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1 Introduction

The theory of time scales, which has recently received a lot of attention, was introduced by Hilger
in his Ph.D.Thesis in 1988 in order to unify continuous and discrete analysis (see [6]). A time
scale T, is an arbitrary nonempty closed subset of the reals. Many authors have expounded on
various aspects of this new theory; see the book by Bohner and Peterson [2] which summarizes
and organizes much of the time scale calculus. For the notions used below we refer to the next
section that provides some basic facts on time scale extracted from [2].

There are many interesting time scales and they give rise to plenty of applications, the cases
when the time scale is equal to reals or the integers represent the classical theories of differential
and of difference equations. Another useful time scale is Pa,b =

⋃+∞
n=0[n(a + b), n(a + b) + a]

which is widely used to study population in biological communities, electric circuit and so on.

In recent years, there has been much research activity concerning the oscillation and nonoscil-
lation of solution of various equations on time scales. We refer the reader to paper [1, 3, 4, 5, 9,
10, 11] and references cited therein.

In [3], Bohner and Saker considered the perturbed nonlinear dynamic equation

(

α(t)(x∆)γ
)∆

+ F (t, xσ) = G(t, xσ , x∆), t ∈ [a, b]. (1.1)

They assumed that
F (t, u)

f(u)
≥ q(t),

G(t, u, v)

f(u)
≤ p(t) and changed (1.1) into the following in-

equality
(α(t)(x∆)γ)∆ + (q(t) − p(t))f(xσ) ≤ 0. (1.2)

Using Riccati transformation techniques, they obtained some sufficient conditions for the solution
to be oscillatory or converge to zero.
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In [11], Saker considered the second order forced nonlinear dynamic equation

(a(t)x∆)∆ + p(t)f(xσ) = r(t), t ∈ [t0,+∞), (1.3)

and supposed that
∫ +∞

t0
|r(s)|∆s < +∞, that is the forced term is must be small enough for

all large t ∈ T. Some additional assumptions have to be imposed on the unknown solutions.
He got some sufficient condition, which imposed on the forced terms directly, for solution to be
oscillatory or converge to zero.

Following this trend, in this paper, we consider a second order nonlinear dynamic equation

x∆∆(t) + p(t)f(x(t)) = e(t), (1.4)

on time scale interval [a,+∞) = {t ∈ T, t ≥ a}, the following conditions are assumed to hold

(H1) e, p ∈ Crd(T, R), p(t) ≥ 0 and p(t) 6≡ 0 for all large t;

(H2) f ∈ C1(R, R), f
′
(t) ≥ 0, xf(x) > 0, x 6= 0.

By a solution of (1.4), we mean a nontrivial real-valued function x satisfying (1.4) for t ≥ a. A
solution x of (1.4) is called oscillatory if it is neither eventually positive nor eventually negative;
otherwise it is called nonoscillatory. Eq.(1.4) is called oscillatory if all solutions are oscillatory.
Our attention is restricted to those solution x of Eq.(1.4) which exist on half line [tx,+∞) with
sup{|x(t)| : t ≥ t0} 6= 0 for any t0 ≥ tx.

The equation that is considered in this paper is different from all the papers mentioned in the
references. Since in all these papers the author considered the equations of the forms

(a(t)x∆)∆ + p(t)f(xσ) = e(t),

so the results in this paper are completely different from the results given for this equation or
to its extension. In difference equations there is a big difference between the oscillation of the
equation

∆(a(t)∆x(t)) + p(t)f(x(t)) = e(t),

and the equation
∆(a(t)∆x(t)) + p(t)f(x(t + 1)) = e(t).

This means that the results in this paper are completely new for the equation under considera-
tion.

To the best of our knowledge, nothing is known regarding the oscillatory behavior of second
order nonlinear dynamic equations with forced terms by Kartsatos technique[7, 8] on time scale
up to now. To develop the qualitative theory of dynamic equation on time scales, in this paper,
we shall consider the forced oscillatory behavior of the second order nonlinear dynamic equation
(1.4) and extend the Kartsatos technique to time scales. When (1.4) is homogeneous, i.e. the
forced term e(t) = 0, we got some new oscillatory results for it.

