:

Proposition 2. Assume n ≥ 3, (H1) and (−1)n−1p(t) ≥ 0 (i.e. (6) holds).
Then there exists a Kneser solution of (N).

Proof. It is shown in [1] (Corollary, p.332) that, if
∫ 1

0

du

f(u)
= ∞,

then there exists a solution of (N) such that x(t) > 0, (−1)ix[i](t) ≥ 0
for k = 1, . . . , n − 1, t ≥ 0. It remains to show that quasiderivatives of x
are eventually different from zero. Assume there exists an integer k and a
sequence {Tj}, Tj → ∞, such that x[k](Tj) = 0. Hence x[k+1] has infinitely
zeros approaching ∞. Repeating the same argument, we get that x[n] has
infinitely large zeros, which contradicts the positiveness of x.

When the disconjugate operator is in the canonical form, then the claim
(c) of Theorem 2 can be proved without assumptions involving the behavior of
the nonlinearity in a neighbourhood of zero and infinity. Indeed the following
holds:

Proposition 3. Assume (C) and (6). If

lim
t→∞

In(t, T ; p, an−1, . . . , a1) = ∞, (15)

then every Kneser solution x of (N) (if it exists) satisfies x[i](∞) = 0 for
i = 0, 1, . . . , n − 1.
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Proof. By Lemma 2 every Kneser solution x of (N) satisfies x[i](∞) = 0 for
i = 1, 2, ..., n − 1. Suppose that there exists an eventually positive Kneser
solution x of (N) such that

lim
t→∞

x(t) = c > 0. (16)

Again, using a linearization device, we get that w ≡ x is a solution of (LF )
with F (t) = f(x(t))/x(t). Taking into account (C) and Proposition 1, we
obtain

lim
t→∞

In(t, T ; Fp, an−1, . . . , a1) < ∞. (17)

Because x is an eventually positive decreasing solution, taking into account
(16), there exists a positive constant µ such that

F (t) > µ > 0 for all large t.

Hence, by (17), we obtain

µ lim
t→∞

In(t, T ; p, an−1, . . . , a1) ≤

≤ lim
t→∞

In(t, T ; Fp, an−1, . . . , a1) < ∞,

which is a contradiction.

By Theorem 2 and Proposition 3, we obtain also the following

Corollary 1. Assume (C), (H1) and (6). If there exists a Kneser solution

x1 of (N) such that limt→∞ x
[i]
1 (∞) = 0 for i = 0, 1, . . . , n − 1, then every

Kneser solution x of (N) satisfies x[i](∞) = 0 for i = 0, 1, . . . , n − 1.

Proof. By Theorem 2-(a), (7) holds. Particularly, (15) is verified and Propo-
sition 3 gives the assertion.

Now we give a comparison theorem, which generalizes of Theorem 4 in
[4], stated for n = 3. It compares property A/B between the linear equation

(

1

an−1(t)

(

· · ·

(

1

a1(t)
x(t)′

)′

· · ·

)′
)′

+ kp(t)x(t) = 0, k > 0 (Lk)

and nonlinear equations (N), (NA).
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Theorem 3. Assume (C) and (H2).
(a) Let n be even and p(t) > 0. If (Lk) has property A for every k > 0,

then (N) and (NA) have property A.
(b) Let n be odd and p(t) > 0. If (Lk) has property A for every k > 0,

then (N) has property A and (NA) has property B.
(c) Let n be even and p(t) < 0. If (Lk) has property B for every k > 0,

then (N) and (NA) have property B.
(d) Let n be odd and p(t) < 0. If (Lk) has property B for every k > 0,

then (N) has property B and (NA) has property A.

Proof. (a) If all the proper solutions of (N) are oscillatory, then (N) has
property A. Assume there exists a proper nonoscillatory solution x of (N),
and, without loss of generality, suppose there exists Tx ≥ 0 such that x(t) > 0,
for t ≥ Tx. In view of (14) we have

x ∈ N1 ∪ N3 ∪ · · · ∪ Nn−1, (18)

which implies that there exists a positive constant cx such that

x(t) ≥ cx > 0 for t ≥ Tx. (19)

Consider, for t ≥ Tx, the linearized equation (LF ): because the function
v = x is an its nonoscillatory solution, (LF ) does not have property A. In
view of (19), there exists k such that for t ≥ Tx

F (t) =
f(x(t))

x(t)
≥ k. (20)

Thus, by a classical comparison result (see, e.g. [8, Th.1]), (Lk) does not have
property A, which is a contradiction. Now we prove that (NA) has property
A. Assume that there exists a proper nonoscillatory solution x of (NA) and,
without loss of generality, suppose x eventually positive. Then (18) holds
and hence (19) and (20) hold, too. By the same argument as above, the
linearized equation

(

1

a1(t)

(

· · ·

(

1

an−1(t)
w′

)′

· · ·

)′
)′

+ (−1)np(t)F (t)w(t) = 0. (LA
F )

does not have property A because w ≡ x is an its nonoscillatory solution.
Then, by using again the quoted comparison result [8, Theorem 1], the linear
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equation

(

1

a1(t)

(

· · ·

(

1

an−1(t)
u′

)′

· · ·

)′
)′

+ (−1)nkp(t)u(t) = 0 (LA
k )

does not have property A, that contradicts Theorem 1-(a).
Claim (b). If all the proper solutions of (N) are oscillatory, then (N) has

property A. Assume that (N) has nonoscillatory solutions. Thus, in view of
(C), we have

N0 ∪ N2 · · · ∪ Nn−1 6= ∅.

