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ABSTRACT. This paper deals with a class of integrodifferential impulsive periodic systems with

time-varying generating operators on Banach space. Using impulsive periodic evolution operator

given by us, the suitable T0-periodic PC-mild solution is introduced and Poincaré operator is

constructed. Showing the compactness of Poincaré operator and using a new generalized Gronwall’s

inequality with impulse, mixed type integral operators and B-norm given by us, we utilize Leray-

Schauder fixed point theorem to prove the existence of T0-periodic PC-mild solutions. Our method

is much different from methods of other papers. At last, an example is given for demonstration.
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1. Introduction

It is well known that impulsive periodic motion is a very important and special phenomena

not only in natural science but also in social science such as climate, food supplement, insecticide

population, sustainable development. Periodic system with applications on finite dimensional spaces

have been extensively studied. Particularly, impulsive periodic systems on finite dimensional spaces

are considered and some important results (such as the existence and stability of periodic solution,

the relationship between bounded solution and periodic solution, robustness by perturbation) are

obtained (See [7], [11], [12], [32]).

Since the end of last century, many researchers pay great attention on impulsive systems on

infinite dimensional spaces. Particulary, Dr. Ahmed investigated optimal control problems of system

governed by impulsive system (See [3], [4], [5], [6]). Many authors including us also gave a series of

results for semilinear (integrodifferential, strongly nonlinear) impulsive systems and optimal control

problems (See [8], [9], [10], [13], [14], [15], [16], [26], [27], [28], [29], [30], [31]).
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Although, there are some papers on periodic solution for periodic systems on infinite dimensional

spaces (See [1], [13], [24], [25]) and some results discussing integrodifferential system on finite Ba-

nach space and infinite Banach space (see [10], [14]), to our knowledge, integrodifferential impulsive

periodic systems with time-varying generating operators on infinite dimensional spaces have not

been extensively investigated. Recently, we discuss the impulsive periodic system and integrodif-

ferential impulsive system on infinite dimensional spaces. For linear impulsive evolution operator

is constructed and T0-periodic PC-mild solution is introduced. Existence of periodic solutions and

alternative theorem, criteria of Massera type, asymptotical stability and robustness by perturbation

are established (See [17], [18], [19]). For semilinear impulsive periodic system, a suitable Poincaré

operator is constructed and verify its compactness and continuity. By virtue of a generalized Gron-

wall inequality with mixed integral operator and impulse given by us, the estimate on the PC-mild

solutions are derived. Some fixed point theorem such as Banach fixed point theorem, Horn’s fixed

point theorem and Leray-Schauder fixed point theorem are applied to obtain the existence of peri-

odic PC-mild solutions respectively (See [20], [21], [22]). For integrodifferential impulsive system,

existence of PC-mild solutions and optimal controls are presented (See [26]).

Herein, we go on studying the following integrodifferential impulsive periodic system with time-

varying generating operators:

(1.1)





ẋ(t) = A(t)x(t) + f
(
t, x,

∫ t

0
g(t, s, x)ds

)
, t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk.

in the Banach X , where {A (t), t ∈ [0, T0]} is a family of closed densely defined linear unbounded

operators onX and the resolvent of the unbounded operator A(t) is compact. f is a T0-periodic, with

respect to t ∈ [0 + ∞), Carathéodory function, g is a continuous function from [0,∞)× [0,∞)×X

to X and are T0-periodic in t and s, and Bk+δ = Bk, ck+δ = ck. This paper is mainly concerned

with the existence of periodic solutions for integrodifferential impulsive periodic system on infinite

dimensional Banach space X .

