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Abstract

In this paper, by introducing the fractional derivative in the sense

of Caputo, we apply the Adomian decomposition method for the foam

drainage equation with time- and space-fractional derivative. As a result,

numerical solutions are obtained in a form of rapidly convergent series

with easily computable components.
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1 Introduction

Since the introduction by Adomian of the decomposition method [4, 5] at the
begin of 1980s, the algorithm has been widely used for obtaining analytic so-
lutions of physically significant equations [4, 5, 6, 16, 26, 27, 28, 29, 30, 31].
With this method, we can easily obtain approximate solutions in the form of
a rapidly convergent infinite series with each term computed conveniently. As
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it is known, for the nonlinear equations with derivatives of integer order, many
methods are used to derive approximation solutions [3, 4, 5, 7, 10]. However, for
the fractional differential equations, there are only limited approaches, such as
Laplace transform method [21], the Fourier transform method [17], the iteration
method [22] and the operational method [20, 23].
In recent years, the fractional differential equations have attracted great atten-
tion; they are used in many areas of physics and engineering [9, 15, 32], like
phenomena in electromagnetic theory, acoustics, electrochemistry and material
science [11, 21, 22, 32].
The study to foam drainage equation is very significant for that the equation is
a simple model of the flow of liquid through channels ( Plateau borders [34] )
and nodes ( intersection of four channels) between the bubbles, driven by grav-
ity and capillarity [18, 33]. It has been studied by many authors [12, 13, 24].
However, as we know, the study for the foam drainage equation with time-and
space-fractional derivatives of this form

Dα
t u −

1

2
uuxx + 2u2Dβ

xu − (Dβ
xu)2 = 0, (1)

by the Adomian method (ADM) has not been investigated. Here α and β are
the parameters standing for the order of the fractional time and space deriva-
tives, respectively and they satisfy 0 < α, β ≤ 1 and x > 0. In fact, different
response equations can be obtained when at lest one of the parameters varies.
When α = β = 1, the fractional equation reduces to the foam drainage equation
of the form

ut −
1

2
uuxx + 2u2ux − (ux)2 = 0. (2)

We introduce Caputo fractional derivative and apply the ADM to derive nu-
merical solutions of the foam drainage equation with time-and space-fractional
derivatives.
The paper is organized as follows. In Sec. II, some necessary details on the frac-
tional calculus are provided. In Sec. III, the foam drainage equation with time
and space- fractional derivative is studied with the ADM. Finally, conclusions
follow.

2 Description of Fractional Calculus

There are several mathematical definitions about fractional derivative [21, 22].
Here, we adopt the two usually used definitions: the Caputo and its reverse
operator Riemann-Liouville. That is because Caputo fractional derivative allows
traditional initial condition assumption and boundary conditions. More details
one can consults [21]. In the following, we will give the necessary notation and
basic definitions.

Definition 2.1 A real valued function f(x), x > 0 is said to be in the space
Cµ, µ ∈

�
if there exists a real number p > µ such that f(x) = xpf1(x) where
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f1(x) ∈ C([0,∞)).

Definition 2.2 A function f(x), x > 0 is said to be in the space Cn
µ , n ∈ � , if

f (n) ∈ Cµ.

Definition 2.3 The Riemann-Liouville fractional integral operator of order α ≥
0, for a function f ∈ Cµ,
(µ ≥ −1) is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x − t)α−1f(t)dt; α > 0, x > 0

J0f(x) = f(x).

(3)

For the convenience of establishing the results for the fractional foam drainage
equation, we give one basic property

JαJβf(x) = Jα+βf(x). (4)

For the expression (3), when f(x) = xβ we get another expression that will be
used later:

Jαxβ =
Γ(β + 1)

Γ(α + β + 1)
xα+β . (5)

Definition 2.4 The fractional derivative of f ∈ Cn
−1 in the Caputo’s sense is

defined as

Dαf(t) =

{

1
Γ(n−α)

∫ t

0
(t − τ)n−α−1f (n)(τ)dτ, n − 1 < α < n, n ∈ �∗,

dn

dtn
f(t), α = n.

(6)

According to the Caputo’s derivative, we can easily obtain the following expres-
sions:

DαK = 0; K is a constant, (7)

Dαtβ =

{

Γ(β+1)
Γ(α+β−1) t

β−α, β > α − 1,

0, β ≤ α − 1.
(8)

Details on Caputo’s derivative can be found in [21].

Remark 2.1 In this paper, we consider equation (1) with time-and space-fractional
derivative. When α ∈

�+, we have:

Dα
t u(x, t) =

∂αu(x, t)

∂tα
=

{

1
Γ(n−α)

∫ t

0
(t − τ)n−α−1 ∂nu(x,τ)

∂τn
dτ, n − 1 < α < n

∂nu(x,t)
∂tn

, α = n.

