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Abstract. In this paper, we extend a monotone iterative technique for nonlocal frac-
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1 Introduction

In this paper, we consider the following nonlocal fractional differential equations with finite
delay in an ordered Banach space X:cDαx(t) = Ax(t) + f

(
t, xt,

∫ t
0 h(t, s, xs) ds

)
, t ∈ J = [0, b],

x(ν) = φ(ν) + g(x)(ν), ν ∈ [−a, 0],
(1.1)

where state x(·) takes values in the Banach space X endowed with norm ‖ · ‖; cDα is the
Caputo fractional derivative of order α, 0 < α < 1; A : D(A) ⊂ X → X is a closed linear
densely defined operator and an infinitesimal generator of a strongly continuous semigroup
{T(t)}t≥0 on X; the nonlinear operators h : Σ × D → X, f : J × D × X → X are given con-
tinuous functions, Σ = {(t, s) : 0 ≤ s ≤ t ≤ b} and D = C([−a, 0], X), a Banach space of all
continuous functions from [−a, 0] into X endowed with supremum norm; φ(·) ∈ D and the
function g is defined from C([−a, b], X) to D. If x : [−a, b]→ X is a continuous function, then
xt denotes the function in D defined as xt(ν) = x(t + ν) for ν ∈ [−a, 0], here xt(·) represent
the time history of the state from the time t− a up to the present time t.
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Fractional calculus is generalization of ordinary differential equations and integrations to
arbitrary non integer orders. One can describe many physical phenomena arising in engi-
neering, physics, economics and science more accurately through the fractional derivative
formulation. Indeed, we can find numerous applications in electrochemistry, control, porous
media, electromagnetism, etc. (see, [2, 8, 10, 12, 22, 23, 26]). Hence, in recent years, the re-
searchers have paid more attention to fractional differential equations. Many authors have
studied fractional differential equations with nonlocal initial conditions; see, for instance,
[2, 14, 17, 19, 23]. Nonlocal initial condition, in many cases, is more relevant and produces
better results in applications of physical problems than the classical initial value of the type
x(0) = x0. In [1, 3, 6, 11, 14], the authors discussed the existence and uniqueness results of
fractional differential equations in abstract spaces with finite or infinite delay.

By motivation of the recent works [4, 17, 19], we use a monotone iterative technique to
study the existence and uniqueness of extremal mild solutions of the problem (1.1) in an
ordered Banach space. The monotone iterative technique based on lower and upper solutions
provides an effective way to investigate the existence of solutions for the nonlinear differential
equations (fractional or non-fractional ordered); see, for instance, [4, 5, 13, 15, 16, 18, 19, 20,
24]. It constructs monotone sequences of lower and upper solutions that converge uniformly
to the extremal mild solutions between the lower and upper solutions. In this paper, we
obtain the results by using the theory of fractional calculus, semigroup theory, measure of
noncompactness and monotone iterative technique. To the best of our knowledge, up to now,
no work has been reported on nonlocal fractional differential equations with finite delay in
Banach spaces.

The rest of the paper is organized as follows: in the next section we give some basic
definitions and notations. In Section 3, we study the existence of extremal mild solution of the
delay system (1.1) and uniqueness of solutions of the system. Finally, in Section 4, we present
an example to illustrate our results.

2 Preliminaries

In this section, we introduce some basic definitions and notations which are used throughout
this paper. We denote by X a Banach space with the norm ‖ · ‖ and A : D(A) ⊂ X → X
is a densely defined closed linear operator and generates a strongly continuous semigroup
{T(t), t ≥ 0}. By Pazy [21], there exists M ≥ 1 such that supt∈J ‖T(t)‖ ≤ M.

Let P = {y ∈ X : y ≥ θ} (θ is a zero element of X) be a positive cone in X which defines a
partial ordering in X by x ≤ y if and only if y− x ∈ P. If x ≤ y and x 6= y, we write x < y. The
cone P is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y implies
‖x‖ ≤ N‖y‖.

Let C([−a, b], X) be a Banach space of all continuous X-valued functions on interval [−a, b]
with norm ‖x‖C = supt∈[−a,b] ‖x(t)‖, x ∈ C([−a, b], X). Evidently C([−a, b], X) is an ordered
Banach space whose partial ordering ≤ reduced by a positive cone PC = {x ∈ C([−a, b], X) :
x(t) ≥ θ, t ∈ [−a, b]}. Similarly D is also an ordered Banach space whose partial ordering ≤
reduced by a positive cone PD = {x ∈ D : x(t) ≥ θ, t ∈ [−a, 0]}. PC and PD are also normal
cones with same normal constant N. For x, y ∈ C([−a, b], X) with x ≤ y, denote the ordered
interval [x, y] = {z ∈ C([−a, b], X), x ≤ z ≤ y} in C([−a, b], X), and [x(t), y(t)] = {u ∈ X :
x(t) ≤ u ≤ y(t)} (t ∈ [−a, b]) in X.
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Definition 2.1 ([22]). The Riemann–Liouville fractional integral of order α > 0 for a function
f is given by

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds, t > 0,

provided the right-hand side is pointwise defined on [0, ∞), where Γ is the gamma function.

Definition 2.2 ([22]). The fractional derivative of order 0 ≤ n− 1 < α < n in the Caputo sense
is defined as

cDα f (t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n ds, t > 0,

where f is an n-times continuous differentiable function and Γ is a gamma function.

If f is an abstract function with values in X, then integrals which appear in Definition 2.1
and 2.2 are taken in Bochner’s sense.