Here, we also use Leray-Schauder fixed point theorem to obtain the existence of periodic solutions

for integrodifferential impulsive periodic system with time-varying generating operators (1.1). First,

by virtue of impulsive evolution operators corresponding to linear homogeneous impulsive system

with time-varying generating operators, we construct a new Poincaré operator P for integrodiffer-

ential impulsive periodic system with time-varying generating operators (1.1), then overcome some

difficulties to show the compactness of Poincaré operator P which is very important. By a new

generalized Gronwall inequality with impulse, mixed type integral operator and B-norm given by

us, the estimate of fixed point set {x = λPx, λ ∈ [0, 1]} is established. Therefore, the existence of

T0-periodic PC-mild solutions for impulsive integrodifferential periodic system with time-varying

generating operators is shown.

In order to obtain the existence of periodic solutions, many authors use Horn’s fixed point theorem

or Banach fixed point theorem. However, the conditions for Horn’s fixed point theorem are not easy

to be verified sometimes and the conditions for Banach’s fixed point theorem are too strong. Our

methods is much different from other’s and we give a new way to show the existence of periodic

solutions. In addition, the new generalized Gronwall inequality with impulse, mixed type integral
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operators and B-norm given by us, which can be used in other problems, have played an essential

role in the study of nonlinear problems on infinite dimensional spaces.

This paper is organized as follows. In section 2, some results of linear impulsive periodic sys-

tem with time-varying generating operators and properties of impulsive periodic evolution operator

corresponding to homogeneous linear impulsive periodic system with time-varying generating oper-

ators are recalled. In section 3, the new generalized Gronwall inequality with impulse, mixed type

integral operator and B-norm is established. In section 4, the T0-periodic PC-mild solution for inte-

grodifferential impulsive periodic system with time-varying generating operators (1.1) is introduced.

We construct the suitable Poincaré operator P and give the relation between T0-periodic PC-mild

solution and the fixed point of P . After showing the compactness of the Poincaré operator P and

obtaining the boundedness of the fixed point set {x = λPx, λ ∈ [0, 1]} by virtue of the generalized

Gronwall inequality, we can use Leray-Schauder fixed point theorem to establish the existence of

T0-periodic PC-mild solutions for integrodifferential impulsive periodic system with time-varying

generating operators. At last, an example is given to demonstrate the applicability of our result.

2. Linear Impulsive Periodic System with time-varying generating operators

In order to study the integrodifferential impulsive periodic system with time-varying generating

operators, we first recall some results about linear impulsive periodic system with time-varying

generating operators here. Let X be a Banach space. £(X) denotes the space of linear operators

in X ; £b(X) denotes the space of bounded linear operators in X . £b(X) is the Banach space with

the usual supremum norm. Define D̃={τ1, · · ·, τδ} ⊂ [0, T0], where δ ∈ N denotes the number of

impulsive points between [0, T0]. We introduce PC([0, T0];X) ≡ {x : [0, T0] → X | x is continuous

at t ∈ [0, T0]\D̃, x is continuous from left and has right hand limits at t ∈ D̃} and PC1([0, T0];X) ≡

{x ∈ PC([0, T0];X) | ẋ ∈ PC([0, T0];X)}. Set

‖x‖PC = max

{
sup

t∈[0,T0]

‖x(t+ 0)‖, sup
t∈[0,T0]

‖x(t− 0)‖

}
and ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC .

It can be seen that endowed with the norm ‖ · ‖PC (‖ · ‖PC1), PC([0, T0];X)
(
PC1([0, T0];X)

)
is a

Banach space.

Consider the following homogeneous linear impulsive periodic system with time-varying gener-

ating operators

(2.1)

{
ẋ(t) = A(t)x(t), t 6= τk,

∆x(τk) = Bkx(τk), t = τk.

on Banach space X , where 4x(τk) = x(τ+
k ) − x(τ−k ), {A (t), t ≥ 0} is a family of closed densely

defined linear unbounded operators on X satisfying the following assumption.

Assumption [A1]: (See [2], p.158) For t ∈ [0, T0] one has

(P1) The domain D(A(t)) = D is independent of t and is dense in X .

