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RADIAL SOLUTIONS TO A SUPERLINEAR DIRICHLET PROBLEM USING
BESSEL FUNCTIONS

JOSEPH IAIA* AND SRIDEVI PUDIPEDDI**

ABSTRACT. We look for radial solutions of a superlinear problem in a ball. We show that for if n is a
sufficiently large nonnegative integer, then there is a solution v which has exactly n interior zeros. In
this paper we give an alternate proof to that which was given in [1].

1. INTRODUCTION

In this paper we look for solutions u : RN — R of the partial differential equation

{Au + f(u) = g(|z|) for z € Q

(1.1)
u =0 for x € 99,

for N > 2 and where Q is the ball of radius 7" > 0 centered at the origin in RY, A is the Laplacian
operator, and f : R — R is a continuous function and where g € C'[0,T].

Motivation: A. Castro and A. Kurepa proved existence of solutions of (1.1) for a wide variety of
nonlinearities, f. See [1]. In this paper we give an alternate and, in our estimation, a somewhat
easier proof of this result by approximating solutions of (1.1) with appropriate linear equations. In a
groundbreaking paper in 1979, B. Gidas, W. Ni, and L. Nirenberg [2] proved that if 2 is a ball then all
positive solutions of

Au+ f(u) =01in Q
u =0 on 0f)
are spherically symmetric. K. McLeod, W.C. Troy and F.B. Weissler studied the radial solutions of

Au+ f(u) =0in Q
| llim u(z) =0
for Q € RY in [3].
We assume the following hypotheses:
(H1) f is a locally Lipschitz continuous function, f is increasing for large |u| and f(0) = 0.

(H2) | l‘im fw = oo (that is, f is superlinear).
u|l—oco U

Let F(u) = [ f(s)ds and note that from (H2) it follows that
F
(1.2) im 0 _ o

[u|—o0 U

(H3) There exists a k with 0 < k < 1, such that

. uw \ 7 (N —2) N +2 / _
i () () - s - gl al = Tl ) = o

where || || is the supremum norm on [0, 7.
(H3*) There exists a k with 0 < k < 1, such that

N +2
2

lim (%) : <NF(ku) - wuf(u)

Uu——0o0

MHMNMHM)w
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(H4) There exists an M > 0 such that

N -2 N +2
NE@) - 22y - 2 gl - Tlig > -1
for all u.
We assume that u(z) = u(]z|) and let r = |z|. In this case (1.1) becomes the nonlinear ordinary
differential equation
" N-1 1
(1.3) '+ ——u' 4+ flu)=g(r) for0<r<T
r
(1.4) u'(0) = 0,u(T) = 0.

Main Theorem: If (H1)-(H4) are satisfied then (1.1) has infinitely many radially symmetric solutions
with «(0) > 0. If in place of (H3) we have (H3*) then (1.1) has infinitely many radially symmetric
solutions with u(0) < 0.

2. PRELIMINARIES

The technique used to solve (1.3) - (1.4) is the shooting method. That is, we first look at the initial
value problem

N -1
(2.1) u’ + TU/ + fu)=g(r) forO<r<T

(2.2) u(0) =d > 0,4'(0) = 0.
By varying d appropriately, we attempt to find a d such that u(r,d) has exactly n zeros on [0,7) and
u(T) = 0.

Multiplying (2.1) by V=1 and integrating on (0,r) gives

(23) W= o [ ) - gtolar

Integrating (2.3) and applying the initial conditions we get

(2.4) u(r) =d— /O SN% (/0 N f(u) — g(t)] dt) ds.

Let ¢(u) be equal to the right hand side of (2.4). It is straightforward to show that ¢(u) is a
contraction mapping on C[0, €], the set of continuous functions with supremum norm on [0, €], for some
€ > 0. Then by the contraction mapping principle there exists a u € C[0, €] such that ¢(u) = u. Thus,

u is continuous solution of (2.4). Then by (H1), (2.2), and (2.3), we see that v is continuous on [0, €].
/ !/ !/

From (H1) and (2.3) it follows that s bounded, that lirn+ Z exists, and so that % s continuous
r r—0t T r

on [0, ¢€]. Then it follows from (2.1) that «” is continuous on [0, €].

In order to show that u € C2[0, 7], we define the energy equation of (2.1)-(2.2) as

u/2

(2.5) E = — + F(u).
Note that from (1.2) there exists a J > 0 such that
(2.6) F(u) > —J
for all u € R.
From (2.5) and (2.6) we see that
(2.7) u? < 2(E+J).
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Using (2.1) we see that

E = _EU’Q —
r

!

g(r)u
< lglllw'| (defined in (H3))
<||g|[V2VE +J (by (2.7)).