2 Some preliminaries

On any time scale T, we define the forward and backward jump operators by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

where inf φ = sup T, supφ = inf T, and φ denotes the empty set. A nonmaximal element t ∈ T

is called right-dense if σ(t) = t and right-scattered if σ(t) > t. A nonminimal element t ∈ T is
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said to be left-dense if ρ(t) = t and left-scattered if ρ(t) < t. The graininess µ of the time scale
T is defined by µ(t) = σ(t) − t.

A mapping f : T → X is said to be differentiable at t ∈ T, if there exists b ∈ X such that for
any ε > 0, there exists a neighborhood U of t satisfying |[f(σ(t))−f(s)]−b[σ(t)−s]| ≤ ε|σ(t)−s|,
for all s ∈ U . We say that f is delta differentiable (or in short: differentiable) on T provided
f∆(t) exist for all t ∈ T.

A function f : T → R is called rd− continuous provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous
functions f : T → R will be denoted by Crd(T, R).

The derivative and forward jump operator σ are related by the formula

f(σ(t)) = f(t) + µ(t)f∆(t). (2.1)

Let f be a differentiable function on T. Then f is increasing, decreasing, nondecreasing and
nonincreasing on T if f∆ > 0, f∆ < 0, f∆ ≥ 0 and f∆ ≤ 0 for all t ∈ T, respectively.

We will make use of the following product fg and quotient
f

g
rules for derivative of two

differentiable functions f and g

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ, (2.2)

(

f

g

)∆

=
f∆g − fg∆

ggσ
, (2.3)

where fσ = f ◦ σ, ggσ 6= 0. By using the product rule, the derivative of f(t) = (t − α)m for
m ∈ N and α ∈ T can be calculated as

f∆(t) =

m−1
∑

v=0

(σ(t) − α)v(t − α)m−v−1. (2.4)

For a, b ∈ T and a differentiable function f , the Cauchy integral of f∆ is defined by

∫ b

a

f∆(t)∆t = f(b) − f(a). (2.5)

The integration by parts formula reads

∫ b

a

f∆(t)g(t)∆t = f(t)g(t)|ba −

∫ b

a

fσ(t)g∆(t)∆t, (2.6)

and infinite integrals are defined by

∫ ∞

a

f∆(s)∆s = lim
t→∞

∫ t

a

f∆(s)∆s. (2.7)

Lemma 2.1 (Hölder inequality) Let f, g, k ∈ Crd([a, b], R) and 1
p

+ 1
q

= 1 with p > 1, then

∫ b

a

|k(x)||f(x)g(x)|∆x ≤

(
∫ b

a

|k(x)||f(x)|p∆x

)

1

p
(
∫ b

a

|k(x)||g(x)|q∆x

)

1

q

. (2.8)

If 0 < p < 1, then the inequality is reversed.

See Wong et al.[13]
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3 Oscillation Criteria

In this section, we extend the Kartsatos technique to time scale and give some new oscillation
criteria for Eq.(1.4). Since we are interested in oscillatory behavior, we suppose that the time
scale T under consideration is not bounded above, i.e. it is a time scale interval of the form
[a,+∞). In order to use the Kartsatos technique, we assume that the following condition holds

(H3) There exists an h ∈ C2
rd([a,+∞), R) such that h∆∆(t) = e(t) and h is oscillatory.

Let x(t) = y(t) + h(t), then (1.4) can be rewritten as

y∆∆(t) + p(t)f(y(t) + h(t)) = 0. (3.1)

In order to prove our main results, we need the following auxiliary result

Lemma 3.1 Suppose that (H1)− (H3) hold and x(t) > 0, t ≥ t0 ≥ a is a nonoscillatory solution
of (1.4). Then the solution y of (3.1) satisfies

y(t) > 0, y∆(t) > 0, y∆∆(t) ≤ 0, t ≥ t4 ≥ a.

