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Abstract

In this paper, we present an impulsive version of Filippov’s Theorem for the
first-order nonresonance impulsive differential inclusion

y′(t) − λy(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,

y(0) = y(b),

where J = [0, b] and F : J × R
n → P(Rn) is a set-valued map. The functions Ik

characterize the jump of the solutions at impulse points tk (k = 1, . . . ,m.). Then
the relaxed problem is considered and a Filippov-Wasewski result is obtained. We
also consider periodic solutions of the first order impulsive differential inclusion

y′(t) ∈ ϕ(t, y(t)), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,

y(0) = y(b),

where ϕ : J ×R
n → P(Rn) is a multi-valued map. The study of the above prob-

lems use an approach based on the topological degree combined with a Poincaré
operator.

Key words and phrases: Impulsive differential inclusions, Filippov’s theorem, re-
laxation theorem, boundary value problem, compact sets, Poincaré operator, degree
theory, contractible, Rδ–set, acyclic.
AMS (MOS) Subject Classifications: 34A60, 34K45, 34B37.

1 Introduction

The dynamics of many processes in physics, population dynamics, biology, medicine,

and other areas may be subject to abrupt changes such as shocks or perturbations (see
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for instance [1, 30] and the references therein). These perturbations may be viewed as

impulses. For instance, in the periodic treatment of some diseases, impulses correspond

to the administration of a drug treatment or a missing product. In environmental sci-

ences, impulses correspond to seasonal changes of the water level of artificial reservoirs.

Their models are described by impulsive differential equations. Important contribu-

tions to the study of the mathematical aspects of such equations can be found in

the works by Bainov and Simeonov [7], Lakshmikantham, Bainov, and Simeonov [31],

Pandit and Deo [36], and Samoilenko and Perestyuk [37] among others.

During the last couple of years, impulsive ordinary differential inclusions and func-

tional differential inclusions with different conditions have been intensely studied; see,

for example, the monographs by Aubin [4] and Benchohra et al. [10], as well as the

thesis of Ouahab [35], and the references therein.

In this paper, we will consider the problem

y′(t) − λy(t) ∈ F (t, y(t)), a.e. t ∈ J := [0, b], (1)

y(t+k ) − y(tk) = Ik(y(tk)), k = 1, . . . , m, (2)

y(0) = y(b), (3)

where λ 6= 0 is a parameter, F : J × R
n → P(Rn) is a multi-valued map, Ik ∈

C(Rn,Rn), k = 1, . . . , m, t0 = 0 < t1 < . . . < tm < tm+1 = b, ∆y|t=tk = y(t+k ) − y(t−k ),

y(t+k ) = lim
h→0+

y(tk + h), and y(t−k ) = lim
h→0+

y(tk − h).

First, we shall be concerned with Filippov’s theorem for first order nonresonance

impulsive differential inclusions. This is the aim of Section 3. Section 4 is devoted to

the relaxed problem associated with problem (1)–(3), that is, the problem where we

consider the convex hull of the right-hand side. The compactness of the solution sets

is examined in Section 5. In Section 6, we study the existence of solutions of first order

impulsive differential inclusions with periodic conditions.
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2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-

valued analysis that are used throughout this paper. Here, C(J,R) will denote the

Banach space of all continuous functions from J into R with the Tchebyshev norm

‖x‖∞ = sup{|x(t)| : t ∈ J}.

In addition, we let L1(J,R) be the Banach space of measurable functions x : J −→ R

which are Lebesgue integrable with the norm

|x|1 =

∫ b

0

|x(s)|ds.

If (X, d) is a metric space, the following notations will be used throughout this paper:

• P(X) = {Y ⊂ X : Y 6= ∅}.

• Pp(X) = {Y ∈ P(X) : Y has the property “p”} where p could be: cl=closed,

b=bounded, cp=compact, cv=convex, etc. Thus,

• Pcl(X) = {Y ∈ P(X) : Y closed}.

• Pb(X) = {Y ∈ P(X) : Y bounded}.

• Pcv(X) = {Y ∈ P(X) : Y convex}.

• Pcp(X) = {Y ∈ P(X) : Y compact}.

• Pcv,cp(X) = Pcv(X) ∩ Pcp(X).

Let (X, ‖.‖) be a Banach space and F : J → Pcl(X) be a multi-valued map. We

say that F is measurable provided for every open U ⊂ X, the set F+1(U) = {t ∈ J :

F (t) ⊂ U} is Lebesgue measurable in J . We will need the following lemma.
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Lemma 2.1 ([13, 17]) The mapping F is measurable if and only if for each x ∈ X,

the function ζ : J → [0,+∞) defined by

ζ(t) = dist(x, F (t)) = inf{‖x− y‖ : y ∈ F (t)}, t ∈ J,

is Lebesgue measurable.

Let (X, ‖·‖) be a Banach space and F : X → P(X) be a multi-valued map. We say

that F has a fixed point if there exists x ∈ X such that x ∈ F (x). The set of fixed points

of F will be denoted by FixF . We will say that F has convex (closed) values if F (x)

is convex (closed) for all x ∈ X, and that F is totally bounded if F (A) =
⋃

x∈A{F (x)}

is bounded in X for each bounded set A of X, i.e.,

sup
x∈A

{sup{‖y‖ : y ∈ F (x)}} <∞.

Let (X, d) and (Y, ρ) be two metric spaces and F : X → Pcl(Y ) be a multi-valued

mapping. Then F is said to be lower semi-continuous (l.s.c.) if the inverse image of

V by F

F−1(V ) = {x ∈ X : F (x) ∩ V 6= ∅}

is open for any open set V in Y . Equivalently, F is l.s.c. if the core of V by F

F+1(V ) = {x ∈ X : F (x) ⊂ V }

is closed for any closed set V in Y .

Likewise, the map F is called upper semi-continuous (u.s.c.) on X if for each

x0 ∈ X the set F (x0) is a nonempty, closed subset of X, and if for each open set N of

Y containing F (x0), there exists an open neighborhood M of x0 such that F (M) ⊆ Y.

That is, if the set F−1(V ) is closed for any closed set V in Y . Equivalently, F is u.s.c.

if the set F+1(V ) is open for any open set V in Y .

EJQTDE, 2008 No. 31, p. 4



The mapping F is said to be completely continuous if it is u.s.c. and, for every

bounded subset A ⊆ X, F (A) is relatively compact, i.e., there exists a relatively

compact set K = K(A) ⊂ X such that

F (A) =
⋃

{F (x) : x ∈ A} ⊂ K.

Also, F is compact if F (X) is relatively compact, and it is called locally compact if

for each x ∈ X, there exists an open set U containing x such that F (U) is relatively

compact.

We denote the graph of F to be the set Gr(F ) = {(x, y) ∈ X × Y, y ∈ F (x)} and

recall the following facts.

Lemma 2.2 ([12], [15, Proposition 1.2]) If F : X → Pcl(Y ) is u.s.c., then Gr(F ) is

a closed subset of X × Y, i.e., for any sequences (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y , if

xn → x∗ and yn → y∗ as n → ∞, and yn ∈ F (xn), then y∗ ∈ F (x∗). Conversely, if

F has nonempty compact values, is locally compact, and has a closed graph, then it is

u.s.c.

The following two lemmas are concerned with the measurability of multi-functions;

they will be needed in this paper. The first one is the well known Kuratowski-Ryll-

Nardzewski selection theorem.