(P2) For t ≥ 0, the resolvent R(λ,A(t)) = (λI −A(t))−1 exists for all λ with Reλ ≤ 0, and

there is a constant M independent of λ and t such that

‖R (λ,A(t))‖ ≤M(1 + |λ|)−1 for Reλ ≤ 0.
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(P3) There exist constants L > 0 and 0 < α ≤ 1 such that

∥∥(A(t) −A(θ)
)
A−1(τ)

∥∥ ≤ L|t− θ|α for t, θ, τ ∈ [0, T0].

Lemma 2.1: (See [2], p.159) Under the assumption [A1], the Cauchy problem

(2.2) ẋ(t) +A(t)x(t) = 0, t ∈ (0, T0] with x(0) = x̄

has a unique evolution system {U(t, θ) | 0 ≤ θ ≤ t ≤ T0} in X satisfying the following

properties:

(1) U(t, θ) ∈ £b(X) for 0 ≤ θ ≤ t ≤ T0.

(2) U(t, r)U(r, θ) = U(t, θ) for 0 ≤ θ ≤ r ≤ t ≤ T0.

(3) U(·, ·)x ∈ C(∆, X) for x ∈ X , ∆ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0}.

(4) For 0 ≤ θ < t ≤ T0, U(t, θ): X −→ D and t −→ U(t, θ) is strongly differentiable in

X . The derivative ∂
∂t
U(t, θ) ∈ £b(X) and it is strongly continuous on 0 ≤ θ < t ≤ T0.

Moreover,

∂

∂t
U(t, θ) = −A(t)U(t, θ) for 0 ≤ θ < t ≤ T0,

∥∥∥∥
∂

∂t
U(t, θ)

∥∥∥∥
£b(X)

= ‖A(t)U(t, θ)‖£b(X) ≤
C

t− θ
,

∥∥A(t)U(t, θ)A(θ)−1
∥∥
£b(X)

≤ C for 0 ≤ θ ≤ t ≤ T0.

(5) For every v ∈ D and t ∈ (0, T0], U(t, θ)v is differentiable with respect to θ on 0 ≤ θ ≤

t ≤ T0

∂

∂θ
U(t, θ)v = U(t, θ)A(θ)v.

And, for each x̄ ∈ X , the Cauchy problem (2.2) has a unique classical solution x ∈

C1([0, T0];X) given by

x(t) = U(t, 0)x̄, t ∈ [0, T0].

In addition to assumption [A1], we introduce the following assumptions.

Assumption [A2]: There exits T0 > 0 such that A(t+ T0) = A(t) for t ∈ [0, T0].

Assumption [A3]: For t ≥ 0, the resolvent R(λ,A(t)) is compact.

Then we have

Lemma 2.2: Assumptions [A1], [A2] and [A3] hold. Then evolution system {U(t, θ) | 0 ≤

θ ≤ t ≤ T0} in X also satisfying the following two properties:

(6) U(t+ T0, θ + T0) = U(t, θ) for 0 ≤ θ ≤ t ≤ T0;

(7) U(t, θ) is compact operator for 0 ≤ θ < t ≤ T0.

In order to introduce a impulsive evolution operator and give it’s properties, we need the following

assumption.

Assumption [B]: For each k ∈ Z
+
0 , Bk ∈ £b(X), there exists δ ∈ N such that τk+δ =

τk + T0 and Bk+δ = Bk.
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Consider the following Cauchy problem

(2.3)






ẋ(t) = A(t)x(t), t ∈ [0, T0]\D̃,

∆x(τk) = Bkx(τk), k = 1, 2, · · ·, δ,

x(0) = x̄.

For every x̄ ∈ X , D is an invariant subspace of Bk, using Lemma 2.1, step by step, one can verify

that the Cauchy problem (2.3) has a unique classical solution x ∈ PC1([0, T0];X) represented by

x(t) = S (t, 0)x̄ where S (·, ·) : ∆ −→ £(X) given by

S (t, θ) =





U(t, θ), τk−1 ≤ θ ≤ t ≤ τk,

U(t, τ+
k )(I +Bk)U(τk, θ), τk−1 ≤ θ < τk < t ≤ τk+1,

U(t, τ+
k )

[∏
θ<τj<t(I +Bj)U(τj , τ

+
j−1)

]
(I +Bi)U(τi, θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.4)

The operator {S (t, θ), (t, θ) ∈ ∆} is called impulsive evolution operator associated with {Bk; τk}
∞
k=1.