Proof. Since p(t) ≥ 0, from (3.1) we note that y∆∆(t) = −p(t)f(x(t)) ≤ 0 on [t0,+∞) for some
t0 ≥ a. Next, we show that y∆(t) ≥ 0 on [t1,+∞) for some t1 ≥ t0. If not, say y∆(t2) < 0
for some t2 ≥ t0, since y∆∆(t) ≤ 0, we get y∆(t) ≤ y∆(t2) < 0 for all t ≥ t2, hence y(t) ≤
y(t2)+

∫ t

t2
y∆(t2)∆s → −∞ as t → +∞, but this together with h(t) being oscillatory contradicts

the assumption that x(t) > 0. In fact, given that y∆∆(t) ≤ 0, y∆(t) ≥ 0, we must have y∆(t) > 0
for all t ≥ t3 ≥ t0. Suppose that y∆(t3) ≡ 0, we have y∆∆(t) ≡ 0, t ≥ t3, from (3.1) we get
p(t) ≡ 0, t ≥ t3, which contradicts the assumption (H1).

Next, we show that y(t) is eventually positive. Since x(t) > 0 and h(t) is oscillatory, so
y(t) = x(t) − h(t) cannot be eventually negative nor can it be identically zero. On the other
hand, since y∆(t) > 0 for all t ≥ t3 ≥ t0, thus y(t) certainly cannot be oscillatory. Hence, we
must have that y(t) > 0, t ≥ t4 ≥ t0.

If x > 0 is a nonoscillatory solution of (1.4), for simplicity, we conclude that the solution y of
(3.1) satisfies

y(t) > 0, y∆(t) > 0, y∆∆(t) ≤ 0, t ≥ a. (3.2)

Lemma 3.2 Suppose that (H1)− (H3) hold and x(t) < 0, t ≥ t0 ≥ a is a nonoscillatory solution
of (1.4). Then the solution y of (3.1) satisfies

y(t) < 0, y∆(t) < 0, y∆∆(t) ≥ 0, t ≥ t
′

4 ≥ a.

Proof. The proof is similar to that of Lemma 3.1 and we omit it.

If x < 0 is a nonoscillatory solution of (1.4), for simplicity, we conclude that the solution y of
(3.1) satisfies

y(t) < 0, y∆(t) < 0, y∆∆(t) ≥ 0, t ≥ a. (3.3)

By means of generalized Riccati transformation techniques, we establish some new oscillation
criteria for (1.4) in terms of the coefficients.
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Theorem 3.3 Suppose that (H1)− (H3) hold. Furthermore, assume that there exist a constant
M and two ∆−differentiable function g(t) > 0 and r such that g(t)r(t) ≤ M for all large t. If
for any t0 ≥ a, there exists a t1 ≥ t0 and a constant d < 0 such that

lim supt→+∞







[

∫ t

t1

(

p(s)gσ(s)
f(h+(s))

σ(s)

)d

∆s

]
1

d

+
∫ t

t1
[λ(s)r2(s) + r∆(s)

−
1

4λ(s)

(

g∆(s) − 2λ(s)r(s)gσ(s)

gσ(s)

)2

]gσ(s)∆s

}

= +∞,

(3.4)

and

lim supt→+∞







[

∫ t

t1

(

p(s)gσ(s)
f(|h−(s)|)

σ(s)

)d

∆s

]
1

d

+
∫ t

t1
[λ(s)r2(s) + r∆(s)

−
1

4λ(s)

(

g∆(s) − 2λ(s)r(s)gσ(s)

gσ(s)

)2

]gσ(s)∆s

}

= +∞,

(3.5)

where 0 < λ(t) = t−t0
µ(t)+t−t0

and h+(t) = max{h(t), 0}, h−(t) = min{h(t), 0}. Then (1.4) is
oscillatory.

Proof. Suppose that x(t) > 0, t ≥ t0 ≥ a is a nonoscillatory solution of (1.4). By lemma 3.1,
we get that the solution y of (3.1) satisfies (3.2). Make the generalized Riccati substitution for
Eq.(3.1)

w(t) = g(t)

[

−
y∆(t)

y(t)
+ r(t)

]

, (3.6)

we use the rules (2.2) and (2.3) to find

w∆(t) = g∆(t)

[

−
y∆(t)

y(t)
+ r(t)

]

+ gσ(t)

[

−
y∆(t)

y(t)
+ r(t)

]∆

=
g∆(t)

g(t)
w(t) + p(t)gσ(t)

f(y(t) + h(t))

yσ(t)
+ gσ(t)

y(t)

yσ(t)

(

y∆(t)

y(t)

)2

+ gσ(t)r∆(t)

=
g∆(t)

g(t)
w(t) + p(t)gσ(t)

f(y(t) + h(t))

yσ(t)
+ gσ(t)

y(t)

yσ(t)

(

r(t) −
w(t)

g(t)

)2

+ gσ(t)r∆(t).