Lemma 2.3 ([17, Theorem 19.7]) Let E be a separable metric space and G a multi-

valued map with nonempty closed values. Then G has a measurable selection.

Lemma 2.4 ([40]) Let G : J → P(E) be a measurable multifunction and let g : J →

E be a measurable function. Then for any measurable v : J → R+ there exists a

measurable selection u of G such that

|u(t) − g(t)| ≤ d(g(t), G(t)) + v(t).
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For any multi-valued function G : J × R
n → P(E), we define

‖G(t, z)‖P := sup{|v| : v ∈ G(t, z)}.

Definition 2.5 The mapping G is called a multi-valued Carathéodory function if:

(a) The function t 7→ G(t, z) is measurable for each z ∈ D;

(b) For a.e. t ∈ J, the map z 7→ G(t, z) is upper semi-continuous.

Furthermore, it is an L1−Carathéodory if it is locally integrably bounded, i.e., for each

positive r, there exists some hr ∈ L1(J,R+) such that

‖G(t, z)‖P ≤ hr(t) for a.e. t ∈ J and all ‖z‖ ≤ r.

Consider the Hausdorf pseudo-metric Hd : P(E)×P(E) −→ R
+ ∪{∞} defined by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b) and d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(E), Hd) is a metric

space and (Pcl(X), Hd) is a generalized metric space (see [28]). In particular, Hd

satisfies the triangle inequality. Also, notice that if x0 ∈ E, then

d(x0, A) = inf
x∈A

d(x0, x) whereas Hd({x0}, A) = sup
x∈A

d(x0, x).

Definition 2.6 A multi-valued operator N : E → Pcl(E) is called:

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ E;

(b) a contraction if it is γ-Lipschitz with γ < 1.
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Notice that if N is γ−Lipschitz, then

Hd(F (x), F (y)) ≤ kd(x, y) for all x, y ∈ E.

For more details on multi-valued maps, we refer the reader to the works of Aubin

and Cellina [5], Aubin and Frankowska [6], Deimling [15], Gorniewicz [17], Hu and

Papageorgiou [25], Kamenskii [27], Kisielewicz [28], and Tolstonogov [38].

3 Filippov’s Theorem

Let Jk = (tk, tk+1], k = 0, . . . , m, and let yk be the restriction of a function y to Jk. In

order to define mild solutions for problem (1)–(3), consider the space

PC = {y : J → R
n | yk ∈ C(Jk,R

n), k = 0, . . . , m, and

y(t−k ) and y(t+k ) exist and satisfy y(t−k ) = y(tk) for k = 1, . . . , m}.

Endowed with the norm

‖y‖PC = max{‖yk‖∞ : k = 0, . . . , m},

this is a Banach space.

Definition 3.1 A function y ∈ PC ∩∪m
k=0AC(Jk,R

n) is said to be a solution of prob-

lem (1)–(3) if there exists v ∈ L1(J,Rn) such that v(t) ∈ F (t, y(t)) a.e. t ∈ J ,

y′(t) − λy(t) = v(t) for t ∈ J\{t1, . . . , tm}, y(t
+
k ) − y(tk) = Ik(y(tk)), k = 1, . . . , m,

and y(0) = y(b).

We will need the following auxiliary result in order to prove our main existence

theorems.

EJQTDE, 2008 No. 31, p. 7



Lemma 3.2 ([21]) Let f : R
n → R

n be a continuous function. Then y is the unique

solution of the problem

y′(t) − λy(t) = f(y(t)), t ∈ J, t 6= tk, k = 1, . . . , m, (4)

y(t+k ) − y(tk) = Ik(y(tk)), k = 1, . . . , m, (5)

y(0) = y(b), (6)

if and only if

y(t) =

∫ b

0

H(t, s)f(y(s))ds+
m∑

k=1

H(t, tk)Ik(y(tk)), (7)

where

H(t, s) = (e−λb − 1)−1





e−λ(b+s−t), if 0 ≤ s ≤ t ≤ b,

e−λ(s−t), if 0 ≤ t < s ≤ b.

In the case of both differential equations and inclusions, existence results for prob-

lem (1)–(3) can be found in [20, 21, 35]. The main result of this section is a Filippov

type result for problem (1)–(3).

Let g ∈ L1(J,Rn) and let x ∈ PC be a solution to the linear impulsive problem





x′(t) − λx(t) = g(t), a.e. t ∈ J\{t1, . . . , tm},
x(t+k ) − x(tk) = Ik(x(t

−
k )), k = 1, . . . , m,

x(0) = x(b).
(8)

Our main result in this section is contained in the following theorem.

Theorem 3.3 Assume the following assumptions hold.

(H1) The function F : J × R
n → Pcl(R

n) satisfies

(a) for all y ∈ R
n, the map t 7→ F (t, y) is measurable, and

(b) the map t 7→ γ(t) = d(g(t), F (t, x(t)) is integrable.

(H2) There exist constants ck ≥ 0 such that

|Ik(u) − Ik(z)| ≤ ck|u− z| for each u, z ∈ R
n.
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(H3) There exist a function p ∈ L1(J,R+) such that

Hd(F (t, z1), F (t, z2)) ≤ p(t)|z1 − z2| for all z1, z2 ∈ R
n.

If

H∗‖p‖L1

1 −H∗

m∑

k=1

ck

< 1,

then the problem (1)–(3) has at least one solution y satisfying the estimates

‖y − x‖PC ≤
‖γ‖L1(

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

) .

and

|y′(t) − λy(t) − g(t)| ≤ H̃p(t) + |γ(t)|,

where

H̃ =
H∗‖γ‖L1(

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

)

and

H∗ = sup{H(t, s) | (t, s) ∈ J × J}.

Proof Let f0 = g and

y0(t) =

∫ b

0

H(t, s)f0(s)ds+
m∑

k=0

H(t, tk)Ik(x(tk)), y0(tk) = x(tk).

Let U1 : J → P(Rn) be given by U1(t) = F (t, y0(t)) ∩ B(g(t), γ(t)). Since g and γ are

measurable, Theorem III.4.1 in [13] implies that the ball B(g(t), γ(t)) is measurable.

Moreover, F (t, y0) is measurable and U1 is nonempty. Indeed, since v = 0 is a mea-

surable function, from Lemma 2.4, there exists a function u which is a measurable

selection of F (t, y0) and such that

|u(t) − g(t)| ≤ d(g(t), F (t, y0)) = γ(t).
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Then u ∈ U1(t), proving our claim. We conclude that the intersection multi-valued

operator U1(t) is measurable (see [6, 13, 17]). By the Kuratowski-Ryll-Nardzewski

selection theorem (Lemma 2.3), there exists a function t→ f1(t) which is a measurable

selection for U1. Hence, U1(t) = F (t, y0(t)) ∩ B(g(t), γ(t)) 6= ∅. Consider

y1(t) =

∫ b

0

H(t, s)f1(s)ds+

m∑

k=0

H(t, tk)Ik(y1(tk)), t ∈ J,

where y1 is a solution of the problem





y′(t) − λy(t) = f1(t), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(tk) = Ik(y(t

−
k )), k = 1, . . . , m,

y(0) = y(b).
(9)

For every t ∈ J, we have

|y1(t) − y0(t)| ≤

∫ b

0

|H(t, s)||f1(s) − f0(s)| ds

+
m∑

k=1

|Ik(y0(tk)) − Ik(y1(tk))|

≤ H∗‖γ‖L1 +H∗

m∑

k=1

ck|y1(tk) − y0(tk)|.