The following lemma on the properties of the impulsive evolution operator {S (t, θ), (t, θ) ∈ ∆}

associated with {Bk; τk}
∞
k=1 are widely used in this paper.

Lemma 2.3: (See Lemma 1 of [18]) Assumptions [A1], [A2], [A3] and [B] hold. Impulsive

evolution operator {S (t, θ), (t, θ) ∈ ∆} has the following properties:

(1) For 0 ≤ θ ≤ t ≤ T0, S (t, θ) ∈ £b(X), i.e., sup0≤θ≤t≤T0
‖S (t, θ)‖ ≤ MT0

where

MT0
> 0.

(2) For 0 ≤ θ < r < t ≤ T0, r 6= τk, S (t, θ) = S (t, r)S (r, θ).

(3) For 0 ≤ θ ≤ t ≤ T0 and N ∈ Z+
0 , S (t+NT0, θ +NT0) = S (t, θ).

(4) For 0 ≤ t ≤ T0 and M ∈ Z+
0 , S (MT0 + t, 0) = S (t, 0) [S (T0, 0)]M .

(5) S (t, θ) is compact operator for 0 ≤ θ < t ≤ T0.

Here, we note that system (2.1) has a T0-periodic PC-mild solution x if and only if S (T0, 0)

has a fixed point. The impulsive evolution operator {S (t, θ), (t, θ) ∈ ∆} can be used to reduce the

existence of T0-periodic PC-mild solutions for linear impulsive periodic system with time-varying

generating operators to the existence of fixed points for an operator equation. This implies that we

can build up the new framework to study the periodic PC-mild solutions for the integrodifferential

impulsive periodic system with time-varying generating operators on Banach space.

Now we introduce the PC-mild solution of Cauchy problem (2.3) and T0-periodic PC-mild solu-

tion of the system (2.1).

Definition 2.1: For every x̄ ∈ X , the function x ∈ PC([0, T0];X) given by x(t) = S (t, 0)x̄

is said to be the PC-mild solution of the Cauchy problem (2.3) .

Definition 2.2: A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution

of system (2.1) if it is a PC-mild solution of Cauchy problem (2.3) corresponding to some

x̄ and x(t+ T0) = x(t) for t ≥ 0.
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Secondly, we recall the following nonhomogeneous linear impulsive periodic system with time-

varying generating operators

(2.5)

{
ẋ(t) = A(t)x(t) + f(t), t 6= τk,

∆x(τk) = Bkx(τk) + ck, t = τk.

where f ∈ L1 ([0, T0];X), f(t+ T0) = f(t) for t ≥ 0 and ck satisfies the following assumption.

Assumption [C]: For each k ∈ Z
+
0 and ck ∈ X , there exists δ ∈ N such that ck+δ = ck.

In order to study system (2.5), we need to consider the following Cauchy problem

(2.6)





ẋ(t) = A(t)x(t) + f(t), t ∈ [0, T0]\D̃,

∆x(τk) = Bkx(τk) + ck, k = 1, 2, · · ·, δ,

x(0) = x̄.

and introduce the PC-mild solution of Cauchy problem (2.6) and T0-periodic PC-mild solution of

system (2.5).

Definition 2.3: A function x ∈ PC([0, T0];X), for finite interval [0, T0], is said to be a PC-

mild solution of the Cauchy problem (2.5) corresponding to the initial value x̄ ∈ X and

input f ∈ L1 ([0, T0];X) if x is given by

x(t) = S (t, 0)x̄+

∫ t

0

S (t, θ)f(θ)dθ +
∑

0≤τk<t

S
(
t, τ+

k

)
ck for t ∈ [0, T0].