Let Cα([−a, b], X) =
{

u ∈ C([−a, b], X) : cDαu exists on J, cDαu|J ∈ C(J, X) and u(t) ∈
D(A) for t ≥ 0

}
. An abstract function u ∈ Cα([−a, b], X) is called a solution of (1.1) if u(t)

satisfies the equation (1.1).

Definition 2.3 ([4]). The function x ∈ Cα([−a, b], X) is called a lower solution of the problem
(1.1) if it satisfies the following inequalitiescDαx(t) ≤ Ax(t) + f

(
t, xt,

∫ t
0 h(s, τ, xτ) dτ

)
, t ∈ J,

x(ν) ≤ φ(ν) + g(x)(ν), ν ∈ [−a, 0].
(2.1)

If all inequalities of (2.1) are reversed, we call x an upper solution of the problem (1.1).

Lemma 2.4 ([8]). If h satisfies a uniform Hölder condition, with exponent β ∈ (0, 1], then the unique
solution of the linear initial value problem,{

cDαx(t) = Ax(t) + h(t), t ∈ J,

x(0) = x0 ∈ X,

is given by

x(t) = U(t)x0 +
∫ t

0
(t− s)α−1V(t− s)h(s)) ds, t ∈ J,

where
U(t) =

∫ ∞

0
ψα(ϑ)T(tαϑ) dϑ, V(t) = α

∫ ∞

0
ϑψα(ϑ)T(tαϑ) dϑ (2.2)

and

ψα(ϑ) =
1
α

ϑ−1−1/αρα(ϑ
−1/α).

Note that ψα(ϑ) satisfies the condition of a probability density function defined on (0, ∞), that is
ψα(ϑ) ≥ 0,

∫ ∞
0 ψα(ϑ) dϑ = 1 and

∫ ∞
0 ϑψα(ϑ) =

1
Γ(1+α)

. Also the term ρα(ϑ) is defined as

ρα(ϑ) =
1
π

∞

∑
n=1

(−1)n−1ϑ−nα−1 Γ(nα + 1)
n!

sin(nπα), ϑ ∈ (0, ∞).
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Definition 2.5 ([11, 26]). A continuous function x : [−a, b] → X is said to be a mild solution
of the system (1.1) if x(t) = φ(t) + g(x)(t) on [−a, 0] and the following integral equation is
satisfied:

x(t) = U(t)(φ(0) + g(x)(0)) +
∫ t

0
(t− s)α−1V(t− s) f

(
s, xs,

∫ s

0
h(s, τ, xτ) dτ

)
ds, t ∈ J,

where U(t) and V(t) are defined by (2.2).

Lemma 2.6 ([25, 26]). The following properties are valid:

(i) for fixed t ≥ 0 and any x ∈ X, we have

‖U(t)x‖ ≤ M‖x‖, ‖V(t)x‖ ≤ αM
Γ(1 + α)

‖x‖ = M
Γ(α)

‖x‖.

(ii) The operators are U(t) and V(t) are strongly continuous for all t ≥ 0.

(iii) If T(t) (t > 0) is a compact semigroup in X, then U(t) and V(t) are norm-continuous in X for
t > 0.

(iv) If T(t) (t > 0) is a compact semigroup in X, then U(t) and V(t) are compact operators in X for
t > 0.

Definition 2.7. A C0-semigroup {T(t)}t≥0 is called a positive semigroup, if T(t)x ≥ θ for all
x ≥ θ and t ≥ 0.

Now we recall the definition of Kuratowski’s measure of noncompactness and its proper-
ties to study the existence of extremal mild solutions of (1.1) in the next section.

Definition 2.8 ([7, 9]). Let X be a Banach space and B(X) be a family of bounded subset of X.
Then µ : B(X)→ R+, defined by

µ(S) = inf{δ > 0 : S admits a finite cover by sets of diameter ≤ δ },

where S ∈ B(X), is called the Kuratowski measure of noncompactness. Clearly 0 ≤ µ(S) < ∞.

Lemma 2.9 ([7, 9]). Let S, S1 and S2 be bounded sets of a Banach space X. Then

(i) µ(S) = 0 if and only if S is a relatively compact set in X.

(ii) µ(S1) ≤ µ(S2) if S1 ⊂ S2.

(iii) µ(S1 + S2) ≤ µ(S1) + µ(S2).

(iv) µ(λS) ≤ |λ|µ(S) for any λ ∈ R.

Lemma 2.10 ([7, 9]). If W ⊂ C([c, d], X) is bounded and equicontinuous on [c, d], then µ(W(t)) is
continuous for t ∈ [c, d] and

µ(W) = sup{µ(W(t)), t ∈ [c, d]}, where W(t) = {x(t) : x ∈W} ⊆ X.

Remark 2.11 ([7, 9]). If S is a bounded set in C([c, d], X), then S(t) is bounded in X, and
µ(S(t)) ≤ µ(S).

Lemma 2.12 ([7, 9]). Let S = {un} ⊂ C([c, d], X) (n = 1, 2, . . .) be a bounded and countable set.
Then µ(S(t)) is Lebesgue integrable on [c, d], and

µ

({∫ d

c
un(t) dt | n = 1, 2, . . .

})
≤ 2

∫ d

c
µ(S(t)) dt. (2.3)
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3 Main result

In this section, we prove the existence of extremal mild solutions of the system (1.1) and the
uniqueness of solutions of the system.

Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal with normal constant
N and T(t) (t ≥ 0) be a positive operator. Also assume that A is the infinitesimal generator of compact
semigroup {T(t)}t≥0 on X. If the system (1.1) has lower and upper solutions x(0), y(0) ∈ C([−a, b], X)

with x(0) ≤ y(0) and satisfies the following assumptions:

(H1) The functions f , h satisfy the following:

(i) The function h : Σ×D → X is such that the function h(t, s, ·) : D → X is continuous for
each (t, s) ∈ Σ, and the function h(·, ·, ϕ) : Σ→ X is strongly measurable for each ϕ ∈ D.

(ii) The function f : J × D × X → X is such that the function f (t, ·, ·) : D × X → X is
continuous for t ∈ J, and the function f (·, ϕ, x) is strongly measurable for all (ϕ, x) ∈
D × X.

(H2) For any (t, s) ∈ Σ, the function h(t, s, ·) : D → X satisfies

h(t, s, ϕ1) ≤ h(t, s, ϕ2),

where ϕ1, ϕ2 ∈ D with x(0)s ≤ ϕ1 ≤ ϕ2 ≤ y(0)s .

(H3) For any t ∈ [0, b], the function f (t, ·, ·) : D × X → X satisfies

f (t, ϕ1, u1) ≤ f (t, ϕ2, u2),

where u1, u2 ∈ X with
∫ t

0 h(t, s, x(0)s ) ds ≤ u1 ≤ u2 ≤
∫ t

0 h(t, s, y(0)s ) ds and ϕ1, ϕ2 ∈ D with

x(0)t ≤ ϕ1 ≤ ϕ2 ≤ y(0)t .

(H4) The function g : C([−a, b], X)→ D is increasing, continuous and compact.

Then the system (1.1) has minimal and maximal mild solutions between x(0) and y(0).

Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. We define a map Q : B →
C([−a, b], X) by

Qx(t) =


U(t)(φ(0) + g(x)(0))

+
∫ t

0 (t− s)α−1V(t− s) f
(
s, xs,

∫ s
0 h(s, τ, xτ) dτ

)
ds, t ∈ [0, b],

φ(t) + g(x)(t), t ∈ [−a, 0].

(3.1)

By (H2), (H3) and for any x ∈ B, we have that

f
(

t, x(0)t ,
∫ t

0
h(t, τ, x(0)τ ) dτ

)
≤ f

(
t, xt,

∫ t

0
h(t, τ, xτ) dτ

)
≤ f

(
t, y(0)t ,

∫ t

0
h(t, τ, y(0)τ ) dτ

)
.

By the normality of the positive cone P, there exists a constant k > 0 such that∥∥∥∥ f
(

t, xt,
∫ t

0
h(t, τ, xτ) dτ

)∥∥∥∥ ≤ k, x ∈ B. (3.2)
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First we prove that Q is a continuous map on B. Let {y(n)} ⊂ B with y(n) → y ∈ B
as n → ∞. Then for any t ∈ [−a, 0] and by (H4), we have that ‖Qy(n)(t) − Qy(t)‖ =

‖g(y(n))(t) − g(y)(t)‖ → 0 as n → ∞. Also for any t ∈ J, and by (H1), (H4) and (3.2) we
have

(i) h(t, τ, y(n)τ )→ h(t, τ, yτ).

(ii) f
(

t, y(n)t ,
∫ t

0 h(t, τ, y(n)τ ) dτ
)
→ f

(
t, yt,

∫ t
0 h(t, τ, yτ) dτ

)
.

(iii) g(y(n))→ g(y).

(iv)
∥∥∥ f
(

t, y(n)t ,
∫ t

0 h(t, τ, y(n)τ ) dτ
)
− f

(
t, yt,

∫ t
0 h(t, τ, yτ) dτ

)∥∥∥ ≤ 2k.

These together with Lebesgue’s dominated convergence theorem, we have∥∥∥Qy(n)(t)−Qy(t)
∥∥∥

≤ M
∥∥∥g(y(n))(0)− g(y)(0)

∥∥∥
+

M
Γ(α)

∫ t

0
(t− s)α−1

∥∥∥∥ f
(

s, y(n)s ,
∫ s

0
h(s, τ, y(n)τ ) dτ

)
− f

(
s, ys,

∫ s

0
h(s, τ, yτ) dτ

)∥∥∥∥ ds

→ 0 as n→ ∞.

Thus Q is a continuous map from B to C([−a, b], X).
Now we show that Q is an increasing monotonic operator from B to B. Let x, y ∈ B with

x ≤ y, then x(t) ≤ y(t), t ∈ [−a, b]. Therefore, for any t ∈ [0, b], xt ≤ yt in the ordered Banach
space D. By the positivity of operators U(t) and V(t), (H2) (H3) and (H4), we have

Qx ≤ Qy. (3.3)

To show that x(0) ≤ Qx(0) and Qy(0) ≤ y(0), we let cDαx(0)(t) = Ax(0)(t) + ξ(t), t ∈ J. By
Definition 2.3, Lemma 2.4 and the positivity of U(t) and V(t) for t ∈ J, we get that

x(0)(t) = U(t)x(0)(0) +
∫ t

0
(t− s)α−1V(t− s)ξ(s) ds

≤ U(t)(φ(0) + g(x(0))(0)) +
∫ t

0
(t− s)α−1V(t− s)

× f
(

s, x(0)s ,
∫ s

0
h(s, τ, x(0)τ ) dτ

)
ds, t ∈ J,

and also x(0)(t) ≤ φ(t) + g(x(0))(t) = Qx(0)(t), t ∈ [−a, 0]. Therefore x(0)(t) ≤ Qx(0)(t), t ∈
[−a, b]. Similarly we can show that Qy(0)(t) ≤ y(0)(t), t ∈ [−a, b]. Thus Q : B → B is an
increasing monotonic operator.

