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Abstract

The topic of fractional calculus (integration and differentiation of fractional-order),
which concerns singular integral and integro-differential operators, is enjoying interest
among mathematicians, physicists and engineers (see [1]-[2] and [5]-[14] and the ref-
erences therein). In this work, we investigate initial value problem of fractional-order
differential equation with nonlocal condition. The stability (and some other properties
concerning the existence and uniqueness) of the solution will be proved.
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1 Introduction

Let Lila,b] denote the space of all Lebesgue integrable functions on the interval [a,b],
0 <a < b< oo, with the Li-norm ||z||z, = fol |z(t)| dt.

Definition 1.1 The fractional (arbitrary) order integral of the function f € Lq[a,b] of
order 3 € R" is defined by (see [11] - [1}])

ot — 5P
I f(t) = / g ) ds

where T'(.) is the gamma function.

Definition 1.2 The (Caputo) fractional-order derivative D of order o« € (0,1] of the
function g(t) is defined as (see [12] - [14])

Dg g(t) = I, ~ © 9, t € [ab].

Now the following theorem (some properties of the fractional-order integration and the
fractional-order differentiation) can be easily proved.
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Theorem 1.1 Let 8, v € Rt and a € (0,1]. Then we have:
(i) I? : Ly — Ly, and if f(t) € Ly, then I) IP f(t) = IJTF f(1).
(ii) ﬁll_r)r; I8 f(t) = I f(t), n = 1, 2, 3, ... uniformly.
If f(t) is absolutely continuous on [a,b], then
(i) m D £(t) = D f(2)
(iv) If f(t) = k #0, k is a constant, then DS k = 0.
In ([3]) the nonlocal initial value problem for first-order differential inclusions:

2'(t) € F(t,xz(t)), t € (0,1],

(0) + Ypty ag x(tk) = wo,

was studied, where F' : J x ® — 2% is a set-valued map, J = [0,1], zg € R is given,
O<ti<to<---<tm<l,and ar #0 forall k=1,2,---,m.

Our objective in this paper is to investigate, by using the Banach contraction fixed point
theorem, the existence of a unique solution of the following fractional-order differential
equation:

D% x(t) = c(t) f(z(t)) + b(t), (1)
with the nonlocal condition:
) + 3 o) = w0, @)
k=1

where xg e Rand 0 <ty <ty < -+ <ty <1,and ap # 0 for all k=1,2,---,m. Then we
will prove that this solution is uniformly stable.
2 Existence of solution

Here the space C]0,1] denotes the space of all continuous functions on the interval [0, 1]
with the supremum norm |[|y|| = sup,¢jo 1) [y(t)|-

To facilitate our discussion, let us first state the following assumptions:

| 9f
W [5z/<k
(ii) ¢(t) is a function which is absolutely continuous,

(iii) b(t) is a function which is absolutely continuous.
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Definition 2.1 By a solution of the initial value Problem (1) - (2)
z € C[0,1] with % ¢ L,[0,1].

we mean a function

Theorem 2.1 If the above assumptions (i) - (iii) are satisfied such that

I'l+ )

1+ Z ap # 0 and A < ,
=1 kel

m m
where A = 1 + |a Z lag|  and a = (1 + Z
k=1 k=1
then the initial value Problem (1) - (2) has a unique solution.

Proof: For simplicity let c(t)f(z(t)) + b(t) = g(t, z(¢)).

-1
2

If x(t) satisfies (1) - (2), then by using the definitions and properties of the fractional-order
integration and fractional-order differentiation equation (1) can be written as

Ity = gltalt).
Operating by I“ on both sides of the last equation, we obtain
z(t) — x(0) = I% g(t,z(2)),

by substituting for the value of z(0) from (2), we get

m

() = w0 — S ap alte) + I g(t,x(t)).
k=1

If we put t = ¢; in (3), we obtain

m

z(ty) = xo — Z ap (ty) + 1% g(t, x(t))]e=t,, -

k=1
Then subtract (3) from (4) to get

w(te) = 2(t) — I% g(t,2(t) + 1% g(t, 2(t))|i=t, -

Substitute from (5) in (3), we get
o(t) = o + I°g(t,2(t))

m

— > (x(t) = I gt x(t)) + 1% g(t,2(t))li=r, )

k=1
= =z + 1% g(t, z(t))

- i ar x(t) + i ag I g(t,z(t)) — zm: ag
k=1 k=1

= k=1

(1 + i ak> xz(t) = my — i ag I¢ g(t,z(t))|t=r, + (1 +
k=1

a(t) = a (960 - i ar, I g(t, (1)) |i=t, ) + 1% g(t, (1) (6)
k=1
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Now define the operator T': C' — C' by