Dividing by vV E + J and integrating gives
1
EIU’I < VE({)+J < VE(d) +J +[lgllt < F(d) + T+ |lglIT.

Thus, from (2.7) it follows that |u’| is uniformly bounded wherever it is defined and since u(0) = d,
thus |u| is uniformly bounded wherever it is defined. It follows from this that u and v’ are defined on
all of [0, 7] and from (2.1) it then follows that u € C2[0,T].

The next several arguments presented were essentially originally proved in [1] and are included here
for completeness.

Since f(u) > 0 for sufficiently large v > 0 (by (H2)), we see from (2.3) that v < 0 on (0,r) for
small > 0 if d is sufficiently large. Let k be the number given by (H3). Now for sufficiently large d
it follows that «' < 0 on (0,rgq) where riq is the smallest positive value of r such that u(rgq) = kd.

Remark 1: First, we want to find a lower bound for rq. Since f is increasing for large u (by (H1)),
we see from (2.3) that

N2 (@) + gl [
= 17 +1lgll1 -

Dividing by V! and integrating on [0, r4] we see that

i /Ow vt < /Ow tif(d) +llglll ,, _ tlf(d) + ”gmrid-

N 2N
Thus

)

ON(1— k)d
f@d) +gll”

For sufficiently large d we have ||g|| < f(d) (by (H2)), thus we obtain for sufficiently large d

Tkd =

o [2N(—k)d
R R TICI
So,
N(1— k)d
(28) Tkd Z W

for sufficiently large d.
Remark 2: Because of its appearance in Pohozaev’s identity we will see that it will be important to
find a lower bound on

Tkd N —2 N + 2
(2.9) / N1 (NF(u) - = f(w) - ; g(t) u—t ¢'(t) u> dt.
0
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By hypothesis (H2), F’ = f > 0 for large u. Therefore, F is increasing for large u. Since for large d, u
is decreasing for 0 < t < rgq, and kd < u(t) < d, this implies F(kd) < F(u) < F(d). So on [0, 4] we
have

Tkd
(2.10) / tNTINF(u) dt > F(kd) rY, for large d
0

then by hypothesis (H1), f is increasing for large u and using this we have

Tkd N — N -2
/ N1 u fu) dt < 5N d f(d) rp, for large d
0
S0,
Tha o N —2 N -2
(2.11) /0 tN 1T uf(u)dt > ———=df (d )Ty

Now using the estimates in (2.8), (2.10), (2.11) and using the fact that g and ¢’ are bounded, we
estimate (2.9) as follows:

(2.12)
Tkd N1 N —2 N+2 , N — N+2
[ e (v - 5w - S gt g ) de > (k) - 2@ - 5 ol 5Tl o
> (vt - 2 2@ - 2 gl - 7l ) %( W)

N
2

= o) (NF(ha) - 2@ - 232 gl - 1l ) (755

N
2

where C(N, k) = &[N (1 — k)]

Lemma 2.1. If (H1) - (H4) are satisfied, then

2.13 li f E(r,d
(2:19) 2 iy P ) =

Proof. Let us suppose 0 < r < T'. Consider Pohozaev’s identity which states
N — N -2 N +2
. uf(w) - =

This can be verified by simply differentiating and then using (2.1).
Integrating Pohozaev’s identity on [0, 7], and using (H4) and (2.12) gives

rNE(r,d) —rNg(r )u+N2 2 Nl :/Tthl [NF(U) N;Quf(u)f N;ng(t)utg’(t)u] dt
0

rNE —rNg(r)u + 27’N1uu’}/ =Nl [NF(u) - g(r)u — Tg/(r)u} .

rea N -2 N +2 )
:/0 t |:NF(U)— 5 uf(u)—Tg(t)u—tg(t)u}dt

+/T N1 [NF(u) N2 ) - N; 2 (6 — tg’(t)u] dt

2
d\* N-2 N+2 N _ N
2 - rt o —r
> C(Nk) | —= NF(kd) — ——d ——|lglld =T d —hkd )
> oW (sig) |[NEGa - 2 ara) lolla - Tlg'la) - ar ()
Ignoring the last term on the right hand side we get
(2.14)
N
N -2 2 N -2 N + MTN

NE(r,d)—rN g(r)u+

N

5 N ' > C(N, k) <

{NF(k:d) — = df(d) -
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Now let us estimate uw’.