Next we show that Q(B) is equicontinuous on [−a, b]. Let us choose any x ∈ B and
t1, t2 ∈ [−a, b] with t1 < t2. If t1, t2 ∈ [−a, 0], then ‖Qx(t2) − Qx(t1)‖ ≤ ‖φ(t2) − φ(t1)‖+
‖g(x)(t2) − g(x)(t1)‖ → 0 as t1 → t2 independently of x ∈ B because φ ∈ D and by (H4).
Further, if t1, t2 ∈ J with t1 < t2, then we have that
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‖Qx(t2)−Qx(t1)‖
≤ ‖U(t2)(φ(0) + g(x)(0))−U(t1)(φ(0) + g(x)(0))‖

+
∥∥∥ ∫ t1

0
(t2 − s)α−1 [V(t2 − s)−V(t1 − s)] f

(
s, xs,

∫ s

0
h(s, τ, xτ) dτ

)
ds
∥∥∥

+
∥∥∥ ∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
V(t1 − s) f

(
s, xs,

∫ s

0
h(s, τ, xτ) dτ

)
ds
∥∥∥

+
∥∥∥ ∫ t2

t1

(t2 − s)α−1V(t2 − s) f
(

s, xs,
∫ s

0
h(s, τ, xτ) dτ

)
ds
∥∥∥

≤ ‖U(t2)(φ(0) + g(x)(0))−U(t1)(φ(0) + g(x)(0))‖

+k
∫ t1

0
(t2 − s)α−1‖V(t2 − s)−V(t1 − s)‖ ds

+
Mk

Γ(α)

∫ t1

0
|(t2 − s)α−1 − (t1 − s)α−1| ds

+
Mk

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds

= I1 + I2 + I3 + I4,

where

I1 = ‖U(t2)(φ(0) + g(x)(0))−U(t1)(φ(0) + g(x)(0))‖,

I2 = k
∫ t1

0
(t2 − s)α−1‖V(t2 − s)−V(t1 − s)‖ ds,

I3 =
Mk

Γ(α)

∫ t1

0
|(t2 − s)α−1 − (t1 − s)α−1| ds,

I4 =
Mk

Γ(α)

∫ t2

t1

(t2 − s)α−1 ds.

For any ε ∈ (0, t1), we have

I2 ≤ k
∫ t1−ε

0
(t2 − s)α−1‖V(t2 − s)−V(t1 − s)‖ ds

+ k
∫ t1

t1−ε
(t2 − s)α−1‖V(t2 − s)−V(t1 − s)‖ ds

≤ k
∫ t1−ε

0
(t2 − s)α−1 ds sup

s∈[0,t1−ε]

‖V(t2 − s)−V(t1 − s)‖

+
2Mk
Γ(α)

∫ t1

t1−ε
(t2 − s)α−1 ds

≤ k
∫ t1−ε

0
(t2 − s)α−1 ds sup

s∈[0,t1−ε]

‖V(t2 − s)−V(t1 − s)‖

+
2Mk

Γ(α + 1)
[(t2 − t1 + ε)α − (t2 − t1)

α].

By Lemma 2.6, we get that I2 → 0 as t1 → t2 and ε → 0 independently of x ∈ B. From the
expression of I1, I3 and I4, we can easily show that I1 → 0, I3 → 0 and I4 → 0 as t2 → t1

independently of x ∈ B. Therefore ‖Qx(t2)−Qx(t1)‖ → 0 as t1 → t2 independently of x ∈ B.
Thus Q(B) is equicontinuous on [−a, b].
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Further we show that the set G(t) = {Qx(t) : x ∈ B}, t ∈ [−a, b], is relatively com-
pact in X. For t ∈ [−a, 0], G(t) = {φ(t) + g(x)(t) : x ∈ B}, is relatively compact in X as
g : C([−a, b], X) → D is a continuous and compact map. Let t ∈ (0, b] be a fixed real number
and κ be a given real number satisfying 0 < κ < t and δ > 0. For x ∈ B, we define

Qκ,δx(t) =
∫ ∞

δ
ψα(ϑ)T(tαϑ) dϑ[φ(0) + g(x)(0)]

+ α
∫ t−κ

0
(t− s)α−1

∫ ∞

δ
ϑψα(ϑ)T((t− s)αϑ)

× f
(

s, xs,
∫ s

0
h(s, τ, xτ) dτ

)
dϑ ds

=T(καδ)
∫ ∞

δ
ψα(ϑ)T(tαϑ− καδ) dϑ[φ(0) + g(x)(0)]

+ T(καδ)α
∫ t−κ

0
(t− s)α−1

∫ ∞

δ
ϑψα(ϑ)T((t− s)αϑ− καδ)

× f
(

s, xs,
∫ s

0
h(s, τ, xτ) dτ

)
dϑ ds.

Since T(καδ) is compact in X for καδ > 0, the set Gκ,δ(t) = {Qκ,δx(t) : x ∈ B} is relatively
compact in X for every κ, 0 < κ < t. Also note that

‖Qx(t)−Qκ,δx(t)‖

≤
∥∥∥∥∫ δ

0
ψα(ϑ)T(tαϑ) dϑ[φ(0) + g(x)(0)]

∥∥∥∥
+α

∥∥∥∥∫ t

0
(t− s)α−1

∫ δ

0
ϑψα(ϑ)T((t− s)αϑ) f

(
s, xs,

∫ s

0
h(s, τ, xτ) dτ

)
dϑ ds

∥∥∥∥
+α

∥∥∥∥∫ t

t−κ
(t− s)α−1

∫ ∞

δ
ϑψα(ϑ)T((t− s)αϑ)s f

(
s, xs,

∫ s

0
h(s, τ, xτ) dτ

)
dϑ ds

∥∥∥∥
≤ M‖

(
φ(0) + g(x)(0)

)
‖
∫ δ

0
ψα(ϑ) dϑ + Mktα

∫ δ

0
ϑψα(ϑ) dϑ + Mkκα

∫ ∞

δ
ϑψα(ϑ) dϑ

→ 0 as κ, δ→ 0+.