Then,

‖y1 − y0‖PC ≤
H∗

1 −H∗

m∑

k=1

ck

‖γ‖L1.

Define the set-valued map U2(t) = F (t, y1(t))∩B(f1(t), p(t)|y1(t)−y0(t)|). The mul-

tifunction t→ F (t, y1) is measurable and the ball B(f1(t), p(t)‖y1−y0‖D) is measurable

by Theorem III.4.1 in [13]. To see that the set U2(t) = F (t, y1)∩B(f1(t), p(t)‖y1−y0‖D)

is nonempty, observe that since f1 is a measurable function, Lemma 2.4 yields a mea-

surable selection u of F (t, y1) such that

|u(t) − f1(t)| ≤ d(f1(t), F (t, y1))
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Moreover, ‖y1 − y0‖D ≤ η0(t1) ≤ β. Then, using (H2), we have

|u(t) − f1(t)| ≤ d(f1(t), F (t, y1))

≤ Hd(F (t, y0), F (t, y1))

≤ p(t)‖y0 − y1‖D,

i.e., u ∈ U2(t) 6= ∅. Since the multi-valued operator U2 is measurable (see [6, 13, 17]),

there exists a measurable function f2(t) ∈ U2(t). Then define

y2(t) =

∫ b

0

H(t, s)f2(s)ds+

m∑

k=1

H(t, tk)Ik(y2(tk)), t ∈ J,

where y2 is a solution of the problem




y′(t) − λy(t) = f2(t), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(tk) = Ik(y(t

−
k )), k = 1, . . . , m,

y(0) = y(b).
(10)

We then have

|y2(t) − y1(t)| ≤ H∗

∫ b

0

|f2(s) − f1(s)| ds+H∗

m∑

k=1

ck|y2(tk) − y1(tk)|

≤ H∗

∫ b

0

p(s)|y1(s) − y0(s)| ds+H∗

m∑

k=1

ck|y2(tk) − y1(tk)|

≤
H2

∗

1 −H∗

m∑

k=1

ck

‖γ‖L1‖p‖L1 +H∗

m∑

k=1

ck|y2(tk) − y1(tk)|.

Thus,

‖y2 − y1‖PC ≤
H2

∗(
1 −H∗

m∑

k=1

ck

)2‖p‖L1‖γ‖L1.

Let U3(t) = F (t, y2(t))∩B(f2(t), p(t)|y2(t)−y1(t)|). Arguing as we did for U2 shows

that U3 is a measurable multi-valued map with nonempty values, so there exists a

measurable selection f3(t) ∈ U3(t). Consider

y3(t) =

∫ b

0

H(t, s)f3(s)ds+
m∑

k=1

Ik(y3(tk)), t ∈ J,
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where y3 is a solution of the problem





y′(t) − λy(t) = f3(t), a.e. t ∈ J\{t1, . . . , tm},
y(t+k ) − y(tk) = Ik(y(t

−
k )), k = 1, . . . , m,

y(0) = y(b).
(11)

We have

|y3(t) − y2(t)| ≤ H∗

∫ t

0

|f3(s) − f2(s)| ds+H∗

m∑

k=1

ck|y3(tk) − y2(tk)|.

Hence, from the estimates above, we have

‖y3 − y2‖PC ≤
H3

∗(
1 −H∗

m∑

k=1

ck

)3‖p‖
2
L1‖γ‖L1.

Repeating the process for n = 1, 2, . . . , we arrive at the bound

‖yn − yn−1‖PC ≤
Hn

∗(
1 −H∗

m∑

k=1

ck

)n‖p‖
n−1
L1 ‖γ‖L1 . (12)

By induction, suppose that (12) holds for some n. Let

Un+1(t) = F (t, yn(t)) ∩ B(fn(t), p(t)|yn(t) − yn−1(t)|).

Since again Un+1 is measurable (see [6, 13, 17]), there exists a measurable function

fn+1(t) ∈ Un+1(t) which allows us to define

yn+1(t) =

∫ b

0

H(t, s)fn+1(s)ds+

m∑

k=1

H(t, tk)Ik(yn+1(tk)), t ∈ J. (13)

Therefore,

|yn+1(t) − yn(t)| ≤ H∗

∫ b

0

|fn+1(s) − fn(s)| ds+H∗

m∑

k=1

ck|yn(tk) − yn−1(tk)|.

Thus, we arrive at

‖yn+1 − yn‖PC ≤
Hn+1

∗(
1 −H∗

m∑

k=1

ck

)n+1‖p‖
n
L1‖γ‖L1 . (14)
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Hence, (12) holds for all n ∈ N, and so {yn} is a Cauchy sequence in PC, converging

uniformly to a function y ∈ PC. Moreover, from the definition of Un, n ∈ N,

|fn+1(t) − fn(t)| ≤ p(t)|yn(t) − yn−1(t)| for a.e. t ∈ J.

Therefore, for almost every t ∈ J , {fn(t) : n ∈ N} is also a Cauchy sequence in R
n

and so converges almost everywhere to some measurable function f(·) in R
n. Moreover,

since f0 = g, we have

|fn(t)| ≤ |fn(t) − fn−1(t)| + |fn−1(t) − fn−2(t)| + . . .+ |f2(t) − f1(t)|

+ |f1(t) − f0(t)| + |f0(t)|

≤
n∑

k=2

p(t)|yk−1(t) − yk−2(t)| + γ(t) + |f0(t)|

≤ p(t)
∞∑

k=2

|yk−1(t) − yk−2(t)| + γ(t) + |g(t)|

≤ H̃p(t) + γ(t) + |g(t)|.

Then, for all n ∈ N,

|fn(t)| ≤ H̃p(t) + γ(t) + g(t) a.e. t ∈ J. (15)

From (15) and the Lebesgue Dominated Convergence Theorem, we conclude that fn

converges to f in L1(J,Rn). Passing to the limit in (13), the function

y(t) =

∫ b

0

H(t, s)f(s)ds+

m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J,

is a solution to the problem (1)–(3).

Next, we give estimates for |y′(t) − λy(t) − g(t)| and |x(t) − y(t)|. We have

|y′(t) − λy(t) − g(t)| = |f(t) − f0(t)|

≤ |f(t) − fn(t)| + |fn(t) − f0(t)|
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≤ |f(t) − fn(t)| +
n∑

k=2

|fk(t) − fk−1(t)| + γ(t)

≤ |f(t) − fn(t)| +
n∑

k=2

p(t)|yk−1(t) − yk−2(t)| + γ(t).

Using (14) and passing to the limit as n→ +∞, we obtain

|y′(t) − λy(t) − g(t)| ≤ p(t)
∞∑

k=2

|yk−1(t) − yk−2(t)| + γ(t) + |f(t) − fn(t)|

≤ p(t)
∞∑

k=2

Hk−1
∗ ‖p‖k−2

L1 ‖γ‖L1

(
1 −H∗

m∑

i=1

ci

)k−1
+ |γ|,

so

|y′ − λy − g| ≤ H̃p(t) + γ(t), t ∈ J.