Definition 2.4: A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution

of system (2.5) if it is a PC-mild solution of Cauchy problem (2.6) to some x̄ and x(t+T0) =

x(t) for t ≥ 0.

3. The generalized Gronwall’s inequality

In order to use Leray-Schauder theorem to show the existence of periodic solutions, we need a

new generalized Gronwall’s inequality with impulse, mixed type integral operator and B-norm which

is much different from the classical Gronwall’s inequality and can be used in other problems (such

as discussion on integrodifferential equation of mixed type, see [26]). It will play an essential role in

the study of nonlinear problems on infinite dimensional spaces.

We first introduce the following generalized Gronwall’s inequality with impulse and B-norm.

Lemma 3.1: Let x ∈ PC([0,∞);X) and satisfy the following inequality

(3.1) ‖x(t)‖ ≤ a+ b

∫ t

0

‖x(θ)‖λ1dθ + d

∫ t

0

‖xθ‖
λ3

B dθ,

where a, b, d ≥ 0, 0 ≤ λ1, λ3 ≤ 1 are constants, and ‖xθ‖B = sup0≤ξ≤θ ‖x(ξ)‖. Then

‖x(t)‖ ≤ (a+ 1)e(b+c)t.

Proof. See Lemma 3.1 of [23]. �

Using Gronwall’s inequality with impulse and B-norm, we can obtain the following new general-

ized Gronwall’s Lemma.
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Lemma 3.2: Let x ∈ PC([0, T0];X) satisfy the following inequality

‖x(t)‖ ≤ a+b

∫ t

0

‖x(θ)‖λ1dθ+c

∫ T0

0

‖x(θ)‖λ2dθ+d

∫ t

0

‖xθ‖
λ3

B dθ+e

∫ T0

0

‖xθ‖
λ4

B dθ for all t ∈ [0, T0],

where λ1, λ3 ∈ [0, 1], λ2, λ4 ∈ [0, 1), a, b, c, d, e ≥ 0 are constants. Then exists a constant

M∗ > 0 such that

‖x(t)‖ ≤M∗.

Proof. See Lemma 3.2 of [23]. �

4. Periodic solutions of Integrodifferential Impulsive Periodic System with

time-varying generating operators

In this section, we consider the following integrodifferential impulsive periodic system with time-

varying generating operators

(4.1)





ẋ(t) = A(t)x(t) + f
(
t, x,

∫ t

0
g(t, s, x)ds

)
, t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk.

and the associated Cauchy problem

(4.2)






ẋ(t) = A(t)x(t) + f
(
t, x,

∫ t

0
g(t, s, x)ds

)
, t ∈ [0, T0]\D̃,

∆x(τk) = Bkx(τk) + ck, k = 1, 2, · · · , δ,

x(0) = x̄.

By virtue of the expression of the PC-mild solution of the Cauchy problem (2.6), we can introduce

the PC-mild solution of the Cauchy problem (4.2).

Definition 4.1: A function x ∈ PC([0, T0];X) is said to be a PC-mild solution of the Cauchy

problem (4.2) corresponding to the initial value x̄ ∈ X if x satisfies the following integral

equation

x(t) = S (t, 0)x̄+

∫ t

0

S (t, θ)f

(
θ, x(θ),

∫ θ

0

g(θ, s, x(s))ds

)
dθ+

∑

0≤τk<t

S
(
t, τ+

k

)
ck for t ∈ [0, T0].

Now, we introduce the T0-periodic PC-mild solution of system (4.1).

Definition 4.2: A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution

of system (4.1) if it is a PC-mild solution of Cauchy problem (4.2) corresponding to some

x̄ and x(t+ T0) = x(t) for t ≥ 0.

We make the following assumptions.

Assumption [F]:

[F1]: f : [0,+∞) ×X ×X → X satisfies:

(i) For each (x, y) ∈ X ×X , t→ f(t, x, y) is measurable.

