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THE GENERALIZED APPROXIMATION METHOD

AND NONLINEAR HEAT TRANSFER EQUATIONS

RAHMAT ALI KHAN

Abstract. Generalized approximation technique for a solution of

one-dimensional steady state heat transfer problem in a slab made

of a material with temperature dependent thermal conductivity, is

developed. The results obtained by the generalized approximation

method (GAM) are compared with those studied via homotopy

perturbation method (HPM). For this problem, the results ob-

tained by the GAM are more accurate as compared to the HPM.

Moreover, our (GAM) generate a sequence of solutions of linear

problems that converges monotonically and rapidly to a solution

of the original nonlinear problem. Each approximate solution is ob-

tained as the solution of a linear problem. We present numerical

simulations to illustrate and confirm the theoretical results.

1. Introduction

Fins are extended surfaces and are frequently used in various in-
dustrial engineering applications to enhance the heat transfer between
a solid surface and its convective, radiative environment. For surfaces
with constant heat transfer coefficient and constant thermal conductiv-
ity, the governing equation describing temperature distribution along
the surfaces are linear and can be easily solved analytically. But most
metallic materials have variable thermal properties, usually, depending
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on temperature. The governing equations for the temperature distri-
bution along the surfaces are nonlinear. In consequence, exact ana-
lytic solutions of such nonlinear problems are not available in general
and scientists use some approximation techniques such as perturba-
tion method [1], [2], homotopy perturbation method [3], [4], [5] etc.,
to approximate the solutions of nonlinear equations as a series solu-
tion. These methods have the drawback that the series solution may
not always converges to the solution of the problem and hence produce
inaccurate and meaningless results.

2. HEAT TRANSFER PROBLEM: HPM METHODS

When using perturbation methods, small parameter should be ex-
erted into the equation to produce accurate results. But the exertion
of a small parameter in to the equation means that the nonlinear effect
is small and almost negligible. Hence, the perturbation method can be
applied to a restrictive class of nonlinear problems and is not valid for
general nonlinear problems.

It is claimed that the homoptopy perturbation method does not re-
quire the existence of a small parameter and gives excellent results
compared to the perturbation method for all values of the parameter,
see for example [6, 7, 8]. In these papers, the authors discussed the
solutions of temperature distributions in a slab with variable thermal
conductivity and the two methods are compared in the field of heat
transfer.

However, the claim that the homoptopy perturbation method is in-
dependent of the choice of a parameter and gives excellent results com-
pared to the perturbation method for all values of the parameter, is
not true. In fact, the solution obtained by the homotopy perturbation
method may not converge to the solution of the problem in some cases.

In this paper, we introduce a new analytical method (GAM - Gen-
eralized approximation method) for the solution of nonlinear heat flow
problems that produce excellent results and is independent of the choice
of a parameter. Hence our method can be applied to a much larger
class of nonlinear boundary value problems. This method generates a
bounded monotone sequence of solutions of linear problems that con-
verges uniformly and rapidly to the solution of the original problem.
The results obtained via GAM are compared to those via HPM. For
this problem, it is found that GAM produces excellent results compare
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to homotopy perturbation. We use the computer programme, Mathe-
matica.

Consider one-dimensional conduction in a slab of thickness L made
of a material with temperature dependent thermal conductivity k =
k(T ). The two faces are maintained at uniform temperatures T1 and
T2 with T1 > T2. The governing equation describing the temperature
distribution

d

dx
(k

dT

dx
) = 0, x ∈ [0, L],

T (0) = T1, T (L) = T2.

(2.1)

see [8]. The thermal conductivity k is assumed to vary linearly with
temperature, that is, k = k2[1 + η(T − T2)], where η is a constant and
k2 is the thermal conductivity at temperature T2. After introducing
the dimensionless quantities

θ =
T − T2

T1 − T2

, y =
x

L
, ε = η(T1 − T2) =

k1 − k2

k2

,

where k1 is the thermal conductivity at temperature T1, the problem
(2.1) reduces to

−d2θ

dy2
=

ε( dθ
dy

)2

(1 + εθ)
= f(θ, θ′), y ∈ [0, 1] = I,

θ(0) = 1, θ(1) = 0.