(9)
The form of the space fractional derivative is similar to the above and we just
omit it here.
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3 Applications of the ADM Method

Consider the foam drainage equation with time and space-fractional derivatives
Eq.(1).
In order to solve numerical solutions for this equation by using ADM method,
we rewrite it in the operator form

Dα
t u =

1

2
uuxx − 2u2Dβ

xu + (Dβ
xu)2; 0 < α ≤ 1, 0 < β ≤ 1, (10)

where the operators Dα
t and Dβ

x stand for the fractional derivative and are
defined as in (6).
Take the initial condition as

u(x, 0) = f(x). (11)

Applying the operator Jα, the inverse of Dα on corresponding sub-equation of
Eq.(10), using the initial condition (11), yields:

u(x, t) = f(x) − 2JαΦ1(u(x, t)) +
1

2
JαΦ2(u(x, t)) + JαΦ3(u(x, t)), (12)

where Φ1(u) = u2Dβ
xu , Φ2(u) = uuxx and Φ3(u) = (Dβ

xu)2. Following Ado-
mian decomposition method [4, 5], the solution is represented as infinite series
like

u(x, t) =

∞
∑

n=0

un(x, t). (13)

The nonlinear operators Φ1(u), Φ2(u) and Φ3(u) are decomposed in these forms

Φ1(u) =

∞
∑

n=0

An, Φ2(u) =

∞
∑

n=0

Bn, Φ3(u) =

∞
∑

n=0

Cn, (14)

where An, Bn and Cn are the so-called Adomian polynomials and have the form

An =
1

n!

dn

dλn

[

Φ1

(

∞
∑

k=0

λkuk

)]

λ=0
=

1

n!

dn

dλn

[(

∞
∑

k=0

λkuk

)2

Dβ
x

(

∞
∑

k=0

λkuk

)]

λ=0
,

Bn = 1
n!

dn

dλn

[

Φ2

(

∑

∞

k=0 λkuk

)]

λ=0
= 1

n!
dn

dλn

[(

∑

∞

k=0 λkuk

)(

∑

∞

k=0 λkukxx

)]

λ=0
,

Cn = 1
n!

dn

dλn

[

Φ3

(

∑

∞

k=0 λkuk

)]

λ=0
= 1

n!
dn

dλn

[(

Dβ
x(

∑

∞

k=0 λkuk)
)2]

λ=0
.

(15)
In fact, these Adomian polynomials can be easily calculated. Here we give the
first three components of these polynomials:
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A0 = u2
0D

β
xu0,

A1 = 2u0u1D
β
xu0 + u2

0D
β
xu1,

A2 = u2
1D

β
xu0 + 2u0u2D

β
xu0 + 2u0u1D

β
xu1 + u2

0D
β
xu2,

A3 = u2
1D

β
xu1 + 2u1u2D

β
xu0 + 2u0u2D

β
xu1 + 2u0u1D

β
xu2

+2u0u3D
β
xu0 + u2

0D
β
xu2

0D
β
xu3.

(16)

The first three components of Bn are

B0 = u0u0xx,
B1 = u0u1xx + u1u0xx,

B2 = u2u0xx + u0u2xx + u1u1xx,
B3 = u3u0xx + u0u3xx + u2u1xx + u1u2xx,

(17)

and those of Cn are given by

C0 = (Dβ
xu0)

2,
C1 = 2Dβ

xu0D
β
xu1,

C2 = (Dβ
xu1)

2 + 2Dβ
xu0D

β
xu2,

C3 = 2Dβ
xu1D

β
xu2 + 2Dβ

xu0D
β
xu3.

(18)

Other polynomials can be generated in a like manner.
Substituting the decomposition series (13) and (14) into Eq.(12), yields the fol-
lowing recursive formula:

u0(x, t) = f(x),

un+1(x, t) = −2Jα
(

An

)

+ 1
2Jα

(

Bn

)

+ Jα
(

Cn

)

; n ≥ 0.
(19)

The Adomian decomposition method converges generally very quickly. De-
tails about its convergence and convergence speed can be found in [1, 2, 8, 14].
Here, according to the above steps, we will derive the numerical solution for the
equation with time and space-fractional derivative in details.

3.1 Numerical Solutions of Time-Fractional Foam Drainage

Equation

Consider the following form of the time-fractional equation

Dα
t u =

1

2
uuxx − 2u2ux + u2

x; 0 < α ≤ 1, (20)

with the initial condition

u(x, 0) = f(x) = −
√

c tanh
√

c(x). (21)

where c is the velocity of wavefront [23].
The exact solution of (20) for the special case α = β = 1 is

u(x, t) =

{

−
√

c tanh(
√

c(x − ct)); x ≤ ct
0; x > ct.