Suppose that (N) does not have property A. Taking into account Lemma 2,
there exists a proper nonoscillatory solution x of (N), such that either

x ∈ N2 ∪ · · · ∪ Nn−1 (21)

or

x ∈ N0 and lim
t→∞

x(t) 6= 0. (22)

Without loss of generality, assume x eventually positive. Hence, in both
cases, there exists cx > 0 such that (19) holds. Consider, for t ≥ Tx, the
linearized equation (LF ): because v ≡ x is an its nonoscillatory solution and
either (21) or (22) holds, (LF ) does not have property A. In view of (19),
there exists k such that (20) holds for t ≥ Tx. Using the same argument as
in claim (a), we get a contradiction. Now we prove that (NA) has property
B. If all the proper solutions of (NA) are oscillatory, then (NA) has property
B. Assume that (NA) has nonoscillatory solutions, that is, in view of (C),

N1 ∪ N3 ∪ · · · ∪ Nn 6= ∅.

Suppose that (NA) does not have property B. Taking into account Lemma
2, there exists a proper nonoscillatory solution u of (NA) such that either

u ∈ N1 ∪N3 ∪ · · · ∪ Nn−2

or

u ∈ Nn, |u[n−1](∞)| < ∞.
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Consider, for t ≥ Tx, the linearized equation (LA
G): using the same lineariza-

tion method as above and taking into account Theorem 1, we obtain a con-
tradiction with the fact that (Lk) has property A for every k > 0.

Claims (c), (d). We proceed in a similar way as above. The details are
omitted.

Proposition 1, Theorem 2-(a) and Theorem 3 yield the following result:

Corollary 2. Assume (C) and (H2).
(a) Let n be odd and p(t) > 0. If every nonoscillatory solution of (Lk) is

Kneser for any k > 0 and

lim
t→∞

In(t, T ; p, an−1, . . . , a1) = ∞, (23)

then (L) and (N) have property A and (NA) has property B.
(b) Let n be even and p(t) < 0. Assume that every nonoscillatory solution

of (Lk) is either Kneser or strongly monotone for any k > 0. If (23) and

lim
t→∞

In(t, T ; p, a1, . . . , an−1) = ∞, (24)

hold, then (L), (N) and (NA) have property B.
(c) Let n be odd and p(t) < 0. If every nonoscillatory solution of (Lk)

is strongly monotone for any k > 0 and (23) holds, then (L) and (N) have
property B and (NA) has property A.

Proof. First let us remark that if (C) and (23) hold, then for any positive
constant k

lim
t→∞

In(t, T ; ai, . . . , a1, kp, an−1, . . . , ai+1) = ∞, i = 1, . . . , n − 1. (25)

Similarly, if (C) and (24) hold, then for any positive constant k

lim
t→∞

In(t, T ; ai, . . . , an−1, kp, a1, . . . , ai+1) = ∞, i = 1, . . . , n − 1. (26)

Claim (a). By Proposition 1, every Kneser solution y of (Lk) satisfies
y[i](∞) = 0, i = 0, 1, ..n − 1. Taking into account that every nonoscillatory
solution of (Lk) is Kneser, we get that (Lk) has property A for any k > 0.
Taking into account Theorem 3–(b), we obtain that (N) has property A and
(NA) has property B.
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Claim (b). By Proposition 1, the condition (25) implies that every Kneser
solution y of (Lk) satisfies y[i](∞) = 0, i = 0, 1, ..n− 1 and the condition (26)
implies that every strongly monotone solution z of (Lk) satisfies |z[i](∞)| =
∞, i = 0, 1, ..n − 1. Reasoning as above we obtain that (Lk) has property B
for any k > 0. Applying Theorem 3-(c), we get the assertion.

Claim (c). Reasoning as above and using Proposition 3, we obtain that
(LA

k ) has property A for any k > 0. Applying to (LA
k ) Theorem 3-(b), we get

the assertion.

Remark 3. When n is even and p(t) < 0 [n is odd and p(t) < 0], integral
conditions posed on ai and p and ensuring that for any k > 0 every nonoscil-
latory solution of (Lk) is strongly monotone [Kneser or strongly monotone]
are given in [16, Theorems 1, 2].

When n is odd and p(t) > 0, integral conditions posed on ai and p and
ensuring that for any k > 0 every nonoscillatory solution of (Lk) is Kneser
are given in [9, Theorem 2].
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