Therefore there are relatively compact sets arbitrarily close to the set G(t) for each t ∈ (0, b].
Hence the set G(t), t ∈ (0, b] is relatively compact in X. Also G(t), t ∈ [−a, 0] is relatively
compact in X. By the Arzelà–Ascoli theorem, we conclude that Q(B) is a relatively compact.

Now we define the sequences as

x(n) = Qx(n−1) and y(n) = Qy(n−1), n = 1, 2, . . . , (3.4)

and from (3.3), we have

x(0) ≤ x(1) ≤ · · · ≤ x(n) ≤ · · · ≤ y(n) ≤ · · · ≤ y(1) ≤ y(0). (3.5)

Since Q(B) is relatively compact, {x(n)} has a convergent subsequence {x(nj)}. Let x∗ be
its limit. We claim that the whole sequence {x(n)} converges to x∗. Indeed, for each ε > 0,
there exists an nj (depending upon ε) such that

‖x(nj) − x∗‖ < ε

1 + N
.
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For n ≥ nj, we have

x(nj) ≤ x(n) ≤ x∗,

that is

0 ≤ x(n) − x(nj) ≤ x∗ − x(nj).

By normality of cone P of X, then we have

‖x(n) − x(nj)‖ ≤ N‖x∗ − x(nj)‖.

Hence

‖x(n) − x∗‖ ≤ ‖x(n) − x(nj)‖+ N‖x(nj) − x∗‖
≤ (N + 1)‖x(nj) − x∗‖
≤ ε.

Thus x(n) → x∗ as claimed. By (3.1) and (3.4), we have that

x(n)(t) =


U(t)(φ(0) + g(x(n−1))(0))

+
∫ t

0 (t− s)α−1V(t− s) f
(

s, x(n−1)
s ,

∫ s
0 h(s, τ, x(n−1)

τ ) dτ
)

ds, t ∈ [0, b],

φ(t) + g(x(n−1))(t), t ∈ [−a, 0].

Taking n→ ∞ and Lebesgue’s dominated convergence theorem, we have that

x∗(t) =


U(t)(φ(0) + g(x∗)(0))

+
∫ t

0 (t− s)α−1V(t− s) f
(

s, x∗s ,
∫ s

0 h(s, τ, x∗τ) dτ
)

ds, t ∈ [0, b],

φ(t) + g(x∗)(t), t ∈ [−a, 0].

Then x∗ ∈ C([−a, b], X) and x∗ = Qx∗. Thus x∗ is a fixed point of Q, hence x∗ becomes
a mild solution of (1.1). Similarly we can prove that there exists y∗ ∈ C([−a, b], X) such
that y(n) → y∗ as n → ∞ and y∗ = Qy∗. Let x ∈ B be any fixed point of Q, then by (3.3),
x(1) = Qx(0) ≤ Qx = x ≤ Qy(0) = y(1). By induction, x(n) ≤ x ≤ y(n). Using (3.5) and taking
the limit as n→ ∞. we conclude that x(0) ≤ x∗ ≤ x ≤ y∗ ≤ y(0). Hence x∗, y∗ are the minimal
and maximal mild solutions of the finite delay differential equations of fractional order (1.1)
on [x(0), y(0)] respectively.

In the next theorem, we again discuss the existence of extremal mild solutions of (1.1) with
help of the measure of noncompactness and monotone iterative procedure. In this result, the
semigroup {T(t)}t≥0 does not have to be compact.

Theorem 3.2. Let X be an ordered Banach space, whose positive cone P is normal with normal constant
N, A be the infinitesimal generator of C0-semigroup {T(t)}t≥0 on X and T(t)(t ≥ 0) be a positive
operator. Also suppose that the Cauchy delay problem (1.1) has lower and upper solutions x(0), y(0) ∈
C([−a, b], X) with x(0) ≤ y(0) and the assumptions (H1)–(H4) hold. If the following assumptions are
satisfied:

(H5) The functions f , h satisfy following:
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(i) There exists an integrable function ζ : Σ→ [0, ∞) such that

µ(h(t, s, H)) ≤ ζ(t, s) sup
−a≤ν≤0

µ(H(ν)) a.e. t ∈ J

and H ⊂ D, where H(ν) = {ϕ(ν) : ϕ ∈ H}.
(ii) There exists a constant L ≥ 0 such that

µ( f (t, E, S)) ≤ L
[

sup
−a≤ν≤0

µ(E(ν)) + µ(S)
]

,

for a.e. t ∈ J and E ⊂ D, S ⊂ X, where E(ν) = {ϕ(ν) : ϕ ∈ E}. For convenience, we
write ζ∗ = max

∫ t
0 ζ(t, s) ds,

and K = 2MLbα

Γ(α+1) (1 + 2ζ∗) < 1, then the Cauchy delay problem (1.1) has minimal and maximal mild

solutions between x(0) and y(0).

Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. We define a map Q : B →
C([−a, b], X) as defined in Theorem 3.1. From the proof of Theorem 3.1, Q : B → B is a
continuously increasing operator and Q(B) is equicontinuous. Now we define the sequences
x(n) and y(n) as defined in Theorem 3.1, which are given by (3.4).