First note from (1.2) that there exists a B such that if |u| > B then

2

u
F(u)
then u? < F(u) < F(u)+ J. On other hand if |u| < B then u? < B?. And since F(u)+J > 0 (by (2.6))
we see that for all u we have

(2.15) u? < F(u)+ J + B2
Using Young’s inequality, (2.5), and (2.15) gives us the following;:

< 1. That is if |u| > B

1
w? 4 =2
2 1 12
F(u)+J+B )+§u
1
— (§u'2+F(u)) +J+B?

= E(r,d) + J + B>
Substituting this into the left hand side of (2.14), rewriting, and estimating we see that

N-2 4 N

-2
N E =N g(ryu + ==V’ < TNE+TN|g| Jul + =TV |

N -2

<TNE+TN||g|?+TN[E+J+ B* + N 2w~ 'E+J+ B

N N -2 N-1 N—-1 2 2
= (2T +TT E+T T+— (J + B?) + ||g]]
=CLE+Cy

where C7 > 0 and Cy > 0 depend ounly on T, N, J, B and ||g||.
Thus, combining the above with (2.14) gives:

e (7)) [ - 5 2ara) - X 2 alla - Tlglia] - M-
< C1E+ .
Thus,
a2 o) (75) [ - 22 - X 2 gl - 1t - o4

where C3 depends on T, N, J, B, ||g|| and M.
By assumption the right hand side of the above inequality goes to infinity as d — oo. Therefore,

lim inf E(r,d) =
d—o00 [0,T]

Lemma 2.2. If d is sufficiently large and u(rg) = 0, then u'(rg) # 0.
Proof. By Lemma 2.1, if d is sufficiently large then [('1)11;] E(r,d) > 0. So if u(rg) = 0 then we have
1/ (ro)? = E(ro) > [(i)njﬁ]E(r, d) > 0. O
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Lemma 2.3. For d sufficiently large u has a finite number of zeros on [0,T].

Proof. Suppose there exists 0 < 21 < 22 < ... < 2z, < ... < T and u(z;) = 0. Then by the mean value
theorem there exists m; < mg < ... such that «/(my) = 0 and where z;, < my < zx4+1 < T. So there

exists z = lim z, and by continuity u(z) = 0. Also, klim my = z and u/(z) = 0 but by the above
n—oo — 00
Lemma 2.2, this cannot happen for sufficiently large d. U

3. FINDING ZEROS

Now we want to show that if d is sufficiently large then u(r,d) will have lots of zeros on [0, T].

From (1.2) we know that F(u) — oo as |u| — oo. Therefore, since dlim [ing]E(r, d) = oo (by Lemma
—00 [0,

2.1), and since F'(u) is increasing for large u and decreasing when u is a large negative number, then

for sufficiently large d there are exactly two solutions of F(u) = 3 [inf E(r,d) which we denote as
0,T

—fld 0
ha(d) < 0 < hy(d). For d > 0 sufficiently large we see from (H2) that «”(0) = w

u/'(0) = 0 so w is initially decreasing on (0, r). Note that hj(d) — oo as d — oco. From (2.3) we see that
u will be decreasing as long as f(u) > ||g||.- So we see that there is a smallest » > 0, r1(d), such that
u(r1(d)) = h1(d) and d > u > hi(d) on [0,71(d)).

Let

< 0 and

1 o fw) 1 . f(uw)
3.1 C(d) == Sl =2 —.
(3.1) () =5 i T = 5 T

Then by (H2) we see that C(d) — oo as d — oo.
Lemma 3.1. r1(d) — 0 as d — oc.

Proof. To show this we compare

N -1
(3.2) u + —u + Mu =g(r)
r u
with initial conditions u(0) = d > 0 and «/(0) = 0 with
N -1
(3.3) V' + ——0" + C(d)v =0
r
with initial conditions v(0) = d and v'(0) = 0. Note from (3.1) that
(3.4) @ >2C(d) > C(d) on [0,7r1(d)].