(2.2)

Three term expansion of the approximate solution of (2.2) by homotopy
perturbation method is given by

(2.3) θ(y) = 1 − y +
ε

2
(y − y2) + ε2(y2 − y3

2
− y

2
), y ∈ I

see [8].
Results obtained for different values of ε via HPM (2.3) are presented

in Table 1 and Fig. 1. Clearly, for small value for ε (ε ≤ 1), (2.3) is
a good approximation to the solution. However, as ε increases, (2.3)
deviates from the actual solution of the problem (2.2) and produce
inaccurate results.
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y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε = 0.5 0.912375 0.824 0.734125 0.642 0.546875 0.448 0.344625 0.236 0.121375

ε = 0.8 0.91008 0.82304 0.73696 0.64992 0.56 0.46528 0.36384 0.25376 0.13312

ε = 1 0.9045 0.816 0.7315 0.648 0.5625 0.472 0.3735 0.264 0.1405

ε = 1.5 0.876375 0.776 0.692125 0.618 0.546875 0.472 0.386625 0.284 0.157375

ε = 2 0.828 0.704 0.616 0.552 0.5 0.448 0.384 0.296 0.172

ε = 2.5 0.759375 0.6 0.503125 0.45 0.421875 0.4 0.365625 0.3 0.184375

ε = 3 0.6705 0.464 0.3535 0.312 0.3125 0.328 0.3315 0.296 0.1945

ε = 3.5 0.561375 0.296 0.167125 0.138 0.171875 0.232 0.281625 0.284 0.202375

ε = 4 0.432 0.096 -0.056 -0.072 0. 0.112 0.216 0.264 0.208

ε = 4.5 0.282375 -0.136 -0.315875 -0.318 -0.203125 -0.032 0.134625 0.236 0.211375

Table 1-Approximate solutions of (2.2) via HPM for different values of ε
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Fig.1; Graphical results obtained via HPM for different values of ε.

3. HEAT TRANSFER PROBLEM: INTEGRAL

FORMULATION

We write (2.2) as an equivalent integral equation,

θ(y) = (1 − y) +

∫ 1

0

G(y, s)f(θ(s), θ′(s))ds = (1 − y) +

∫ 1

0

G(y, s)
ε(θ′)2

(1 + εθ)
ds,

(3.1)

where,

G(y, s) =

{

(1 − s)y, 0 ≤ y ≤ s ≤ 1,

(1 − y)s, 0 ≤ s ≤ y ≤ 1,
EJQTDE, 2009 No. 2, p. 4



is the Green’s function. Clearly, G(y, s) > 0 on (0, 1)× (0, 1) and since
ε(θ′)2

(1+εθ)
≥ 0, hence, any solution θ of the BVP (2.2) is positive on I. We

recall the concept of lower and upper solutions.

Definition 3.1. A function α is called a lower solution of the BVP

(2.2), if α ∈ C1(I) and satisfies

−α′′(y) ≤ f(α(y), α′(y)), y ∈ (0, 1)

α(0) ≤ 1, α(1) ≤ 0.

An upper solution β ∈ C1(I) of the BVP (2.2) is defined similarly by

reversing the inequalities.

For example, α = 1−y and β = 2− y2

2
are lower and upper solutions

of the BVP (2.2).

Definition 3.2. A continuous function h : (0,∞) → (0,∞) is called a

Nagumo function if
∫

∞

λ

sds

h(s)
= ∞,

for λ = max{|α(0) − β(1)|, |α(1) − β(0)|}. We say that f ∈ C[R × R]

satisfies a Nagumo condition relative to α, β if for y ∈ [min α, maxβ] =

[0, 2], there exists a Nagumo function h such that |f(y, y′)| ≤ h(|y′|).

Clearly,

|f(θ, θ′)| = |
ε( dθ

dy
)2

(1 + εθ)
| ≤ ε|θ′2| = h(|θ′|) for θ ∈ [0, 2]

and since
∫

∞

λ
sds
h(s)

=
∫

∞

λ
sds
εs2 = ∞, where λ = 2 in this case. Hence f

satisfies a Nagomo condition. Existence of solution to the BVP (2.2)
is guaranteed by the following theorem. The proof is on the same line
as given in [9, 10] for more general problems.

Theorem 3.3. Assume that there exist lower and upper solutions α, β ∈
C1(I) of the BVP (2.2) such that α ≤ β on I. Assume that f :

R×R → (0,∞) is continuous, satisfies a Nagumo condition and is non-

increasing with respect to θ′. Then the BVP (2.2) has a unique C1(I)
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positive solution θ such that α(y) ≤ θ(y) ≤ β(y), y ∈ I. Moreover,

there exists a constant C depending on α, β and h such that |θ′(y)| ≤ C.

Using the relation
∫ C

λ
sds
h(s)

≥ max β−min α = 2, we obtain C ≥ 2e2ε.

In particular, we choose C = 2e2ε.