(22)
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In order to obtain numerical solution of equation (20), substituting the initial
condition (21) and using the Adomian polynomials (16,17,18) into the expres-
sion (19), we can compute the results. For simplicity, we only give the first few
terms of series:

u0 = f(x),
u1 = −2Jα(A0) + 1

2Jα(B0) + Jα(C0)

= −2Jα(u2
0u0x) + 1

2Jα(u0u0xx) + Jα(u2
0x) = f1

tα

Γ(α+1) ,

u2 = −2Jα(A1) + 1
2Jα(B1) + Jα(C1)

= −2Jα(2u0u1u0x + u2
0u1x) + 1

2Jα(u0u1xx + u1u0xx) + Jα(2u0xu1x)

= f2
t2α

Γ(2α+1) ,

(23)

where

f(x) = −
√

c tanh(
√

cx), f1(x) = −2f2fx +
1

2
ffxx + f2

x ,

f2(x) = −2(2ffxf1 + f2f1x) + 1
2ff1xx + 1

2f1fxx + 2fxf1x,

f3(x) = −2fxf2
1

Γ(2α+1)
Γ2(α+1) − 4ffxf2 − 4ff1f1x

Γ(2α+1)
Γ2(α+1) − 2f2f2x + 1

2fxxf2

+ 1
2ff2xx + 1

2f1f1xx
Γ(2α+1)
Γ2(α+1) + f2

1x
Γ(2α+1)
Γ2(α+1) + 2fxf2x.

(24)
Then we can have the numerical solution of time-fractional equation (20) under
the series form

u(x, t) = f(x) + f1(x)
tα

Γ(α + 1)
+ f2(x)

t2α

Γ(2α + 1)
+ f3(x)

t3α

Γ(3α + 1)
+ ...

(25)
In order to check the efficiency of the proposed ADM for the equation (20),
we draw figures for the numerical solutions with α = 1

2 as well as the exact
solution (22) when α = β = 1. Figure 1(a) stands for the numerical solution of
(25). Figure 1(b) shows the exact solution of equation (22). From these figures,
we can appreciate how closely are the two solutions. This is to say that good
approximations are achieved using the ADM method.

3.2 Numerical Solutions of Space-Fractional Foam Drainage

Equation

In this section, we will take the space-fractional equation as another example
to illustrate the efficiency of the method. As the main computation method is
the same as the above, we will omit the heavy calculation and only give some
necessary expressions.
Considering the operator form of the space-fractional equation

ut =
1

2
uuxx − 2u2Dβ

xu + (Dβ
xu)2; 0 < β ≤ 1. (26)

Assuming the condition as

u(x, 0) = f(x) = x2. (27)
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(a) (b)

Figure 1: Representing time-fractional solutions of Eq.(20). In (a), solution
obtained by the Adomian method. In (b), the exact solution (22).

Initial condition has been taken as the above polynomial to avoid heavy calcu-
lation of fractional differentiation.

In order to estimate the numerical solution of equation (26), substituting
(14), (15) and the initial condition (27) into (19), we get the Adomian solution.
Here, we give the first few terms of the series solution:

u0 = x2,
u1 = −2J(A0) + 1

2J(B0) + J(C0)
= −2J(u2

0D
β
xu0) + 1

2J(u0u0xx) + J(Dβ
xu0)

2

= (f1x
6−β + x2 + f2x

4−2β)t,
u2 = −2J(A1) + 1

2J(B1) + J(C1)
= −2J(2u0u1D

β
xu0 + u2

0D
β
xu1) + 1

2J(u0u1xx + u1u0xx) + J(2Dβ
xu0D

β
xu1)

= (f3x
10−2β + f4x

8−3β + f5x
6−β + f6x

6−4β + f7x
4−2β + x2) t2

2 ,
(28)

where

f(x) = x2, f1 = −2
Γ(3)

Γ(3 − β)
, f2 =

[ Γ(3)

Γ(3 − β)

]2

,

f3 =
[

Γ(7−β)
Γ(7−2β) − 4 Γ(3)

Γ(3−β)

]

f1,

f4 = (Γ(5−2β)
Γ(5−3β) − 4 Γ(3)

Γ(3−β) )f2 + 2( Γ(3)
Γ(3−β)

Γ(7−β)
Γ(7−2β))f1

f5 = ((6 − β)(5 − β) + 2)f1

2 − 3 Γ(3)
Γ(3−β) ,

f6 = 2 Γ(3)
Γ(3−β)

Γ(5−2β)
Γ(5−3β)f2,

f7 = ((4 − 2β)(3 − 2β) + 6)f2

2 .

(29)

Then we obtain a numerical solution of space-fractional Eq.(26) in series
form

u(x, t) = x2 + (f1x
6−β + f2x

4−2β + x2)t+

+(f3x
10−2β + f4x

8−3β + f5x
6−β + f6x

6−4β + f7x
4−2β + x2) t2

2 + ...
(30)

EJQTDE, 2008 No. 30, p. 7



Figures 2(a, b) show, respectively, the numerical solutions given by expres-
sion (30) for space-fractional Eq.(26) with β = 1

2 and β = 1. From these figures,
we can appreciate the convergence rapidity of Adomian solutions.

(a) (b)

Figure 2: Representing space-fractional solutions of Eq.(26). In (a), solution
obtained by the Adomian method for β = 1/2. In (b), solution obtained by the
Adomian method for β = 1.

4 Conclusion

In this paper, the ADM has been successfully applied to derive explicit numerical
solutions for the time-and space-fractional foam drainage equation. The above
procedure shows that the ADM method is efficient and powerful in solving wide
classes of equations in particular evolution fractional order equations.
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