Claim: u < v on (0,71(d)] for sufficiently large d.
Proof of the Claim: Since

then for large d we see from (3.4) that

"N N N
Thus, u < v on (0, €) for some € > 0.
Multiplying (3.2) by 7V ~1v, (3.3) by »V~1u, and then taking the difference of the resultant equations

gives
(rN 'y — uw")) + N <_f(u) — M —C(d) | =0.
u u
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Since g is bounded, for sufficiently large d we see from (3.4) that

@ _ # —C(d) >2C(d) — HZ%” —C(d) on [0,71(d)]
= o - L4l
> -5

>0 (since C(d) — oo as d — oo and hy(d) — oo as d — 0).
Now integrating this from 0 to r where 0 < r < r1(d) and using 4(0) = v(0) = d and v/(0) = v'(0) =0
gives
o' (r)o(r) — o' (r)u(r) < 0 on (0,r(d)].
Suppose now there is a first 79 with 0 < r9 < r1(d) such that 0 < u(rg) = v(ro) and v < v on (0,79).
Then we see from the above inequality that u/(rg) < v'(rg). On other hand, u(r) < v(r) on (0,ry) and
u(rg) = v(rg). So
u(r) —u(rg) <wv(r) —v(ro) on (0,r1(d)].
Thus, for r < ro we have
i W)= ulr0) o)~ ulr)
=Ty r—"To =Ty r—"To
which gives
u' (ro) > /(o).
This is a contradiction since u'(rg) < v'(r). Hence this proves the claim.

Now let z(r) = (7"/\/m)¥ v (r/m) . Then
(3.5) z”+§+<1#j)2>20.

N -2

The above equation is Bessel’s equation of order . Thus, z(r) = AyJn-2(r) + A2YNn_2(r) for

constants A; and A and where J N_2 is the Bessel function of order ¥ which is bounded at » = 0
and Yn_2 is unbounded at r = 0. Since z is bounded at r = 0 and Y~_2 is not, it must be that
2

2
z(r) = A1 Jn-2(r), and A; is a positive constant.
2

On-2
Denoting S~_2 , as the first positive zero of Jx_2 (1), we see that the first positive zero of v is 5((;)
and since v < v on [0,7r1(d)] (by the Claim) we see that
On-2
71 (d) < 7 .
C(d)
O

Since C'(d) — oo as d — oo (as mentioned after (3.1)) it then follows that dlim r1(d) = 0.

Lemma 3.2. For large d, u has a first positive zero, z1(d), and z1(d) — 0 as d — oo.

Proof. First we show that u has a zero. We prove this by contradiction. Suppose v > 0 on [0, 7]
)

and consider r > ri(d). Then 0 < u < u(ri(d)) = hi1(d) so F(u) < F(hi(d)). Also since F(hqi(d

1
5 [%){1;] E(r,d) we obtain

u/2 u/2

G+ Fn() > 5+ Flu) = inf E(r.d) = 2P (h(d)
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for r > r1(d).
Thus,
u'? > 2F(hy(d)) for r > r1(d)

- / dWdt> [ JZEn @)t

1(d) r1(d)
d)) = hi1(d) this gives

= u(ri(d)) —u(r) = V2F(h(d))(r — r1(d))

and thus

and since u is decreasing and u(rq

(3.6) hi(d) = u(r

S0,

(
) =

hi(d) — \/2F (hi(d))(r — r1(d)) = u(r) > 0.

Thus,
hi(d
(37) )
F(hy(d))
Evaluating at r = T gives
hi(d
T — ol (d) < #
2F (ha(d))
for large d.
Since hj(d) — oo as d — oo, taking the limit of the above, using Lemma 3.1 and (1.2) we see that
hi(d
O<T:d1im [T —ri(d)] < lim # =0

d=oc \/2F (hi(d))

This is impossible. Thus u has a first zero, z1(d). Then repeating the above argument on [0, z1(d)] and
letting 7 = 21 (d) in (3.7) we get

hi(d
0< 21(d) —ri(d) < _Md
20 ()
as d — o0o. Also, since r1(d) — 0 as d — oo (by Lemma 3.1) we see that z;(d) — 0 as d — oo. O

We next show for sufficiently large d that u attains the value ho(d) at some ro(d) where 21(d) <
ro(d) < T. So we suppose v’ < 0 on a maximal interval (z1(d), ). Here ha(d) < u < 0 and this implies
F(u) < F(hza(d)) for sufficiently large d. Then as in the beginning of the proof of Lemma 3.2

1 1
g0+ F(ha(d) = Su + F(u) > inf E(r,d) = 2F (hs(d))
0
u'? > 2F (ho(d)) on (z1(d),r).