Since y(t0) > 0 and y∆∆(t) ≤ 0, we obtain

y(t) ≥ y(t) − y(t0) =

∫ t

t0

y∆(s)∆s ≥ y∆(t)(t − t0),

Therefore, we get 0 <
y∆(t)
y(t) ≤ 1

t−t0
, t ≥ t0 ≥ a, then

yσ(t)

y(t)
=

y(t) + µ(t)y∆(t)

y(t)
≤ 1 +

µ(t)

t − t0
=

µ(t) + t − t0

t − t0
=

1

λ(t)
. (3.7)
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From (3.6) and (3.7) we obtain

w∆(t) ≥
g∆(t)

g(t)
w(t) + p(t)gσ(t)

f(y(t) + h(t))

yσ(t)
+ λ(t)gσ(t)

(

r(t) −
w(t)

g(t)

)2

+ gσ(t)r∆(t)

= λ(t)gσ(t)
w2(t)

g2(t)
+

g∆(t) − 2λ(t)r(t)gσ(t)

g(t)
w(t) + λ(t)gσ(t)r2(t) + gσ(t)r∆(t)

+p(t)gσ(t)
f(y(t) + h(t))

yσ(t)

=

[

√

λ(t)gσ(t)

g(t)
w(t) +

g∆(t) − 2λ(t)r(t)gσ(t)

2
√

λ(t)gσ(t)

]2

−
(g∆(t) − 2λ(t)r(t)gσ(t))2

4λ(t)gσ(t)

+λ(t)gσ(t)r2(t) + gσ(t)r∆(t) + p(t)gσ(t)
f(y(t) + h(t))

yσ(t)

≥ p(t)gσ(t)
f(y(t) + h(t))

yσ(t)
+ λ(t)gσ(t)r2(t) + gσ(t)r∆(t) −

(g∆(t) − 2λ(t)r(t)gσ(t))2

4λ(t)gσ(t)
.

(3.8)
Since y∆∆(t) ≤ 0, y∆(t) > 0, there exists a constant M

′

1 > 0 such that y∆(t) ≤ M
′

1, t ≥ t0.
Integrating it from t0 to t, we get y(t) ≤ y(t0) + M

′

1(t − t0), hence there exists M1 > 0 (M1 is a
finite constant ) such that 0 < y(t) ≤ M1t and 0 < yσ(t) ≤ M1σ(t), t ≥ σ(t0),

We note that for all t ≥ t0, y(t) + h(t) > h+(t). To see this, we write y(t) + h(t) = y(t) +
h+(t) + h−(t) and observe that

(I) for h−(t) = 0, y(t) + h(t) = y(t) + h+(t) > h+(t) (since y(t) > 0) and

(II) for h+(t) = 0, y(t) + h(t) = y(t) + h−(t) = x(t) > 0 = h+(t).

Since f is nondecreasing, we have that f(y(t) + h(t)) ≥ f(h+(t)) and

f(y(t) + h(t))

yσ(t)
≥

f(h+(t))

yσ(t)
≥

f(h+(t))

M1σ(t)
.

From (3.8), we get

w∆(t) ≥ p(t)gσ(t)
f(h+(t))

M1σ(t)
+ λ(t)gσ(t)r2(t) + gσ(t)r∆(t) −

(g∆(t) − 2λ(t)r(t)gσ(t))2

4λ(t)gσ(t)
. (3.9)

Let t1 ≥ t0 be as in the statement of this theorem, integrating (3.9) from t1 to t ≥ t1, we get

w(t) − w(t1) ≥

∫ t

t1

p(s)gσ(s)
f(h+(s))