E e =9 .
Ta(t) = <900— I A R GCLLCIELC) ds)+1 {els) () +b(3)}

Let x, y € C, then

Ta(t) - Ty(t) =

Tx(t) — Ty(t)]

IN

IN

IN

<

<

kA||c]
I'(1+a)

but since K =

(7)

m tr _ Sa—l
—a > [ ) et ds
k=1

a)

)04—1

o 1 ) )
k=1

/t (G c(s) {f(z(s)) — f(y(s))} ds
0 I'(a)

m tr — 5 a—1
“oXa [T ) (et - S} ds
k=1

[ o) Gt — ) ds
o I(a) ’
a - a tkw CclS Trs) — S S
lal 3o lael [T ol lels) — (o)l d
t _ Safl
b e la(e) — wl)] s

175 (tk _ S)a—l

klal 3 lacl suple()] suple(o) — () | s

1

k sup |c(t)| supl|z(t) — y(t)] /tw ds
" ’ o T(a)
m to
k lal ;\ak\ lell e = ol 7t
Elel e = ol s
ﬁ (1 + af é\aﬂ) llell llz = yll
tiaakle = ol = Klle =

< 1, then we get

Tz — Tyl < K [lz — yl],

which proves that the map T : C' — C' is contraction. Applying the Banach contraction
fixed point theorem we deduce that (7) has a unique fixed point z € C[0, 1].
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Now, differentiate (6) to obtain

d

) = T (elt) f) + b))
a—1
= () falt) + WDleoo fro + 1° T elt) Fa(0) + b(0)
a—1
= Ki g +1° C0 S) + 50 o) + V),
L / K, e
| o < —H a

+//

= 1+a +/ —i—?w()c(s)—i—b'(s)/:%dtds
R / (e sy + Z ) ets) + v as,
Il < i + w10 I+ bl el + 1¥1).
(- s ) ol < mar * may (€l 171+ 1911,
ol < (1 Y (s + ey (0 11+ W)

Therefore we obtain that ' € L1[0,1].
To complete the equivalence of equation (6) with the initial value problem (1) - (2), let x(t)
be a solution of (6), differentiate both sides, and get

) = I glt,a()
a—1

= glta®)lo gy + I 5 otalt):

Then operate by I'=® on both sides to obtain
D x(t) = g(t,x(t)).

And if ¢ = 0 we find that the nonlocal condition (2) is satisfied. Which proves the equiva-
lence. m
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3 Stability

In this section we study the uniform stability (see [1], [4] and [6]) of the solution of the

initial-value problem (1) - (2).

Theorem 3.1 The solution of the initial-value problem (1) - (2) is uniformly stable

Proof: Let x(t) be a solution of

_ S e (ty —s)* a
x(t) = a (fﬂo - k;ak/o ICFT {c(s)f(2(s)) + b(s)} dS) +1%{c(s) f(2(s)) + b(s)}

(8)

and let Z(t) be a solution of equation (8) such that z(0) = Zo — Y72, agx Z(tx). Then

o(t) —3(t) =

tk — 35)@ 1
o (w0 — Fo)— a zak [ o) st

0

tk _ S oz 1
a Zak / tk c(s) f(z(s)) ds

— 5)@ 1
v [ L= 9 o s i
0

INE)
lal |zo — ol

a ma tkwcs x(s)) — f(z(s S
ol 3l [ S prg— o)l 1 Gals) — SEDI d

t(t — s) ! ~
4 /0 T O — fE)] ds

e — 2| <

IN

la| |z0 — o

ama sup |c tkwxs—%s s
klal D loxl supleto)l [ i lats) = 3G d

t — s a—1
b suple(o)] | % l2(s) — F(s)] ds
la| |zo — Zo

a—1

acma sup |z -z tki(tk_s) S
lal el 3 fox] suple(t) <t>|/0 o

t — 3 a—1
b lell swple(t) — a0 [ g s

m ta
~ ~ k
ol fao = Fol + klal el Slanl e = 3 s
ta’
k S ———
lell e~ 2 Frp

Rl .
al lto — Fol + Frrgay (1 1o Z\ak\ e — 7
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1

~ kE A |

= la| |zo — To| + T+ o) lz — z|,
kA
- E A o~ d1 < ol oo - 70l
I'l+ )
_ kA e\ ? _
le — @l < (1—m) af |20 — Tol.

Therefore, if | z9 — Zo | < d(¢), then || x — T || < €, which complete the proof of the
theorem. m
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