/ fu’dt:/ |u|dt > V2F (ha(d))dt

l(d) l(d) Z1 (d)
and since u(z1(d)) = 0 this leads to

—u(r) = V2F (ha(d))(r — z1(d))

Then

and therefore

(3.8) u(r) < =V2y/F(ha(d))(r — z1(d))

Now suppose by the way of contradiction that v > ha(d) on (z1(d),T). Then from (3.8) we see that

ha(d) < u(r) < —v2y/Flha(@)(r - 21(d))
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Evaluating this at r =T gives
T — Z1 (d) S

and now taking the limit, using Lemma 3.2, and (1.2) we see that
L@ =0
V2\/F(ha(d))
And again this is impossible. Therefore, there exists a smallest value of 7, ro(d), such that z1(d) <
ro(d) < T with u(re(d)) = ha(d) and u > ha(d) on [0,72(d)). Now evaluating (3.8) at r = r3(d) and
using that u(r2(d)) = ha(d) we obtain

ha(d) = u(ra(d)) < —V2y/F(h2(d)(r2(d) — 21(d))

now taking the limit as d — oo and (1.2) gives

0<T= dlim [T — z(d)] < dlim

. - —ha(d)
lim V2[ry(d) — 21(d)] < lim ————te =
Jim VErd) — ()] < Jim — 2O
Hence 73(d) — 21(d) — 0 as d — oo and since z1(d) — 0 as d — oo (from Lemma 3.2) it follows that

(3.9) r2(d) = 0 as d — oo.

We next want to show that « has a minimum on (r2(d),T). Suppose again by contradiction that u
is decreasing on (r2(d),T). We want to show that there exists an extremum of u at r where r > ro(d).

Let C(d) = %( m}iln(d)] M Note that C(d) — oo as d — oo by (H2). Now as in the proof of
—00,h2 U
Lemma 3.1 we compare
N -1
(3.10) u +—u + Mu = g(r)
r u
with
N -1
(3.11) V' + ——0"+ C(d)v =0
r

with initial conditions v(r2(d)) = wu(r2(d)) and v'(r2(d)) = u'(r2(d)). With an argument similar to
the Claim in Lemma 3.1 we can show that u > v on (ro(d),T) for sufficiently large d. Let z(r) =

N—2
(r/\/C(d)) o (r/\/C(d)) . Then again as earlier z solves Bessel’s equation

’ N-—2)2
(3.12) S+ <1@>z0
T

r

of order
Now it is a well known fact about Bessel functions (see [4], Page 165, Theorem C) that there exists
a constant K such that every interval of length K has at least one zero of z(r). This implies that every

K
interval of length m has a zero of v. Thus for large d, we see that v must have a zero on (r2(d),T).
And since u > v on (r2(d),T) we see that u gets positive which contradicts that u is decreasing on
(ro(d), T). Thus we see that there exists an mj(d) with ro(d) < mi(d) < T such that u decreases on

(ra2(d), m1(d)) and mq(d) is a local minimum of u. Also we see that
K
C(d)

—0

mi (d) — Tg(d) S
EJQTDE, 2008 No. 38, p. 9



as d — 00. And since r3(d) — 0 as d — oo (by (3.9)) we see that mi(d) — 0 as d — oo. Also,
F(u(my)) = E(m1(d)) > [ionjf;] E(r,d) — oo as d — oo (by Lemma 2.1). In a similar way we can show

that for large d, u has a second zero, z2(d), with m1(d) < z2(d) < T and z2(d) — 0 as d — oo and u
has a second extremum, ms(d), with z3(d) < ma(d) < T and ma(d) — 0 as d — oco. Continuing in this
way we can get as many zeros of u(r,d) as desired on (0,7") for large enough d.

4. PROOF OF THE MAIN THEOREM

To prove the Main Theorem we construct the following sets.

Let S = { d | u(r,d) has exactly k zeros for all r € [0,T) and [%)an] E>0}.

Let us denote kg > 0 as the smallest value of k such that Sy # (). Also, as we saw at the end of section
3, u(r, d) has more and more zeros on (0,T") provided d is chosen large enough. And also inf F > 0 if

o,

d is chosen large enough (by Lemma 2.1). Hence it follows that Sk, is bounded above and nonempty.
Let di, = sup S, -
Lemma 4.1. u(r,dy,) has exactly ko zeros on [0,T).

Proof. By definition of kg, u(r,dy,) has at least ko zeros on [0,T). Suppose u(r, di,) has more than ko
zeros on [0,T). Then for d close to di, and d < dj,, by continuity with respect to initial conditions
and by Lemma 2.2, u(r,d) also has more than kg zeros on [0,T). However, if d € Sy,, then u(r, d) has
exactly ko zeros on [0,7"). This is a contradiction to the definition of d,. Thus, u(r, dy,) has exactly ko
zeros on [0,T). O

Lemma 4.2. u(T,d,) = 0.