Let S = {x(n)}∞
n=1. The normality of positive cone PC and (3.5) imply that S is bounded.

By (3.1), we have that x(n)(t) = φ(t) + g(x(n−1))(t), n = 1, 2, . . . , for t ∈ [−a, 0]. For t ∈ [−a, 0],
we get µ({x(n)(t)}) = µ({φ(t) + g(x(n−1))(t)}) ≤ µ({φ(t)}+ µ{g(x(n−1))(t)}) = 0 as g is a
compact operator. Thus we have that

µ({x(n)(t)}) = 0, t ∈ [−a, 0]. (3.6)

Since S(t) = {x(1)(t)} ∪ {Q(S)(t)}, t ∈ J, then µ(S(t)) = µ(Q(S)(t)), t ∈ J. For any t ∈ J
and by using (H4), (H5), (3.1), (3.4), (3.6), we get

µ(S(t)) = µ

({
U(t)(φ(0) + g

(
x(n)

)
(0))

+
∫ t

0
(t− s)α−1V(t− s) f

(
s, x(n)s ,

∫ s

0
h
(
s, τ, x(n)τ

)
dτ
)

ds
})

≤ µ ({U(t)(φ(0)}) + µ
({

g
(

x(n)
)
(0))

})
+ µ

({∫ t

0
(t− s)α−1V(t− s) f

(
s, x(n)s ,

∫ s

0
h
(
s, τ, x(n)τ

)
dτ
)

ds
})

≤ 2ML
Γ(α)

∫ t

0
(t− s)α−1

[
sup
−a≤ν≤0

µ
({

x(n)(s + ν)
})

+ µ

({∫ s

0
h
(
s, τ, x(n)τ

)
dτ

})]
ds

≤ 2ML
Γ(α)

∫ t

0
(t− s)α−1

[
sup

0≤r≤s
µ
({

x(n)(r)
})

2
∫ s

0
ζ(s, τ) sup

−a≤ν≤0
µ
({

x(n)(τ + ν)
})

dτ

]
ds

≤ 2ML
Γ(α)

(1 + 2ζ∗)
∫ t

0
(t− s)α−1 sup

0≤r≤s
µ
({

x(n)(r)
})

ds

≤ 2MLbα

Γ(α + 1)
(1 + 2ζ∗) sup

−a≤r≤b
µ
({

x(n)(r)
})

.
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Since {Qx(n)}∞
n=0, i.e. {x(n)}∞

n=1, are equicontinuous on [−a, b] and by Lemma 2.10, we get

µ(S) ≤ 2MLbα

Γ(α + 1)
(1 + 2ζ∗)µ

({
x(n)

})
= Kµ(S).

Since K < 1, this implies that µ(S) = 0, i.e. µ({x(n)}∞
n=1) = 0. Therefore the set {x(n) : n ≥ 1}

is relatively compact in B. So we have that the sequence {x(n)} has a convergent subsequence
in B. By the proof of Theorem 3.1, the sequence {x(n)} is itself a convergent sequence. So
there exists x∗ ∈ B such that x(n) → x∗ as n → ∞. Similarly there exists y∗ ∈ B such that
y(n) → y∗ as n→ ∞ and y∗ = Qy∗. Again by Theorem 3.1, x∗ and y∗ become the minimal and
maximal mild solutions of the finite delay differential equations of fractional order (1.1) in B
respectively.

In the next theorem, we shall prove the uniqueness of the solution of the system (1.1) by
using monotone iterative procedure. For this we make the following assumption.

(H6) The following conditions are satisfied.

(i) The function h : Σ×D → X is continuous and there exists an integrable function
ζ : Σ→ [0, ∞) such that for some ν ∈ [−a, 0],

h(t, s, ϕ2)− h(t, s, ϕ1) ≤ ζ(t, s)(ϕ2(ν)− ϕ1(ν)),

for any (t, s) ∈ Σ, ϕ1, ϕ2 ∈ D with x(0)s ≤ ϕ1 ≤ ϕ2 ≤ y(0)s .

(ii) The function f : J × D × X → X is continuous and there exists a constant η ≥ 0
such that for some ν ∈ [−a, 0],

f (t, ϕ2, u2)− f (t, ϕ1, u1) ≤ η[(ϕ2(ν)− ϕ1(ν)) + (u2 − u1)],

for any t ∈ J, ϕ1, ϕ2 ∈ D with x(0)t ≤ ϕ1 ≤ ϕ2 ≤ y(0)t and u1, u2 ∈ X with∫ t
0 h(t, s, x(0)s ) ds ≤ u1 ≤ u2 ≤

∫ t
0 h(t, s, y(0)s ) ds. For convenience, we write ζ∗ =

max
∫ t

0 ζ(t, s) ds.

(H7) The function g : C([−a, b], X) → D satisfies that for any t ∈ [−a, 0] and x, y ∈ B with
x ≤ y, there exists a constant γ(0 ≤ γ < 1

N ) such that

g(y)(t)− g(x)(t) ≤ γ(y(t)− x(t)).

Theorem 3.3. Let X be an ordered Banach space, whose positive cone P is normal with normal constant
N, A be the infinitesimal generator of C0-semigroup {T(t)}t≥0 on X and T(t)(t ≥ 0) be a positive
operator. Also suppose that the Cauchy delay problem (1.1) has lower and upper solutions x(0), y(0) ∈
C([−a, b], X) with x(0) ≤ y(0). If the assumptions (H2), (H3), (H4), (H6) and (H7) hold, and
K = 2MLbα

Γ(α+1) (1 + 2Nζ∗) < 1, where L = Nη, then the Cauchy delay problem (1.1) has a unique

mild solution between x(0) and y(0).