M1σ(s)
∆s +

∫ t

t1

ϕ(s)∆s, (3.10)

where ϕ(t) = λ(t)gσ(t)r2(t) + gσ(t)r∆(t) −
(g∆(t) − 2λ(t)r(t)gσ(t))2

4λ(t)gσ(t)
. Using Lemma 2.1(Hölder

inequality) with k(t) = 1 and 0 < b < 1, 1
b

+ 1
d

= 1, we obtain

∫ t

t1
p(s)gσ(s)

f(h+(s))

M1σ(s)
∆s ≥

(

∫ t

t1

(

1

M1

)b

∆s

)
1

b
(

∫ t

t1

(

p(s)gσ(s)
f(h+(s))

σ(s)

)d

∆s

)
1

d

=
(t − t1)

1

b

M1

(

∫ t

t1

(

p(s)gσ(s)
f(h+(s))

σ(s)

)d

∆s

)
1

d

.

(3.11)
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Since M1 is a finite constant, let t be large enough such that
(t − t1)

1

b

M1
≥ 1, then using (3.10)

and (3.11), we obtain

w(t) − w(t1) ≥

[

∫ t

t1

(

p(s)gσ(s)
f(h+(s))

σ(s)

)d

∆s

]
1

d

+

∫ t

t1

ϕ(s)∆s. (3.12)

Now by (3.6) and g(t)r(t) ≤ M for all large t, we get

w(t) = g(t)

[

−
y∆(t)

y(t)
+ r(t)

]

≤ g(t)r(t) ≤ M.

Taking lim sup on both sides of (3.12) and letting t → +∞, we obtain the desired contradiction.
(3.5) is required when we assume that the nonoscillatory solution x to be eventually negative
and we can prove it in a way similar to that of x is eventually positive.

From theorem 3.3, we can obtain different sufficient conditions for the oscillation of all solu-
tions of (1.4) by different choices of g and r. For instance, let g(t) = 1, r(t) = 0, then

Corollary 3.4 Suppose that (H1) − (H3) hold, If for any t0 ≥ a, there exists a t1 ≥ t0 and a
constant d < 0 such that

lim sup
t→+∞

(

∫ t

t1

(

p(s)
f(h+(s))

σ(s)

)d

∆s

)
1

d

= lim sup
t→+∞

(

∫ t

t1

(

p(s)
f(|h−(s)|)

σ(s)

)d

∆s

)
1

d

= +∞, (3.13)

Then (1.4) is oscillatory.

For example, let d = −1. If (H1) − (H3) hold, f(0) > 0 and

lim inf
t→+∞

∫ t

t1

σ(s)

p(s)f(h+(s))
∆s = lim inf

t→+∞

∫ t

t1

σ(s)

p(s)f(|h−(s)|)
∆s = 0, (3.14)

then (1.4) is oscillatory.

Theorem 3.5 Suppose that (H1)−(H3) hold. Assume that there exist two positive ∆−differentiable
functions g and r such that for any finite constant M1 > 0 and M2 < 0

lim sup
t→+∞

1

tm

∫ t

a

(t − s)mu1(s)∆s = lim sup
t→+∞

1

tm

∫ t

a

(t − s)mu2(s)∆s = +∞, (3.15)

where

u1(t) =

{

p(t)
f(h+(t))

M1σ(t)
+ λ(t)r2(t) + r∆(t) −

1

4λ(t)

(

g∆(t) − 2λ(t)r(t)gσ(t)

gσ(t)

)2
}

gσ(t),

u2(t) =

{

p(t)
f(h−(t))

M2σ(t)
+ λ(t)r2(t) + r∆(t) −

1

4λ(t)

(

g∆(t) − 2λ(t)r(t)gσ(t)

gσ(t)

)2
}

gσ(t),

and 0 < λ(t) = t−t0
µ(t)+t−t0

. Assume that one of the following condition holds

(I) m is an even integer;

(II) m is an odd integer and
1

tm

∫ t

a
gσ(s)rσ(s)

∑m−1
v=0 (σ(t) − s)v(t − s)m−v−1∆s is bounded.
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Then (1.4) is oscillatory.