4. Heat Transfer Problem: Generalized Approximation

Method (GAM)

Observe that

fθθ(θ(s), θ
′(s)) =

2ε3θ′2

(1 + εθ)3
≥ 0, fθ′θ′(θ(s), θ

′(s)) =
2ε

1 + εθ
≥ 0,

fθθ′(θ(s), θ
′(s)) =

−2ε2θ′

(1 + εθ)2
and fθθfθ′θ′ =

4ε4θ′2

(1 + εθ)4
= (fθθ′)

2.

(4.1)

Hence, the quadratic form

vTH(f)v = (θ − z)2fθθ + 2(θ − z)(θ′ − z′)fθθ′ + (θ′ − z′)2fθ′θ′

=
(

(θ − z)

√

ε3θ′2

(1 + εθ)3
− (θ′ − z′)

√

2ε

(1 + εθ)

)2

≥ 0,
(4.2)

where H(f) =

(

fθθ fθθ′

fθθ′ fθ′θ′

)

is the Hessian matrix and v =

(

θ − z

θ′ − z′

)

.

Consequently,

f(θ, θ′) ≥ f(z, z′) + fθ(z, z
′)(θ − z) + fθ′(z, z

′)(θ′ − z′).(4.3)

Define g : R
4 → R by

g(θ, θ′; z, z′) = f(z, z′) + fθ(z, z
′)(θ − z) + fθ′(z, z

′)(θ′ − z′),(4.4)

then g is continuous and satisfies the following relations

(4.5)

{

f(θ, θ′) ≥ g(θ, θ′; z, z′),

f(θ, θ′) = g(θ, θ′; θ, θ′).

We note that for every θ, z ∈ [miny∈I α, maxy∈I β] and z′ ∈ some
compact subset of R, g satisfies a Nagumo condition relative to α, β.
Hence, there exists a constant C1 such that any solution θ of the linear
BVP

−θ′′(y) = g(θ, θ′; z, z′), y ∈ I,

θ(0) = 1, θ(1) = 0,
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with the property that α ≤ θ ≤ β on I, must satisfies |θ′| < C1 on I.
To develop the iterative scheme, we choose w0 = α as an initial ap-
proximation and consider the linear BVP

−θ′′(y) = g(θ, θ′; w0, w
′

0), y ∈ I,

θ(0) = 1, θ(1) = 0.
(4.6)

In view of (4.5) and the definition of lower and upper solutions, we
obtain

g(w0, w
′

0; w0, w
′

0) = f(w0, w
′

0) ≥ −w′′

0 ,

g(β, β ′; w0, w
′

0) ≤ f(β, β ′) ≤ −β ′′, on I,

which imply that w0 and β are lower and upper solutions of (4.6).
Hence, by Theorem 3.3, there exists a solution w1 of (4.6) such that
w0 ≤ w1 ≤ β, |w′

1| < C1 on I. Using (4.5) and the fact that w1 is a
solution of (4.6), we obtain

(4.7) −w′′

1(y) = g(w1, w
′

1; w0, w
′

0) ≤ f(w1, w
′

1)

which implies that w1 is a lower solution of (2.2). Similarly, we can
show that w1 and β are lower and upper solutions of

−θ′′(y) = g(θ, θ′; w1, w
′

1), y ∈ I,

θ(0) = 1, θ(1) = 0.
(4.8)

Hence, there exists a solution w2 of (4.8) such that w1 ≤ w2 ≤ β, |w′

2| <

C1 on I.
Continuing this process we obtain a monotone sequence {wn} of solu-
tions satisfying

α = w0 ≤ w1 ≤ w2 ≤ w3 ≤ ... ≤ wn−1 ≤ wn ≤ β, |w′

n| < C1 on I,

where wn is a solution of the linear problem

−θ′′(y) = g(θ, θ′; wn−1, w
′

n−1), y ∈ I

θ(0) = 1, θ(1) = 0

and is given by
(4.9)

wn(y) = (1−y)+

∫ 1

0

G(y, s)g(wn(s), w
′

n(s); wn−1(s), w
′

n−1(s))ds, y ∈ I.

The sequence is uniformly bounded and equicontinuous. The mono-
tonicity and uniform boundedness of the sequence {wn} implies the

EJQTDE, 2009 No. 2, p. 7



existence of a pointwise limit w on I. From the boundary conditions,
we have

1 = wn(0) → w(0) and 0 = wn(1) → w(1).

Hence w satisfies the boundary conditions. Moreover, by the dominated
convergence theorem, for any y ∈ I,

∫ 1

0

G(y, s)g(wn(s), w
′

n(s); wn−1(s), w
′

n−1(s))ds →
∫ 1

0

G(y, s)f(w(s), w′(s))ds.