Proof. Let {ϕn} ⊂ D and {un} ⊂ X be two monotone increasing sequences. Take any m, n =

1, 2, . . . , with m > n, by (H2), (H3) and (H6), we get, for some ν1, ν2 ∈ [−a, 0],

θ ≤ h(t, s, ϕm)− h(t, s, ϕn) ≤ ζ(t, s)(ϕm(ν1)− ϕn(ν1))
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and

θ ≤ f (t, ϕm, um)− f (t, ϕn, un) ≤ η
[
(ϕm(ν2)− ϕn(ν2)) + (um − un)

]
.

Use the normality of the positive cone P, we get

‖h(t, s, ϕm)− h(t, s, ϕn)‖ ≤ Nζ(t, s)‖ϕm(ν1)− ϕn(ν1)‖ (3.7)

and

‖ f (t, ϕm, um)− f (t, ϕn, un)‖ ≤ Nη
[
‖ϕm(ν2)− ϕn(ν2)‖+ ‖um − un‖

]
. (3.8)

By the definition of measure of noncompactness, we get

µ ({h(t, s, ϕn)}) ≤ Nζ(t, s)µ ({ϕn(ν)})
≤ Nζ(t, s) sup

−a≤ν≤0
({ϕn(ν)})

and

µ ({ f (s, ϕn)}) ≤ L [µ ({ϕn(ν)}) + µ ({un})]

≤ L

[
sup
−a≤ν≤0

µ ({ϕn(ν)}) + µ ({un})
]

,

where L = Nη. Clearly the assumption (H5) is satisfied. The assumption (H1) is sat-
isfied by the inequalities (3.7) and (3.8). Thus the assumptions (H1)–(H5) hold and K =
2MLbα

Γ(α+1) (1 + 2Nζ∗) < 1. So by Theorem 3.2, the Cauchy delay problem (1.1) has minimal and
maximal mild solutions between x(0) and y(0).

Let x∗(t) and y∗(t) be the minimal and maximal solutions of Cauchy delay problem (1.1)
respectively on the ordered interval B = [x(0), y(0)]. By (3.1), (H7) and for any t ∈ [−a, 0], we
have

θ ≤ y∗(t)− x∗(t) = Qy∗(t)−Qx∗(t)

= g(y∗)(t)− g(x∗)(t)

≤ γ(y∗(t)− x∗(t))

By using the normality of positive cone P, we get ‖y∗(t)− x∗(t)‖ ≤ Nγ‖y∗(t)− x∗(t)‖ for all
t ∈ [−a, 0]. This implies that y∗(t) = x∗(t) for all t ∈ [−a, 0] as Nγ < 1. Now by (3.1), (H6)
and the positivity of operator U(t) and V(t) and for any t ∈ [0, b], we have

θ ≤ y∗(t)− x∗(t) = Qy∗(t)−Qx∗(t)

=
∫ t

0
(t− s)α−1V(t− s)

[
f
(

s, y∗s ,
∫ s

0
h(s, τ, y∗τ) dτ

)
− f

(
s, x∗s ,

∫ s

0
h(s, τ, x∗τ) dτ

)]
ds

≤ η
∫ t

0
(t− s)α−1V(t− s)

[
(y∗s (ν)− x∗s (ν)) +

( ∫ s

0
h(s, τ, y∗τ) dτ −

∫ s

0
h(s, τ, x∗τ) dτ

)]
ds

≤ η
∫ t

0
(t− s)α−1V(t− s)

[
(y∗s (ν)− x∗s (ν)) +

∫ s

0
ζ(s, τ)

(
y∗τ(ν)− x∗τ(ν)

)
dτ

]
ds,
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where ν ∈ [−a, 0]. By applying the normality of the positive cone P, we get

‖y∗(t)− x∗(t)‖ ≤ Nη

∥∥∥∥ ∫ t

0
(t− s)α−1V(t− s)

[
(y∗s (ν)− x∗s (ν))

+
∫ s

0
ζ(s, τ)

(
y∗τ(ν)− x∗τ(ν)

)
dτ
]

ds
∥∥∥∥

≤ MNη

Γ(α)

∫ t

0
(t− s)α−1

[
‖y∗(s + ν)− x∗(s + ν)‖

+
∫ s

0
ζ(s, τ)‖y∗(ν + τ)− x∗(ν + τ)‖ dτ

]
ds

≤ MNη

Γ(α)

∫ t

0
(t− s)α−1

[
1 +

∫ s

0
ζ(s, τ) dτ

]
ds‖y∗ − x∗‖

≤ MNηbα

Γ(α + 1)
(1 + ζ∗)‖y∗ − x∗‖.

(3.9)

Since y∗(t) = x∗(t) for t ∈ [−a, 0] and by the Inequality, we get that ‖y∗ − x∗‖ ≤ K‖y∗ − x∗‖.
But K < 1

2 , so ‖y∗ − x∗‖ = 0, i.e., y∗(t) = x∗(t), t ∈ [−a, b]. Hence y∗ = x∗ is the unique mild
solution of the cauchy delay problem (1.1) between x(0) and y(0).