Similarly,

|x(t) − y(t)| =
∣∣∣
∫ b

0

H(t, s)g(s)ds+

m∑

k=1

H(t, tk)Ik(x(tk))

−

∫ b

0

H(t, s)f(s)ds−
m∑

k=1

H(t, tk)Ik(y(tk))
∣∣∣

≤ H∗

∫ b

0

|f(s) − f0(s)|ds+H∗

m∑

k=1

ck|x(tk) − y(tk)|

≤ H∗

∫ b

0

|f(s) − fn(s)|ds+H∗

∫ b

0

|fn(s) − f0(s)|ds

+H∗

m∑

k=1

ck|x(tk) − y(tk)|.

As n→ ∞, we arrive at

‖x− y‖PC ≤
H∗‖p‖L1‖γ‖L1

(1 −H∗

m∑

k=1

ck)(1 −H∗

m∑

k=1

ck −H∗‖p‖L1)

+
‖γ‖L1

1 −H∗

m∑

k=1

ck
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=
‖γ‖L1

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

,

completing the proof of the theorem.

4 Relaxation Theorem

In this section, we examine to what extent the convexification of the right-hand side

of the inclusion introduces new solutions. More precisely, we want to find out if the

solutions of the nonconvex problem are dense in those of the convex one. Such a result

is known in the literature as a Relaxation theorem and has important implications in

optimal control theory. It is well-known that in order to have optimal state-control

pairs, the system has to satisfy certain convexity requirements. If these conditions are

not present, then in order to guarantee existence of optimal solutions we need to pass

to an augmented system with convex structure by introducing the so-called relaxed

(generalized, chattering) controls. The resulting relaxed problem has a solution. The

Relaxation theorems tell us that the relaxed optimal state can be approximated by

original states, which are generated by a more economical set of controls that are much

simpler to build. In particular, “strong relaxation” theorems imply that this approxi-

mation can be achieved using states generated by bang-bang controls. More precisely,

we compare trajectories of (1)–(3) to those of the relaxation impulsive differential in-

clusion

x′(t) − λx(t) ∈ coF (t, x(t)), a.e. t ∈ J\{t1, . . . , tm}, (16)

x(t+k ) − x(tk) = Ik(x(t
−
k )), k = 1, . . . , m, (17)

x(0) = x(b). (18)

Theorem 4.1 ([24]) Let U : J → Pcl(E) be a measurable, integrably bounded set-

valued map and t → d(0, U(t)) be an integrable map. Then, the integral
∫ b

0
U(t)dt is
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convex and t→ coU(t) is measurable. Moreover, for every ε > 0 and every measurable

selection of u of coU(t), there exists a measurable selection u of U such that

sup
t∈J

∣∣∣
∫ t

0

u(s)ds−

∫ t

0

u(s)ds
∣∣∣ ≤ ε

and ∫ b

0

coU(t)dt =

∫ b

0

U(t)dt =

∫ b

0

coU(t)dt.

We will need the following lemma to prove our main result in this section.

Lemma 4.2 (Covitz and Nadler [14]) Let (X, d) be a complete metric space. If G :

X → Pcl(X) is a contraction, then FixG 6= ∅.

We now present a relaxation theorem for the problem (1)–(3).

Theorem 4.3 Assume that (H2) and (H3) hold and

(H1) The function F : J × R
n → Pcl(R

n) satisfies that for all y ∈ R
n the map t 7→

F (t, y) is measurable, and the map t 7→ γ(t) = d(g(t), F (t, 0)) is integrable.

Assume that

H∗‖p‖L1

1 −H∗

m∑

k=1

ck

< 1,

and let x be a solution of (16)–(18). Then, for every ε > 0 there exists a solution y to

(1)–(3) on J satisfying

‖x− y‖∞ ≤ ε.

This implies that Sco = SF , where

Sco = {x | x is a solution to (16)–(18)}

and

SF = {y | y is a solution to (1)–(3)}.
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Proof. First, we prove that Sco 6= ∅. We transform the problem (16)–(18) into a

fixed point problem. Consider the operator N : PC(J,Rn) → P(PC(J,Rn)) defined

by

N(y) = {h ∈ PC : h(t) =

∫ b

0

H(t, s)g(s)ds+
m∑

k=1

H(t, tk)Ik(y(tk)), g ∈ ScoF,y}.

We shall show that N satisfies the assumptions of Lemma 4.2. The proof will be given

in two steps.

Step 1: N(y) ∈ Pcl(PC) for each y ∈ PC.

Let (yn)n≥0 ∈ N(y) be such that yn −→ ỹ in PC. Then ỹ ∈ PC and there exists

gn ∈ ScoF,y such that

yn(t) =

∫ b

0

H(t, s)gn(s)ds+
m∑

k=1

H(t, tk)Ik(y(tk)).

From H1 and H3, we have

|gn(t)| ≤ p(t)‖y‖PC + d(0, F (t, 0)) := M(t),

and observe that

n ∈ N implies gn(t) ∈M(t)B(0, 1) for t ∈ J.

Now B(0, 1) is compact in R
n, so passing to a subsequence if necessary, we have that

{gn} converges to some function g. An application of the Lebesgue Dominated Con-

vergence Theorem shows that

‖gn − g‖L1 → 0 as n→ ∞.

Using the continuity of Ik, we have

yn(t) −→ ỹ(t) =

∫ b

0

H(t, s)g(s)ds+
m∑

k=1

Hk(t, tk)Ik(y(tk)),
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and so ỹ ∈ N(y).

Step 2: There exists γ < 1 such that H(N(y), N(y)) ≤ γ‖y − y‖PC for each y,

y ∈ PC.

Let y, y ∈ PC and h1 ∈ N(y). Then there exists g1(t) ∈ F (t, y(t)) such that for

each t ∈ J ,

h1(t) =

∫ b

0

H(t, s)g1(s)ds+

m∑

k=1

H(t, tk)Ik(y(tk)).

From (H2) and (H3), it follows that

H(F (t, y(t)), F (t, y(t)) ≤ p(t)|y(t) − y(t)|.

Hence, there is w ∈ F (t, y(t)) such that

|g1(t) − w| ≤ p(t)|y(t) − y(t)|, t ∈ J.

Consider U : J → P(Rn) given by

U(t) = {w ∈ R
n : |g1(t) − w| ≤ p(t)|y(t) − y(t)|}.

Since the multi-valued operator V (t) = U(t) ∩ F (t, y(t)) is measurable (see [6, 13]),

there exists a function g2(t), which is a measurable selection for V . So, g2(t) ∈ F (t, y(t))

and

|g1(t) − g2(t)| ≤ p(t)|y(t) − y(t)|, for each t ∈ J.

Let us define for each t ∈ J ,

h2(t) =

∫ b

0

H(t, s)g2(s)ds+

m∑

k=1

H(t, tk)Ik(y(tk)).

Then, we have

|h1(t) − h2(t)| ≤

∫ b

0

H(t, s)|g1(s) − g2(s)|ds+
m∑

k=1

|H(t, tk)|ck|y(tk) − y(tk)|
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≤ H∗

∫ b

0

p(s)|y(s) − y(s)|ds+H∗

m∑

k=1

ck‖y − y‖PC

≤ H∗

∫ b

0

p(s)ds‖y − y‖PC +H∗

m∑

k=1

ck‖y − y‖PC .

Thus,

‖h1 − h2‖PC ≤
H∗‖p‖L1

1 −H∗

m∑

k=1

ck

‖y − y‖PC .