Passing to the limit as n → ∞, we obtain

w(y) = (1 − y) +

∫ 1

0

G(y, s)f(w(s), w′(s))ds, y ∈ I,

that is, w is a solution of (2.2).

Since α = 1 − y, β = 2 − y2

2
are lower and upper solutions of the

problem (2.2). Hence, any solution θ of the problem satisfies 1 − y ≤
θ ≤ 2 − y2

2
, y ∈ I. In other words, any solution of the problem is

positive and is bounded by 2.

5. Convergence Analysis

Define en = w − wn on I. Then, en ∈ C1(I), en ≥ 0 on I and from
the boundary conditions, we have en(0) = 0 = en(1). In view of (4.5),
we obtain

−e′′n(t) = f(w(t), w′(t)) − g(wn(t), w
′

n(t); wn−1(t), w
′

n−1(t)) ≥ 0, t ∈ I,

which implies that en is concave on I and there exists t1 ∈ (0, 1) such
that

(5.1) e′n(t1) = 0, e′n(t) ≥ 0 on [0, t1] and e′n(t) ≤ 0 on [t1, 1].
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Using the definition of g and the non-increasing property of f(θ, θ′)
with respect to θ, we have

−e′′n(t) = f(w(t), w′(t)) − g(wn(t), w
′

n(t); wn−1(t), w
′

n−1(t)), t ∈ I

= f(wn−1(t), w
′

n−1(t)) + fθ(wn−1(t), w
′

n−1(t))(w(t) − wn−1(t))

+ fθ′(wn−1(t), w
′

n−1(t))(w
′(t) − w′

n−1(t)) +
1

2
vT H(f)v

− g(wn(t), w
′

n(t); wn−1(t), w
′

n−1(t))

= fθ(wn−1(t), w
′

n−1(t))(w(t) − wn(t))+

fθ′(wn−1(t), w
′

n−1(t))(w
′(t) − w′

n(t)) +
1

2
vT H(f)v

≤ fθ′(wn−1(t), w
′

n−1(t))e
′

n(t) +
1

2
vTH(f)v,

where

vT H(f)v =
(

(w − wn−1)

√

ε3ξ2
2

(1 + εξ1)3
− (w′ − w′

n−1)

√

2ε

(1 + εξ1)

)2

,

where wn−1 ≤ ξ1 ≤ w and ξ2 lies between w′

n−1 and w′.

vTH(f)v ≤
(

|en−1|C2ε
√

ε + |e′n−1|
√

2ε
)2

≤ ε(C2ε +
√

2)2‖en−1‖2
1 = d‖en−1‖2

1,

where d = ε(C2ε+
√

2)2, C2 = max{C, C1} and ‖en−1‖1 = max{‖en−1‖, ‖e′n−1‖}
is the C1 norm. Hence,

−e′′n(t) ≤ fθ′(wn−1(t), w
′

n−1(t))e
′

n(t) +
d

2
‖en−1‖2

1, t ∈ I,

which implies that

(5.2) (c1(t)e
′

n(t))′ ≥ −dc1(t)

2
‖en−1‖2

1, t ∈ I,

where

c1(t) = e
∫

f
θ′

(wn−1(t),w′

n−1
(t))dt = (1 + εwn−1(t))

2, t ∈ I.

Clearly 1 ≤ c1(t) ≤ (1+ ε)2 on I. Integrating (5.2) from t to t1 (t ≤ t1),
using e′n(t1) = 0, we obtain

(5.3) e′n(t) ≤ d
∫ t1

t
c1(s)ds

2c1(t)
‖en−1‖2

1, t ∈ [0, t1]
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and integrating (5.2) from t1 to t, we obtain

(5.4) e′n(t) ≥ −
d

∫ t

t1
c1(s)ds

2c1(t)
‖en−1‖2

1, t ∈ [t1, 1].

From (5.3) and (5.4) together with (5.1), it follows that

(5.5) e′n(t) ≤ d
∫ t1

t
c1(s)ds

2c1(t)
‖en−1‖2

1 ≤
d

∫ 1

0
c1(s)ds

2c1(t)
‖en−1‖2

1, t ∈ [0, 1]

and
(5.6)

e′n(t) ≥ −
d

∫ t

t1
c1(s)ds

2c1(t)
‖en−1‖2

1 ≥ −,
d

∫ 1

0
c1(s)ds

2c1(t)
‖en−1‖2

1m, t ∈ [0, 1].