Proof. If u(T,dg,) # 0 then by continuity with respect to initial conditions and Lemma 2.2, u(r, d) has
the same number of zeros as u(r, dy,) for d close to dy,. But if d > di, then d ¢ Sk, so u(r,d) cannot
have the same number of zeros as u(r, dy, ). This is a contradiction. Thus, u(T, dy,) = 0. U

Let Spo+1 = { d > dy, | u(r,d) has exactly ko + 1 zeros on [0,T) and inf] E>0}.

)

Lemma 4.3. Sy, 11 # 0 and Sk,+1 is bounded above.

Proof. By continuity with respect to initial conditions and Lemma 2.2, if d > di, and d close to dy,
then u(r, d) has at most kg + 1 zeros on [0,7). Also, if d > dj, then d ¢ Sk, so u(r,d) does not have
exactly ko zeros on [0,T). Now wu(r,d) cannot have less than ko zeros because this would imply that
Sk, = 0 for some value of k smaller than ko which contradicts the definition of ky. Thus, u(r, d) has at
least ko + 1 zeros on [0, 7). Since we already showed that u(r,d) for d > dj, and d close to di, has at
most ko + 1 zeros on [0,T") therefore, for d > di, and d close to dg,, u(r,d) has exactly ko + 1 zeros on
[0,T). Hence Sk,+1 is nonempty. Then by remarks at the end of section 3, Sg,+1 is bounded above. O

Define dj,+1 = sup Sky+1-

As above we can show that wu(r,di,+1) has exactly ko + 1 zeros on [0,T) and u(7T,dk,+1) = 0.
Proceeding inductively, we can find solutions that tend to zero at infinity and with any prescribed
number, n, of zeros on [0,7) where n > kg. Hence, this completes the proof of the Main Theorem if
(H3) holds.

If (H3*) holds instead of (H3) let v(r) = —u(r). Then v satisfies

(4.1) v+

v+ fa(v) = ga(r)

(4.2) v(0) = —d
EJQTDE, 2008 No. 38, p. 10



(4.3) v'(0) =0
where
f2( ): —f(=v)
—g(r)

/fz du/ — F(~u)du = F(-v).

And, now we look for solutions of (4.1)-(4.3) with —d > 0 (that is d < 0) along with v(T") = 0. It is
straightforward to show that (H1), (H2) and (H4) are satisfied by f2 (and F»).
Then by (H3*)

0o = lim_ (%) : (NF(ku) -

o —u \F (N —2) N +2 ,
=i (77 ) " (vrek - B2 s - 5l - g 1l

wse \ F()

- (52) (v

Thus (H3) is satisfied by g2 and fo (and F5).
Also defining

W2y~ X221 g) pul - 719 |u|)

(N72)uf2(u) N+2

g2l Tl = Tl |u|).

1
Es(r,d) = 51}'2 + Fs(v)
we see that

1
By(r,d) = 5u” + Fa(-u)

1
= §u’2 + F(u)

= E(r,d).

Therefore, (H1)-(H4) are satisfied by fo (and F») and so by the first part of the theorem we see
that there are an infinite number of solutions of (4.1)-(4.3) with v(0) = —d > 0 and v(T") = 0. Thus,
u(r) = —v(r) satisfies (1.3)-(1.4) with «(0) = —v(0) = d < 0. This completes the proof of the Main
Theorem.

Here is an example of a u that satisfies the hypotheses (H1)-(H4):
2
(4.4) ' 4+ v 4wt —u=0
r

where N = 3, f(u) = u® — u and g(r) = 0.

Here are some graphs of solutions of (4.4) for different values of d, all graphs are generated numerically
using Mathematica:

(a) Solution that remains positive when d = 4
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(b) Solution with exactly one zero when d = 4.5

(¢) Solution with exactly two zeros when d = 15
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Now let us consider another example, here u satisfies the hypotheses (H1)-(H4):

2
4.5 " ) 3 _ . —
(4.5) u+Tu+u U ]
where N =3, f(u) = u* —u and g(r) = 5.

Here are some graphs of solutions of (4.5) for different values of d, as above all graphs are generated
numerically using Mathematica:
(a) Solution that remains positive when d =5
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(b) Solution with exactly one zero when d = 6

(¢) Solution with exactly three zeros when d = 50
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