By an analogous relation obtained by interchanging the roles of y and y, it follows

that

Hd(N(y), N(y)) ≤
H∗‖p‖L1

1 −H∗

m∑

k=1

ck

‖y − y‖PC .

Therefore, N is a contraction, and so by Lemma 4.2, N has a fixed point y that is

solution to (16)–(18).

We next prove that Sco = SF . Let x be a solution of Problem (16)–(18); then there

exists g ∈ ScoF,x such that

x(t) =

∫ b

0

H(t, s)g(s)ds+

m∑

k=1

H(t, tk)Ik(x(tk)), t ∈ J.

Hence, x is a solution of the problem





x′(t) − λx(t) = g(t), a.e. t ∈ J\{t1, . . . , tm},
x(t+k ) − x(tk) = Ik(x(t

−
k )), k = 1, . . . , m,

x(0) = x(b).
(19)

From Theorem 4.1, we have that for every ε > 0 and g ∈ coF (t, x(t)) there exists a

measurable selection f∗ of t→ F (t, x(t)) such that

∣∣∣
∫ b

0

H(t, s)f∗(s)ds−

∫ b

0

H(t, s)g(s)ds
∣∣∣ ≤ H∗

∣∣∣
∫ t

0

f∗(s)ds−

∫ t

0

g(s)ds
∣∣∣

≤ H∗ sup
t∈J

∣∣∣
∫ t

0

f∗(s)ds−

∫ t

0

g(s)ds
∣∣∣

≤

H∗ε

(
1 −H∗

m∑

k=1

ck −H∗‖p‖L1

)

2‖p‖L1

:= δ.
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Let

z(t) =

∫ b

0

H(t, s)f∗(s)ds+
∑

0<tk<t

Hk(t, tk)Ik(x(tk)), t ∈ J.

Observing that z(tk) = x(tk), we see that for t ∈ J ,

|x(t) − z(t)| ≤ δ.

It follows that for all u ∈ B(x(t), δ),

γ(t) := d(g(t), F (t, x(t)) ≤ d(g(t), u) +Hd(F (t, z(t)), F (t, x(t))),

≤ Hd(coF (t, x(t)), coF (t, z(t))) +Hd(F (t, z(t)), F (t, x(t)))

≤ 2p(t)|x(t) − z(t)| ≤ 2p(t)δ.

Since γ is measurable (see [6]), the above inequality also shows that γ ∈ L1(J,Rn).

From Theorem 3.3, problem (1)–(3) has a solution y such that

‖x− y‖PC ≤
‖γ‖L1

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

.

Since γ(t) ≤ 2δp(t), this becomes

‖x− y‖PC ≤
2δ‖p‖L1

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

,

so

‖x− y‖PC ≤ H∗ε.

Since ε > 0 is arbitrary, we have Sco = SF , which completes the proof of the theorem.

5 Compactness of the Solution Set

Let us introduce the following hypotheses. Notice that the first part of condition (A2)

below is actually condition (H3) above, and condition (A3) is the same as (H2) above.

We list them here in this form for the convenience of the reader.
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(A1) F : J × R
n −→ Pcl,cv(R

n); t 7−→ F (t, x) is measurable for each x ∈ R
n.

(A2) There exists a function p ∈ L1(J,R+) such that, for a.e. t ∈ J and all x, y ∈ R
n,

Hd(F (t, x), F (t, y)) ≤ p(t)|x− y|

and

Hd(0, F (t, 0)) ≤ p(t) for a.e. t ∈ J.

(A3) There exist constants ck ≥ 0 such that

|Ik(u) − Ik(z)| ≤ ck|u− z|, for each u, z ∈ R
n.

Our first compactness result is the following.

Theorem 5.1 Suppose that hypotheses (A1) − (A3) are satisfied. If

H∗‖p‖L1 +H∗

m∑

k=1

ck < 1,

then the solution set of the problem (1)–(3) is nonempty and compact.

Proof. Let N : PC(J,Rn) → P(PC(J,Rn)) be defined by

N(y) = {h ∈ PC : h(t)) =

∫ b

0

H(t, s)v(s)ds+

m∑

k=0

H(t, tk)Ik(x(tk)), v ∈ SF,y},

where

SF,y = {v ∈ L1(J,Rn) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

First we show that N(y) ∈ Pcl(PC) for each y ∈ PC. To do this, let (yn)n≥1 ∈ N(y)

be such that yn −→ ỹ in PC. Then, there exists vn ∈ SF,y, n = 0, 1, . . . , such that for

each t ∈ J ,

yn(t) =

∫ b

0

H(t, s)vn(s)ds+
m∑

k=1

H(t, tk)Ik(yn(tk)).
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From (A2), we have vn(t) ∈ B(0, p(t)|y(t)|+ p(t)), where

B(0, p(t)|y(t)|+ p(t)) = {w ∈ R
n : |w| ≤ p(t)|y(t)| + p(t)} := ϕ(t).

It is clear that ϕ : J → Pcp,cv(R
n) is a multi-valued map that is integrably bounded.

Since {vn(·) : n ≥ 1} ∈ ϕ(·), we may pass to a subsequence if necessary to get that vn

converges weakly to v in L1
w(J,Rn). From Mazur’s lemma, there exists

v ∈ conv{vn(t) : n ≥ 1},

so there exists a subsequence {v̄n(t) : n ≥ 1} in conv{vn(t) : n ≥ 1}, such that v̄n

converges strongly to v ∈ L1(J,Rn). From (A2), we have for every ε > 0 there exists

n0(ε) such that for every n ≥ n0(ε), we have

vn(t) ∈ F (t, yn(t)) ⊆ F (t, ỹ(t)) + εp(t)B(0, 1).

This implies that v(t) ∈ F (t, y(t)), a.e. t ∈ J . Thus, we have

ỹ(t) =

∫ b

0

H(t, s)v(s)ds+
m∑

k=1

H(t, tk)Ik(ỹ(tk)).

Hence, ỹ ∈ N(y). By the same method used in [8, 20, 35], we can prove that N has at

least one fixed point.

Now we prove that SF ∈ Pcp(PC), where

SF = {y ∈ PC | y is a solution of the problem (1)–(3)}.

Let (yn)n∈N ∈ SF ; then there exist vn ∈ SF,yn
, n ∈ N, such that

yn(t) =

∫ b

0

H(t, s)vn(s)ds+
m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J.

From (A2) and (A3), we have

|yn(t)| ≤ H∗

∫ b

0

p(s)|yn(s)|ds+H∗‖p‖L1
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+H∗

m∑

k=1

ck|yn(tk)| +H∗

m∑

k=1

ck|Ik(0)|.

Hence,

‖yn‖PC ≤
1

1 −H∗

m∑

k=1

ck −H∗‖p‖L1

(
H∗‖p‖L1 +H∗

m∑

k=1

|Ik(0)|

)
:= M, for all n ∈ N.

Next, we prove that {yn : n ∈ N} is equicontinuous in PC. Let 0 < τ1 < τ2 ≤ b;

then we have

|yn(τ2) − yn(τ1)| ≤

∫ b

0

|H(τ2, s) −H(τ1, s)||vn(s)|ds

+
m∑

k=1

|H(τ2, tk) −H(τ1, tk)|[Mck + |Ik(0)|]

≤ (M + 1)

∫ b

0

|H(τ2, s) −H(τ1, s)|p(s)ds

+

m∑

k=1

|H(τ2, tk) −H(τ1, tk)|[Mck + |Ik(0)|].