Hence,

(5.7) ‖e′n‖ ≤ d1‖en−1‖2
1,

where d1 = max{d
∫

1

0
c1(s)ds

2c1(t)
: t ∈ I}. Integrating (5.5) from 0 to t, using

the boundary condition e′n(0) = 0 and taking the maximum over I, we
obtain

(5.8) ‖en‖ ≤ d1‖en−1‖2
1, t ∈ I.

From (5.7) and (5.8), it follows that

‖en‖1 ≤ d1‖en−1‖2
1

which shows quadratic convergence.

6. NUMERICAL RESULTS FOR THE GAM

Starting with the initial approximation w0 = 1− y, results obtained
via GAM for ε = 0.5, 0.8 and 1, are given in the Tables (Table 1,
Table 2 and Table 3 respectively) and also graphically in Fig.2. Form
the tables and graphs, it is clear that with only a few iterations it
is possible to obtain good approximations of the exact solution of the
problem. Moreover, the convergence is very fast. Even for larger values
of ε, the GAM produces excellent results, see for example, Fig.3 and
Fig.4 for (ε = 2),(ε = 2), (ε = 3), (ε = 4) respectively. In fact, the GAM
accurately approximate the actual solution of the problem independent
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of the choice of the parameters ε involved, see Fig.5 .

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w1 0.926897 0.850445 0.770062 0.685011 0.594355 0.496892 0.391076 0.274894 0.145703

w2 0.927888 0.852043 0.771941 0.68693 0.596178 0.498601 0.392748 0.276598 0.147208

w3 0.92791 0.852085 0.771998 0.686995 0.596245 0.498664 0.3928 0.276637 0.147228

w4 0.927911 0.852086 0.772 0.686997 0.596247 0.498666 0.392802 0.276638 0.147229

Table 1; Results obtained via GAM for ε = 0.5

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w1 0.923726 0.844367 0.761495 0.67454 0.582739 0.485077 0.38019 0.266234 0.140679

w2 0.924981 0.846597 0.764396 0.677808 0.586103 0.48832 0.38316 0.268796 0.142518

w3 0.925081 0.84679 0.764665 0.67813 0.586448 0.488658 0.38346 0.269028 0.14265

w4 0.925091 0.846809 0.764692 0.678163 0.586484 0.488693 0.383491 0.269051 0.142664

Table 2; Results obtained via GAM for ε = 0.8

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w1 0.921729 0.840541 0.756109 0.667965 0.575454 0.477674 0.373374 0.260812 0.137531

w2 0.923296 0.843436 0.760015 0.672516 0.580267 0.482379 0.377637 0.264317 0.139835

w3 0.923501 0.843836 0.760579 0.673195 0.581002 0.483104 0.378284 0.264818 0.140122

w4 0.923533 0.843898 0.760666 0.6733 0.581117 0.483218 0.378386 0.264896 0.140167

Table 3; Results obtained via GAM for ε = 1

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w1 0.913445 0.824728 0.733929 0.640986 0.545655 0.447457 0.345576 0.238689 0.124668

w1 0.916286 0.830217 0.741648 0.65033 0.555869 0.457667 0.354822 0.245968 0.12894

w1 0.917358 0.832312 0.744615 0.653932 0.559799 0.461569 0.358317 0.248672 0.130483

w1 0.917797 0.833171 0.745834 0.655412 0.561412 0.463168 0.359745 0.249774 0.131109

Table 4; Results obtained via GAM for ε = 2
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Fig.2. Results obtained by the GAM for ε = 0.5 (left graph) and
ε = 0.8 (right graph).
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Fig.3. Results obtained by the GAM for ε = 1 (left graph) and ε = 2
(right graph).
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Fig.4. Results obtained by the GAM for ε = 3 (left graph) and ε = 4
(right graph).
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Fig. 5; Graph of the results obtained by the GAM for ε = 0.5, 0.8, 1, 2, 3, 4

7. Comparison with homotopy perturbation method

Finally, we compare results via GAM (Red) to the corresponding
results via HPM (Green), Fig.6, Fig.7 and Fig.8 for different values
of ε. Clearly, GAM accurately approximate the solution for any value
of ε, while for larger value of ε, the HPM diverges. This fact is also
evident from Fig. 8.
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Fig.6. GAM and HPM for ε = 0.5 (left graph) and ε = 0.8 (right
graph).
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Fig.7. GAM and HPM for ε = 1 (left graph) and ε = 2 (right graph).
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Fig.8. GAM and HPM for ε = 3 (left graph) and ε = 4 (right graph).
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