4 Example

Let X = L2([0, π], R). Consider the following nonlocal fractional partial differential equations
with finite delay:

cDα
t z(t, ξ) = ∂2

∂ξ2 z(t, ξ) + L
(
|zt(ν,ξ)|

1+|zt(ν,ξ)|

+
∫ t

0 (t− s)−
1
2 s−

1
2
∫ 0
−r γ(ν)zs(ν, ξ) dν ds

)
, t ∈ [0, b], ξ ∈ [0, π]

z(t, 0) = z(t, π) = 0, t ∈ [0, b],

z(ν, ξ) = φ(ν, ξ) +
∫ b

0 ρ(s, ν) (z(s,ξ))2

1+(z(s,ξ))2 ds, −a ≤ ν ≤ 0,

(4.1)

where cDα
t is a Caputo fractional partial derivative of order α, 0 < α < 1; a > 0; L ≥ 0;

zt(ν, ξ) = z(t + ν, ξ), t ∈ [0, b], ν ∈ [−a, 0]; the map γ : [−a, 0]→ R+ is continuous; φ ∈ D =

C([−a, 0]× [0, π], R+); ρ(s, ν) is a continuous operator from compact square [0, b]× [−a, 0] to
R+.

Let P = {v ∈ X : v(ξ) ≥ 0 a.e. ξ ∈ [0, π]}. Then P is a normal cone in Banach space X
and its normal constant is 1, i.e. N = 1. We define an operator A : X → X by Av = v′′ with
domain

D(A) = {v ∈ X : v, v′ is absolutely continuous v′′ ∈ X, v(0) = v(π) = 0}.

It is well known that A is an infinitesimal generator of a compact analytic semigroup
of uniformly bounded linear operator {T(t), t ≥ 0} in X. For ξ ∈ [0, π], ν ∈ [−a, 0] and
ϕ ∈ C([−a, 0], X), we define

z(t)(ξ) = z(t, ξ),

ϕ(t)(ξ) = ϕ(t, ξ),

h(t, s, ϕ)(ξ) = (t− s)−
1
2 s−

1
2

∫ 0

−r
γ(ν)ϕ(ν, ξ) dν ds,
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f (t, ϕ, u)(ξ) = f (t, ϕ(ν, ξ), u(ξ)) = L
( |ϕ(ν, ξ)|

1 + |ϕ(ν, ξ)| + u(ξ)
)

,

g(z)(ν)(ξ) = g(z(ν, ξ)) =
∫ b

0
ρ(s, ν)

(z(s, ξ))2

1 + (z(s, ξ))2 ds,

φ(ν)(ξ) = φ(ν, ξ).

Thus the above nonlocal fractional partial differential equations with finite delay (4.1) can be
written as the abstract form of (1.1).

Let v(t, ξ) = 0, (t, ξ) ∈ [−a, b] × [0, π]. Then f
(
t, vt(ν, ξ),

∫ t
0 h(t, s, vs(ν, ξ)) ds

)
= 0 for

t ∈ [0, b] and φ(ν, ξ) ≥ v(ν, ξ) for ν ∈ [−a, 0]. Now we assume that there is a function
w(t, ξ) ≥ 0 such that

cDα
t w(t, ξ) ≥ ∂2

∂y2 w(t, ξ) + f
(

t, wt(ν, ξ),
∫ t

0
h(t, s, ws(ν, ξ)) ds

)
,

w(t, 0) = w(t, π) = 0 and w(ν, ξ) ≥ φ(ν, ξ) + g(w(ν, ξ)) for ν ∈ [−a, 0]. Thus v, w become
lower and upper solutions of the system (4.1) respectively and v ≤ w. By the definition
of functions of f , h and g, we can easily see that assumptions (H1)–(H4) are satisfied. For
t ∈ [0, b], ϕ1, ϕ2 ∈ C([−a, 0], X) with 0 ≤ ϕ1 ≤ ϕ2 and u1, u2 ∈ X, then

0 ≤ f (t, ϕ2, u2)(ξ)− f (t, ϕ1, u1)(ξ) ≤ L[(ϕ2(ν)(ξ)− ϕ1(ν)(ξ)) + (u2(ξ)− u1(ξ))]

and

0 ≤ h(t, s, ϕ2)(ξ)− h(t, s, ϕ1)(ξ) = (t− s)−
1
2 s−

1
2

∫ 0

−r
γ(ν)(ϕ2(ν)(ξ)− ϕ1(ν)(ξ)) dν.

By normality of cone P, we have

‖ f (t, ϕ2, u2)− f (t, ϕ1, u1)‖ ≤ L[‖ϕ2(ν)− ϕ1(ν)‖+ ‖u2 − u1‖]

and

‖h(t, s, ϕ2)− h(t, s, ϕ1)‖ ≤ (t− s)−
1
2 s−

1
2

∫ 0

−r
|γ(ν)|‖ϕ2(ν)− ϕ1(ν)‖l dν.

Hence for any bounded set E ⊂ C([−a, 0], X) and S ⊂ X, we have

µ( f (t, E, S)) ≤ L

[
sup
−a≤ν≤0

µ(E(ν)) + µ(S)

]

and

µ(h(t, s, E)) ≤ ζ(t, s) sup
−a≤ν≤0

µ(E(ν)),

where ζ(t, s) = (t− s)−
1
2 s−

1
2
∫ 0
−r |γ(ν)| dν and ζ∗ = supt∈[0,b] = π

∫ 0
−r |γ(ν)| dν. Thus assump-

tion (H5) is satisfied. If K = 2MLbα

Γ(1+α)
(1 + ζ∗) < 1, all the conditions of the Theorem 3.2 are

satisfied. Hence, by Theorem 3.2, the system (4.1) has the minimal and maximal mild solu-
tions lying between the lower solution 0 and the upper solution w.
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