The right-hand side tends to zero as τ2 − τ1 → 0. This proves the equicontinuity for

the case where t 6= ti i = 1, . . . , m. It remains to examine the equicontinuity at t = ti.

Set

h1(t) =

m∑

k=1

H(t, tk)Ik(yn(tk))

and

h2(t) =

∫ b

0

H(t, s)yn(s)ds.

First, we prove equicontinuity at t = t−i . Fix δ1 > 0 such that {tk : k 6= i}∩ [ti−δ1, ti +

δ1] = ∅ and

h1(ti) =
m∑

k=1

H(ti, tk)Ik(y(tk))
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For 0 < h < δ1, we have

|h1(ti − h) − h1(ti)| ≤
m∑

k=1,k 6=i

|[H(ti − h, tk) −H(ti, tk)]I(yn(t
−
k ))|

≤
m∑

k=1,k 6=i

|H(ti − h, tk) −H(ti, tk)|[Mck + |Ik(0)|].

The right-hand side tends to zero as h→ 0. Moreover,

|h2(ti − h) − h2(ti)| ≤ (M + 1)

∫ b

0

|H(ti − h, s) −H(ti, s)|p(s)ds

which tends to zero as h→ 0.

Next, we prove equicontinuity at t = t+i . Fix δ2 > 0 such that {tk : k 6= i} ∩ [ti −

δ2, ti + δ2] = ∅. Then, for 0 < h < δ2, we have

|h1(ti + h) − h1(ti)| ≤
m∑

k=1,k 6=i

|[H(ti + h, tk) −H(ti, tk)]I(yn(t−k ))|

≤
m∑

k=1,k 6=i

|H(ti + h, tk) −H(ti, tk)|[Mck + |Ik(0)|]

Again, the right-hand side tends to zero as h→ 0. Similarly,

|h2(ti + h) − h2(ti)| ≤ (M + 1)

∫ b

0

|H(ti + h, s) −H(ti, s)|p(s)ds

tends to zero as h→ 0.

Thus, the set {yn : n ∈ N} is equicontinuous in PC. As a consequence of the Arzelá-

Ascoli Theorem, we conclude that there exists a subsequence of {yn} converging to y

in PC. As we did above, we can easily prove that there exists v(·) ∈ F (·, y.) such that

y(t) =

∫ b

0

H(t, s)v(s)ds+
m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J.

Hence, SF ∈ Pcp(PC). This completes the proof of the theorem.

Our next theorem yields the same conclusion under the somewhat different hy-

potheses.
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Theorem 5.2 Assume that the following conditions hold.

(H4) The multifunction F : J × R
n → Pcp,cv(R

n) is L1-Carathéodory.

(H5) There exist functions p̄, q̄ ∈ L1(J,R+) and α ∈ [0, 1) such that

‖F (t, y)‖P ≤ p̄(t)|y|α + q̄(t) for each (t, y) ∈ J × R
n.

In addition, suppose that there exist constants c∗k, b
∗
k ∈ R+ and αk ∈ [0, 1) such that

|Ik(y)| ≤ c∗k + b∗k|y|
αk, y ∈ R

n.

Then the solution set of the problem (1)–(3) is nonempty and compact.

Proof. Let SF = {y ∈ PC | y is a solution of the problem (1)–(3)}. From results

in [9, 20, 35], it follows that SF 6= ∅. Now, we prove that SF is compact. Let

(yn)n∈N ∈ SF ; then there exist vn ∈ SF,yn
, n ∈ N, such that

yn(t) =

∫ b

0

H(t, s)vn(s)ds+

m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J.

From (H4), we can prove that there exists an M1 > 0 such that

‖yn‖PC ≤M1, for every n ≥ 1.

Similar to what we did in the proof of Theorem 5.1, we can use (H5) to show that the

set {yn : n ≥ 1} is equicontinuous in PC. Hence, by the Arzelá-Ascoli Theorem, we

can conclude that there exists a subsequence of {yn} converging to y in PC. We shall

show that there exist v(·) ∈ F (·, y(·)) such that

y(t) =

∫ b

0

H(t, s)v(s)ds+
m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J.

Since F (t, ·) is upper semicontinuous, for every ε > 0, there exist n0(ε) ≥ 0 such that

for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y(t)) + εB(0, 1), a.e. t ∈ J.
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Since F (·, ·) has compact values, there exists a subsequence vnm
(·) such that

vnm
(·) → v(·) as m→ ∞

and

v(t) ∈ F (t, y(t)), a.e. t ∈ J, and for all m ∈ N.

It is clear that

|vnm
(t)| ≤ p̄(t), a.e. t ∈ J.

By the Lebesgue Dominated Convergence Theorem and the continuity of Ik, we con-

clude that v ∈ L1(J,Rn) so v ∈ SF,y. Thus,

y(t) =

∫ b

0

H(t, s)v(s) ds+
m∑

k=1

H(t, tk)Ik(y(tk)), t ∈ J.

Therefore, SF ∈ Pcp(PC), and this completes the proof of the theorem.

6 Periodic Solutions

In this section, we consider the impulsive periodic problem

y′(t) ∈ ϕ(t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, (20)

y(t+k ) − y(t−k ) = Ik(y(t
−
k )), k = 1, . . . , m, (21)

y(0) = y(b), (22)

where ϕ : J × R
n → P(Rn) is a multifunction.

A number of papers have been devoted to the study of initial and boundary value

problems for impulsive differential inclusions. Some basic results in the theory of

periodic boundary value problems for first order impulsive differential equations and

inclusions may be found in [21, 32, 33, 34, 35] and the references therein. Our goal in

this section is to give an existence result for the above problem by using topological

degree combined with a Pointcaré operator.

EJQTDE, 2008 No. 31, p. 26



6.1 Background in Geometric Topology

First, we begin with some elementary concepts from geometric topology. For additional

details, we recommend [11, 19, 22, 26]. In what follows, (X, d) denotes a metric space.

A set A ∈ P(X) is called a contractible set provided there exists a continuous homotopy

h : A× [0, 1] → A such that

(i) h(x, 0) = x, for every x ∈ A, and

(ii) h(x, 1) = x0, for every x ∈ A.

Note that if A ∈ Pcv,cp(X), then A is contractible. Clearly, the class of contractible

sets is much larger than the class of all compact convex sets.

Definition 6.1 A space X is called an absolute retract (written as X ∈ AR) provided

that for every space Y , a closed subset B ⊆ Y , and a continuous map f : B → X,

there exists a continuous extension f̃ : Y → X of f over Y , i.e., f̃(x) = f(x) for every

x ∈ B.

Definition 6.2 A space X is called an absolute neighborhood retract (written as X ∈

ANR) if for every space Y , any closed subset B ⊆ Y , and any continuous map f :

B → X, there exists a open neighborhood U of B and a continuous map f̃ : U → X

such that f̃(x) = f(x) for every x ∈ B.

Definition 6.3 A space X is called an Rδ−set provided there exists a sequence of

nonempty compact contractible spaces {Xn} such that:

Xn+1 ⊂ Xn for every n;

X =

∞⋂

n=1

Xn.
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It is well known that any contractible set is acyclic and that the class of acyclic sets

is larger then that of contractible sets. From the continuity of the Čech cohomology

functor, we have the following lemma.