(ii) For each ρ > 0 there exists Lf(ρ) > 0 such that, for almost all t ∈ [0,+∞) and all x1,

x2, y1, y2 ∈ X , ‖x1‖, ‖x2‖, ‖y1‖, ‖y2‖ ≤ ρ, we have

‖f(t, x1, y1) − f(t, x2, y2)‖ ≤ Lf (ρ)(‖x1 − x2‖ + ‖y1 − y2‖).
EJQTDE, 2009 No. 4, p. 7



[F2]: There exists a positive constant Mf > 0 such that

‖f(t, x, y)‖ ≤Mf(1 + ‖x‖ + ‖y‖) for all x, y ∈ X.

[F3]: f(t, x, y) is T0-periodic in t, i.e., f(t+ T0, x, y) = f(t, x, y), t ≥ 0.

Assumption [G]:

[G1]: Let D = {(t, s) ∈ [0 + ∞) × [0 + ∞); 0 ≤ s ≤ t}. The function g : D × X → X is

continuous for each ρ > 0 there exists Lg(ρ) > 0 such that, for each (t, s) ∈ D and each x,

y ∈ X with ‖x‖, ‖y‖ ≤ ρ, we have

‖g(t, s, x) − g(t, s, y)‖ ≤ Lg(ρ)‖x− y‖.

[G2]: There exists a positive constant Mg > 0 such that

‖g(t, s, x)‖ ≤Mg(1 + ‖x‖) for all x ∈ X.

[G3]: g(t, s, x) are T0-periodic in t and s, i.e., g(t+ T0, s+ T0, x) = g(t, s, x), t ≥ s ≥ 0 and

∫ T0

0

g(t, s, x)ds = 0, t ≥ s ≥ 0.

Lemma 4.1: Under assumptions [G1] and [G2], one has the following properties:

(1)
∫ ·

0
g (·, s, x(s)) ds : PC ([0, T0];X) → PC ([0, T0];X).

(2) For all x1, x2 ∈ PC ([0, T0];X) and ‖x1‖PC([0,T0];X) , ‖x2‖PC([0,T0];X) ≤ ρ,

∥∥∥∥
∫ t

0

g (t, s, x1(s)) ds−

∫ t

0

g (t, s, x2(s)) ds

∥∥∥∥ ≤ Lg (ρ)T0 ‖(x1)t − (x2)t‖B .

(3) For x ∈ PC ([0, T0];X) ,
∥∥∥∥
∫ t

0

g (t, s, x(s)) ds

∥∥∥∥ ≤MgT0 (1 + ‖xt‖B) .

Proof. See Lemma 4.3 of [23]. �

Now we present the existence of PC-mild solution for system (4.2).

Theorem 4.1: Assumptions [A1], [F1], [F2], [G1] and [G2] hold. Then system (4.2) has a

unique PC-mild solution given by the following integral equation

x(t, x̄) = S (t, 0)x̄+

∫ t

0

S (t, θ)f

(
θ, x(θ),

∫ θ

0

g(θ, s, x(s))ds

)
dθ +

∑

0≤τk<t

S
(
t, τ+

k

)
ck.

Proof. In order to make the process clear we divide it into three steps.

Step 1, we consider the following general integro-differential equation without impulse

(4.3)






.
x (t) = A(t)x(t) + f

(
t, x,

∫ t

0
g(t, s, x)ds

)
, t ∈ [s, τ ],

x(s) = x̄ ∈ X.

In order to obtain the local existence of mild solution for system (4.3), we only need to set up the

framework for use of the contraction mapping theorem. Consider the ball given by

B = {x ∈ C ([s, t1];X) | ‖x(t) − x̄‖ ≤ 1, s ≤ t ≤ t1}
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where t1 would be chosen, and ‖x (t)‖ ≤ 1 + ‖x̄‖ = ρ̄, s ≤ t ≤ t1. B ⊆ C ([s, t1], X) is a closed

convex set. Define a map Q on B given by

(Qx)(t) = U(t, 0)x̄+

∫ t

s

U (t, θ) f

(
θ, x (θ) ,

∫ θ

0

g(θ, s, x(s))ds

)
dθ.