Proof. Similar to the proof of theorem 3.3, we may assume that (1.4) has a nonoscillatory
solution x(t) > 0, t ≥ t0 ≥ a such that the solution y of (3.1) satisfies (3.2), i.e. y(t) >

0, y∆(t) > 0, y∆∆(t) ≤ 0, t ≥ t0 ≥ a. From (3.9), we get u1(t) ≤ w∆(t). Therefore, multiply
both sides of u1 ≤ w∆ with (t − s)m and integrate by parts, the right hand side leads to

∫ t

t0

(t−s)mw∆(s)∆s = (t−s)mw(s)|tt0 +(−1)m+1

∫ t

t0

m−1
∑

v=0

(σ(t)−s)v(t−s)m−v−1wσ(s)∆s. (3.16)

Then from (3.16) and w(t) = g(t)[−y∆(t)
y(t) + r(t)] ≤ g(t)r(t), we get

∫ t

t0
(t − s)mu1(s)∆s ≤ −(t − t0)

mw(t0)

+(−1)m+1
∫ t

t0

∑m−1
v=0 (σ(t) − s)v(t − s)m−v−1wσ(s)∆s

≤ −(t − t0)
mw(t0)

+(−1)m+1
∫ t

t0
gσ(s)rσ(s)

∑m−1
v=0 (σ(t) − s)v(t − s)m−v−1∆s.

Hence
1

tm

∫ t

t0
(t − s)mu1(s)∆s ≤ −

(

t − t0

t

)m

w(t0)

+(−1)m+1 1

tm

∫ t

t0
gσ(s)rσ(s)

∑m−1
v=0 (σ(t) − s)v(t − s)m−v−1∆s.

(3.17)

If (I) holds, we obtain

1

tm

∫ t

t0

(t − s)mu1(s)∆s ≤ −

(

t − t0

t

)m

w(t0). (3.18)

Taking lim sup on both sides of (3.18) and letting t → +∞, we obtain the desired contradiction.

If (II) holds, taking lim sup on both sides of (3.17) and letting t → +∞, we obtain the desired
contradiction.

Remark 1. When T = R, equation (1.4) changes to

x
′′

(t) + p(t)f(x(t)) = e(t).

Our results of Theorem 3.3 and Theorem 3.5 is new for the above equations.

Following the ideas of Wong [12], we establish the following three theorems which are the
extension of Wong [12] Theorem [1, 2, 4] to time scales.

Theorem 3.6 Suppose that (H1) − (H3) hold and that h satisfies

lim inf
t→+∞

h(t)

t
= −∞, lim sup

t→+∞

h(t)

t
= +∞. (3.19)

Then (1.4) is oscillatory.

Proof. Suppose to the contrary that Eq.(1.4) has a nonoscillatory solution x, without loss of
generality, we may assume that x is eventually positive solution of (1.4), i.e. x(t) > 0, t ≥
t0 ≥ a ∈ T. From lemma 3.1, we have that (3.2) holds. Since y∆∆(t) ≤ 0, y∆(t) > 0, there
exists a constant M > 0 such that y∆(t) ≤ M, t ≥ t0. Integrating it from t0 to t, we get
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y(t) ≤ y(t0) + M(t − t0), hence there exists M
′

> 0 (M
′

is a finite constant ) such that
0 < y(t) ≤ M

′
t, or

lim sup
t→+∞

y(t)

t
≤ M

′

. (3.20)

On the other hand, we have that y(t) + h(t) = x(t) > 0 for large t or y(t) > −h(t). Dividing by
t and taking limsup on both sides for y > −h, we get

lim sup
t→+∞

y(t)

t
≥ lim sup

t→+∞

−h(t)

t
= − lim inf

t→+∞

h(t)

t
= +∞, (3.21)

which is contradicts to (3.20). The other part of hypothesis (3.19) is required when we assume
the nonoscillatory solution x to be eventually negative and used a similar equation to (3.21) in
that case.

Theorem 3.7 Assume that (H1) − (H3) hold and that h(t) satisfies

∫ +∞

a

p(t)f(h+(t))∆t =

∫ +∞

a

p(t)f(h−(t))∆t = +∞. (3.22)

Then (1.4) is oscillatory.