Lemma 6.4 ([19]) Let X be a compact metric space. If X is an Rδ–set, then it is an

acyclic space.

Set

Kn(r) = Kn(x, r), Sn−1(r) = ∂Kn(r), and P n = R
n\{0},

where Kn(r) is a closed ball in R
n with center x and radius r, and ∂Kn(r) stands for

the boundary of Kn(r) in R
n. For any X ∈ ANR−space X, we set

J(Kn(r), X) = {F : X → P(X) | F u.s.c with Rδ–values}.

Moreover, for any continuous f : X → R
n, where X ∈ ANR, we set

Jf(K
n(r), X) = {ϕ :Kn(r) → P(X) | ϕ = f ◦ F for some

F ∈ J(Kn(r), X) and ϕ(Sn−1(r)) ⊂ P n}.

Finally, we define

CJ(Kn(r),Rn) = ∪{Jf(K
n(r),Rn) | f : X → R

n is continuous and X ∈ ANR}.

It is well known that (see [17]) that for the multi-valued maps in this class, the notion

of topological degree is available. To define it, we need an appropriate concept of

homotopy in CJ(Kn(r),Rn)).

Definition 6.5 Let φ1, φ2 ∈ CJ(Kn(r),Rn) be two maps of the form

φ1 = f1 ◦ F1 : Kn(r)
F1−−−−−→P(X)

f1

−−−−−→R
n

φ2 = f2 ◦ F2 : Kn(r)
F2−−−−−→P(X)

f2

−−−−−→R
n.
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We say that φ1 and φ2 are homotopic in CJ(Kn(r),Rn) if there exist an u.s.c. Rδ–

valued homotopy χ : [0, 1]×Kn(r) → P(X) and a continuous homotopy h : [0, 1]×X →

R
n satisfying

(i) χ(0, u) = F1(u), χ(1, u) = F2(u) for every u ∈ Kn(r),

(ii) h(0, x) = f1(x), h(1, x) = f2(x) for every x ∈ X,

(iii) for every (u, λ) ∈ [0, 1] × Sn−1(r) and x ∈ χ(λ, u), we have h(x, λ) 6= 0.

The map H : [0, 1] ×Kn(r) → P(Rn) given by

H(λ, u) = h(λ, χ(λ, u))

is called a homotopy in CJ(Kn(r),Rn) between φ1 and φ2.

Theorem 6.6 ([17]) There exist a map Deg : CJ(Kn(r),Rn) → Z, called the topolog-

ical degree function, satisfying the following properties:

(C1) If ϕ ∈ CJ(Kn(r),Rn) is of the form ϕ = f ◦ F with F single valued and con-

tinuous, then Deg(ϕ) = deg(ϕ), where deg(ϕ) stands for the ordinary Brouwer

degree of the single valued continuous map ϕ : Kn(r) → R
n.

(C2) If Deg(ϕ) = 0, where ϕ ∈ CJ(Kn(r),Rn), then there exists u ∈ Kn(r) such that

0 ∈ ϕ(u).

(C3) If ϕ ∈ CJ(Kn(r),Rn) and {u ∈ Kn(r)|0 ∈ ϕ(u)} ⊂ IntKn(r0) for some 0 < r0 <

r, then the restriction ϕ0 of ϕ to Kn(r0) is in CJ(Kn(r),Rn) and Deg(ϕ0) =

Deg(ϕ).

Let A ⊂ R
n and B ⊂ R

m; CJ0(A,B) will denote the class of mappings

CJ0(K
n(r),Rn) = {ϕ : A→P(B) | ϕ = f ◦ F, F : A→ P(X), F is u.s.c.
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with Rδ–values and f : X → B is continuous},

where X ∈ ANR. The next two definitions were introduced in [18]

Definition 6.7 A metric space X is called acyclically contractible if there exists an

acyclic homotopy Π : X × [0, 1] → P(X) such that

(a) x0 ∈ Π(x, 1) for every x ∈ X and for some x0 ∈ X;

(b) x ∈ Π(x, 0) for every x ∈ X.

Notice that any contractible space and any acyclic, compact metric space are acycli-

cally contractible (see [3], Theorem 19). Also, from [17], any acyclically contractible

space is acyclic.

Definition 6.8 A metric space X is called Rδ−contractible if there exists a multi-

valued homotopy Π : X × [0, 1] → P(X) which is u.s.c. and satisfies:

(a) x ∈ Π(x, 1) for every x ∈ X;

(b) Π(x, 0) = B for every x ∈ X and for some B ⊂ X;

(c) Π(x, α) is an Rδ−set for every α ∈ [0, 1] and x ∈ X.

6.2 Poincaré translation operator

By Poincaré operators we mean the translation operator along the trajectories of the

associated differential system, and the first return (or section) map defined on the cross

section of the torus by means of the flow generated by the vector field. The translation

operator is sometimes also called the Poincaré-Andronov, or Levinson, or simply the

T -operator. In the classical theory (see [29, 39] and the references therein), both these

operators are defined to be single-valued, when assuming, among other things, the

EJQTDE, 2008 No. 31, p. 30



uniqueness of solutions of initial value problems. In the absence of uniqueness, it is often

possible to approximate the right-hand sides of the given systems by locally lipschitzian

ones (implying uniqueness already), and then apply a standard limiting argument. This

might be, however, rather complicated and is impossible for discontinuous right-hand

sides. On the other hand, set-valued analysis allows us to handle effectively such

classically troublesome situations. For additional background details, see [2, 17].

Let ϕ : J × R
n → P(Rn) be a Carathédory map. We define a multi-valued map

Sϕ : R
n → P(PC)

by

Sϕ(x) = {y | y(·, x) is a solution of the problem satisfying y(0, x) = x}.

Consider the operator Pt defined by Pt = Ψ ◦ Sϕ where

Pt : R
n Sϕ

−−−−−→P(PC)
Ψt−−−−−→P(Rn)

and

Ψt(y) = y(0) − y(t).

Here, Pt is called the Poincaré translation map associated with the Cauchy problem

y′(t) ∈ ϕ(t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, (23)

y(t+k ) − y(t−k ) = Ik(y(t
−
k )), k = 1, . . . , m, (24)

y(0) = y0 ∈ R
n. (25)

The following lemma is easily proved.

Lemma 6.9 Let ϕ : J × R
n → Pcv,cp(R

n) be a Carathédory multfunction. Then the

periodic problem (20)–(22) has a solution if and only if for some y0 ∈ R
n we have

0 ∈ Pb(y0), where Pb is the Poincaré map associated with (23)–(25).
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Next, we define what is meant by an upper-Scorza-Dragoni map.

Definition 6.10 We say that a multi-valued map F : J×R
n → Pcl(R

n) has the upper-

Scorza-Dragoni property if, given δ > 0, there is a closed subset Aδ ⊂ J such that the

measure µ(Aδ) ≤ δ and the restriction F̃ of F to Aδ × R
n is u.s.c.

We also need the following two lemmas.

Lemma 6.11 ([16]) Let ϕ : J × R
n → Pcp,cv(R

n) be upper-Scorza-Dragoni. Assume

that:

(R1) There exist functions p ∈ L1(J,R+) and ψ : R
n → R such that

‖ϕ(t, y)‖P ≤ p(t)ψ(|y|) for each (t, y) ∈ J × R
n.

(R2) There exist constants c∗k, b
∗
k ∈ R+ and αk ∈ [0, 1) such that

|Ik(y)| ≤ c∗k + b∗k|y|
αk y ∈ R

n.