Proof. As before, we may suppose x(t) > 0, t ≥ t0 ≥ a be a nonoscillatory solution of (1.4), by
lemma 3.1, we have (3.2) holds. Integrating (3.1) from t0 to t, we obtain

y∆(t) − y∆(t0) +

∫ t

t0

p(s)f(y(s) + h(s))∆s = 0. (3.23)

For y∆∆(t) ≤ 0, y∆(t) > 0, limt→+∞ y∆(t) exists and is finite, hence the integral in (3.23)
converges as t → +∞.

Similar to the proof of Theorem 3.3, we note that for all t ≥ t0, y(t) + h(t) > h+(t). Since f

is nondecreasing, we have that f(y(t) + h(t)) ≥ f(h+(t)). With p(t) ≥ 0, we obtain

∫ t

t0

p(s)f(h+(s))∆s ≤

∫ t

t0

p(s)f(y(s) + h(s))∆s < +∞, (3.24)

for all t ≥ t0 hold. By applying (3.22) to (3.24), we obtain the desired contradiction.

Theorem 3.8 Assume that (H1) − (H3) hold and
∫ +∞

a
p(t)∆t = +∞. Suppose, in addition,

that h(t) satisfies (H4), where

(H4) There exist sequence {sn}, {s
′

n} such that limn→+∞ sn = limn→+∞ s
′

n = +∞ and h(sn) =
inf{h(t) : t ≥ sn}, h(s

′

n) = sup{h(t) : t ≥ s
′

n}.

Then (1.4) is oscillatory.

Proof. As before, we may assume x(t) > 0, t ≥ t0 ≥ a is a nonoscillatory solution of (1.4), by
lemma 3.1, we get that the solution y of (3.1) satisfies (3.2). Note that there exists n0 such that
sn0

≥ t0 and for t ≥ sn0
≥ t0

y(t) + h(t) ≥ y(sn0
) + h(sn0

) = x(sn0
) > 0. (3.25)

Substituting (3.25) into (3.23) and using the fact that f is nondecreasing and
∫ +∞

a
p(t)∆t = +∞,

we find that y∆(t) → −∞ as t → +∞, which clearly contradicts y∆(t) > 0 on [t0,+∞) ⊂ T.
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Corollary 3.9 Suppose that (H1) − (H3) hold and
∫ +∞

a
p(t)∆t = +∞. Suppose, in addition,

that h(t) satisfies limt→+∞ h(t) = 0 or h(t) is periodic in t. Then (1.4) is oscillatory.

If h(t) → 0 as t → +∞ or h(t) is periodic in t, then it is easy to see that the conditions of
theorem 3.8 hold, hence corollary 3.9 follows from theorem 3.8.

Since the time scale Pa,b =
⋃+∞

n=0[n(a + b), n(a + b) + a] can be used to study many models
of real world, for instance, population in biological communities, electric circuit and so on, we
give an example in such a time scale to demonstrate how the theory may be applied to specific
problems.

Example 1 Consider the following second order dynamic equation

x∆∆(t) + tsintx(t) = t2cost, for t ∈ Pπ,π =

+∞
⋃

n=0

[2nπ, (2n + 1)π], (3.26)

with the transition condition

x(2nπ) = x((2n − 1)π), n ≥ 1.

Then, we can choose h(t) = −t2cost+4tsint+6cost, t ∈ Pπ,π such that h∆∆(t) = e(t) = t2cost

and p(t) = tsint > 0 for t ∈ Pπ,π. Furthermore, we have

lim inf
t→+∞

h(t)

t
= −∞, and lim sup

t→+∞

h(t)

t
= +∞.

From Theorem 3.6, we obtain that (3.26) is oscillatory. Moreover, using Theorem 3.6, we can
obtain that all solutions of x∆∆(t)+ tsintx(t) = tγcost for γ > 1 and t ∈ Pπ,π is oscillatory. But
Sake [11] and Bohner and Saker [3] cannot judge the oscillations of (3.26) and the more gerenal
equation.

As a special example, let T = N, we use our results to difference equations with forced terms.

Example 2 Consider the following second order difference equation

∆2x(n) + nαx(n) = 2(2n2 + 4n + 3)(−1)n, (3.27)

where α ∈ R and n ∈ N.