Then the set Sϕ is Rδ−contractible.

Lemma 6.12 ([16]) Let ϕ : J × R
n → Pcv,cp(R

n) be upper-Scagoni-Dragoni. Let

Pb : R
n → P(Rn) be the Poincaré map associated with the problem (23)–(25). Assume

that there exists r > 0 such that

0 6∈ Pb(y0) for every y0 ∈ Sn−1(r).

Then,

Pb ∈ CJ(Kn(r),Rn).

Furthermore, if Deg(Pb) 6= 0, then the impulsive periodic problem (20)–(22) has a

solution.
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The following Theorem due to Gorniewicz [17] is critical in the proof of the main

result in this section.

Theorem 6.13 (Nonlinear Alterntive). Assume that ϕ ∈ CJ0(K
n(r),Rn). Then ϕ

has at least one of the following properties:

(i) Fix(ϕ) 6= ∅,

(ii) there is an x ∈ Sn−1(r) with x ∈ λϕ(x) for some 0 < λ < 1.

The following definition and lemma can be found in [17, 23].

Definition 6.14 A mapping F : X → P(Y ) is LL-selectionable provided there exists

a measurable, locally-Lipchitzian map f : X → Y such that f ⊂ F .

Lemma 6.15 If ϕ : X → Pcp,cv(R
n) is an u.s.c. multi-valued map, then ϕ is σ−LL-

selectionable.

We are now ready to give our main result in this section.

Theorem 6.16 Let ϕ : R
n → Pcp,cv(R

n) be an u.s.c. multifunction. In addition to

conditions (R1) − (R2), assume that

(R3) There exists r > 0 such that

r

ψ(r)‖p‖L1 +

m∑

k=1

[c∗k + b∗kr
αk ]

> 1.

Then the problem (20)–(22) has at least one solution.

Proof. From Lemma 6.15, ϕ is σ−LL-selectionable, so by a result of Djebali et al.

[16], Sϕ is Rδ−contractible. Set A = B = R
n and X = PC ∈ ANR. We will prove

that

Ψ : PC → R
n defined by y → Ψ(y) = y(0) − y(·)
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is a continuous map. Let {yn} be a sequence such that yn → y in PC. Then,

|Ψ(yn)(t) − Ψ(y)(t)| ≤ 2‖yn − y‖PC → 0 as n→ ∞.

Hence,

Pb ∈ CJ0(K
n(r),Rn).

Let a ∈ Pt(a) = λ(Ψt ◦ Sϕ)(a) for some λ ∈ (0, 1). Then, there exist y ∈ PC such that

y ∈ Sϕ(a). This implies y(0) = a and a = λ(a− y(t)), a ∈ Sn−1(r). For t ∈ J , we have

|a| ≤ ‖y(t)‖

≤

∫ t

0

p(s)ψ(|y(s)|)ds+

m∑

k=1

[c∗k + b∗k|y(tk)|
αk ]

≤ ψ(r)

∫ b

0

p(s)ds+

m∑

k=1

[c∗k + b∗kr
αk ].

Hence,

|a|

ψ(r)‖p‖L1 +
m∑

k=1

[c∗k + b∗kr
αk ]

≤ 1.

Next, we will show that Sϕ is u.s.c. by proving that the graph

Γϕ := {(x, y) | y ∈ Sϕ(x)}

of Sϕ is closed. Let (xn, yn) ∈ Γϕ, i.e., yn ∈ Sϕ(xn), and let (xn, yn) → (x, y) as n→ ∞.

Since yn ∈ Sϕ(xn), there exists vn ∈ L1(J,Rn) such that

yn(t) = xn +

∫ t

0

vn(s)ds+
∑

0<tk<t

Ik(yn(tk)), t ∈ J.

Since (xn, yn) converge to (x, y), there exists M > 0 such that

|xn| ≤M for all n ∈ N.

By using (R1) − (R2), we can easily prove that there exist M > 0 such that

‖yn‖PC ≤M for all n ∈ N.
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From the definition of yn, we have y′n(t) = vn(t) a.e. t ∈ J , so

|vn(t)| ≤ p(t)ψ(M), t ∈ J.

Thus, vn(t) ∈ p(t)ψ(M)B(0, 1) := χ(t) a.e. t ∈ J . It is clear that χ : J → Pcp,cv(R
n)

is a multivalued map that is integrably bounded. Since {vn(·) : n ≥ 1} ∈ χ(·), we may

pass to a subsequence if necessary to obtain that vn converges weakly to v in L1
w(J,Rn).

From Mazur’s lemma, there exists

v ∈ conv{vn(t) : n ≥ 1},

so there exists a subsequence {v̄n(t) : n ≥ 1} in conv{vn(t) : n ≥ 1}, such that v̄n

converges strongly to v ∈ L1(J,Rn). Since F (t, .) is u.s.c., for every ε > 0 there exists

n0(ε) such that for every n ≥ n0(ε), we have

v̄n(t) ∈ F (t, yn(t)) ⊆ F (t, ỹ(t)) + εB(0, 1).

This implies that v(t) ∈ F (t, y(t)), a.e. t ∈ J . Let

z(t) = x+

∫ t

0

v(s)ds+
∑

0<tk<t

Ik(y(tk)), t ∈ J.

Since the functions Ik, k = 1, . . . , m are continuous, we obtain the estimates

||yn − z‖PC ≤ |xn − x| +

∫ b

0

|v̄n(s) − v(s)|ds+

m∑

k=1

|Ik(yn(tk)) − Ik(y(tk))|.

The right-hand side of the above expression tends to 0 as n→ +∞. Hence,

y(t) = x+

∫ t

0

v(s)ds+
∑

0<tk<t

Ik(y(tk)), t ∈ J.

Thus, y ∈ Sϕ(x). Now, we show that Sϕ maps bounded sets into relatively compact

sets of PC. Let B be a bounded set in R
n and let {yn} ⊂ Sϕ(B). Then there exist

{xn} ⊂ B such that

yn(t) = xn +

∫ t

0

vn(s)ds+
∑

0<tk<t

Ik(yn(tk)), t ∈ J,
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where vn ∈ Sϕ,yn
, n ∈ N. Since {xn} is a bounded sequence, there exists a subsequence

of {xn} converging to x, so from (R1) − (R2), there exist M∗ > 0 such that

‖yn‖PC ≤M∗, n ∈ N.

As in the proof of Theorem 5.1, we can show that {yn : n ∈ N} is equicontinuous in

PC. As a consequence of the Arzelá-Ascoli Theorem, we conclude that there exists a

subsequence of {yn} converging to y in PC. By a similar argument to the one above,

we can prove that

y(t) = x+

∫ t

0

v(s)ds+
∑

0<tk<t

Ik(y(tk)), t ∈ J,

where v ∈ SF,y. Thus, y ∈ Sϕ(x). This implies that Sϕ is u.s.c.

As a consequence of the nonlinear alternative of Leray Schauder type [17], we

conclude that Fix Pb 6= ∅. This completes the proof of the theorem.

References

[1] Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson and Y. L. Danon, Pulse mass

measles vaccination across age cohorts, Proc. Nat. Acad. Sci. USA. 90 (1993),

11698–11702.

[2] J. Andres, On the multivalued Poincaré operators, Topol. Methods Nonlinear Anal.
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