Then, we can choose h(n) = n2(−1)n is oscillatory, such that

∆2h(n) = 2(2n2 + 4n + 3)(−1)n+2 = 2(2n2 + 4n + 3)(−1)n.

Moreover, we get h(n)
n

= n(−1)n. So

lim inf
n→+∞

h(n)

n
= −∞, and lim sup

n→+∞

h(n)

n
= +∞.

By Theorem 3.6, we obtain that (3.27) is oscillatory.

4 Application to equations without forced terms

Our aim is to apply the results in Section 3, to give some sufficient conditions for oscillation of
all solutions of the dynamic equations (1.4) without forced terms. For Eq.(1.4) in unforced case,
i.e. e(t) = 0, our results are also new. Let e(t) = 0, Eq.(1.4) change into

x∆∆(t) + p(t)f(x(t)) = 0. (4.1)

Let h(t) = 0 and we obtain some new oscillatory criteria for (4.1).
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(H
′

2) f ∈ C1(R, R), f
′
(t) ≥ 0,

f(x)

x
≥ k > 0.

Theorem 4.1 Assume (H1), (H
′

2) hold. Suppose there exist a constant M and two ∆−differentiable
function g(t) > 0 and r such that g(t)r(t) ≤ M for all large t. If for any t0 ≥ a, there exists a
t1 ≥ t0 such that

lim sup
t→+∞

∫ t

t1

{

kp(s)λ(s) + λ(s)r2(s) + r∆(s) −
1

4λ(s)

(

g∆(s) − 2λ(s)r(s)gσ(s)

gσ(s)

)2
}

gσ(s)∆s = +∞,

(4.2)

where 0 < λ(t) =
t − t0

µ(t) + t − t0
. Then (4.1) is oscillatory.

From theorem 4.1, we can obtain different sufficient conditions for the oscillation of all so-
lutions of (4.1) by different choices of g and r. For instance, let g(t) = 1, r(t) = 0, we get the
following well known result

Corollary 4.2 Assume that (H1), (H
′

2) hold, if for any t0 ≥ a, there exists a t1 ≥ t0 such that

lim sup
t→+∞

∫ t

t1

s − t0

µ(s) + s − t0
p(s)∆s = +∞. (4.3)

Then (4.1) is oscillatory.

If µ(t) ≤ k
′
t (k

′
is a constant), then we get

Corollary 4.3 (Leighton - Wintner theorem) Assume that (H1), (H
′

2) hold, if

∫ +∞

a

p(s)∆s = +∞. (4.4)

Then (4.1) is oscillatory.

Theorem 4.4 Assume that (H1), (H
′

2) hold. Suppose there exist two positive ∆−differentiable
function g and r such that

lim supt→+∞

1

tm

∫ t

a
(t − s)m{kp(s)λ(s) + λ(s)r2(s) + r∆(s)

−
1

4λ(s)
(
g∆(s) − 2λ(s)r(s)gσ(s)

gσ(s)
)2}gσ(s)∆s = +∞,

(4.5)

where 0 < λ(t) =
t − t0

µ(t) + t − t0
. Assume further that one of the following condition holds

(I) m is an even integer;

(II) m is an odd integer and
1

tm

∫ t

a
gσ(s)rσ(s)

∑m−1
v=0 (σ(t) − s)v(t − s)m−v−1∆s is bounded.

Then (4.1) is oscillatory.

When g(t) = 1, r(t) = 0, we get
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Corollary 4.5 Assume that (H1), (H
′

2) hold, if for any t0 ≥ a, there exists a t1 ≥ t0 such that

lim sup
t→+∞

1

tm

∫ t

t1

(t − s)m
s − t0

µ(s) + s − t0
p(s)∆s = +∞. (4.6)

Then (4.1) is oscillatory.

If µ(t) ≤ k
′
t (k

′
is a constant), then we get

Corollary 4.6 (Kamenev theorem) Assume that (H1), (H
′

2) hold, if

lim sup
t→+∞

1

tm

∫ t

a

(t − s)mp(s)∆s = +∞. (4.7)

Then (4.1) is oscillatory.

The authors wish to express their thanks to the referee for his helpful suggestions concerning
the style of the paper.
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