Under the assumptions [A1], [F1], [F2], [G1], [G2] and Lemma 3.1, one can verify that map Q is a

contraction map on B with chosen t1 > 0. This means that system (4.3) has a unique mild solution

x ∈ C([s, t1];X) given by

x(t) = U(t, 0)x̄+

∫ t

s

U (t, θ) f

(
θ, x(θ),

∫ θ

0

g(θ, s, x(s))ds

)
dθ on [s, t1].

Again, using the Lemma 3.1 and (3) of Lemma 4.1, we can obtain the a prior estimate of the mild

solutions for system (4.3) and present the global existence of mild solutions.

Step 2, for t ∈ (τk, τk+1], consider Cauchy problem




.
x (t) = A(t)x(t) + f

(
t, x,

∫ t

0 g(t, s, x)ds
)

, t ∈ (τk, τk+1],

x(τk) = xk.
(4.4)

where xk ≡ (I +Bk)x(τk) + ck ∈ X .

By Step 1, Cauchy problem (4.4) also has a unique PC-mild solution

x(t) = U(t, τk)xk +

∫ t

τk

U(t, θ)f

(
θ, x(θ),

∫ θ

0

g(θ, s, x(s))ds

)
dθ.

Step 3, combining the all of solutions on (τk, τk+1] (k = 1, · · · , δ), one can obtain the PC-mild

solution of the Cauchy problem (4.2) given by

x(t, x̄) = S (t, 0)x̄+

∫ t

0

S (t, θ)f

(
θ, x(θ),

∫ θ

0

g(θ, s, x(s))ds

)
dθ +

∑

0≤τk<t

S
(
t, τ+

k

)
ck.

This completes the proof. �

To establish the periodic solutions for the system (4.1), we define a Poincaré operator from X

to X as following

P (x̄) = x(T0, x̄)

= S (T0, 0)x̄+

∫ T0

0

S (T0, θ)f

(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)
dθ +

∑

0≤τk<T0

S
(
T0, τ

+
k

)
ck(4.5)

where x(·, x̄) denote the PC-mild solution of the Cauchy problem (4.2) corresponding to the initial

value x(0) = x̄, then, examine whether P has a fixed point.

We first note that a fixed point of P gives rise to a periodic solution.

Lemma 4.2: System (4.1) has a T0-periodic PC-mild solution if and only if P has a fixed

point.

Proof. Suppose x(·) = x(· + T0), then x(0) = x(T0) = P (x(0)). This implies that x(0) is a fixed

point of P . On the other hand, if Px0 = x0, x0 ∈ X , then for the PC-mild solution x(·, x0) of the

Cauchy problem (4.2) corresponding to the initial value x(0) = x0, we can define y(·) = x(·+T0, x0),
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then y(0) = x(T0, x0) = Px0 = x0. Now, for t > 0, we can use the (2), (3) and (4) of Lemma 2.3

and assumptions [A2], [B], [C], [F3], [G3] to arrive at

y(t) = x(t+ T0, x0)

= S (t+ T0, T0)S (T0, 0)x0

+

∫ T0

0

S (t+ T0, T0)S (T0, θ)f

(
θ, x(θ, x0),

∫ θ

0

g(θ, s, x(s, x0))ds

)
dθ

+
∑

0≤τk<T0

S (t+ T0, T0)S
(
T0, τ

+
k

)
ck

+

∫ t+T0

T0

S (t+ T0, θ)f

(
θ, x(θ, x0),

∫ θ

0

g(θ, s, x(s, x0))ds

)
dθ

+
∑

T0≤τk+δ<t+T0

S
(
t+ T0, τ

+
k+δ

)
ck+δ

= S (t, 0)

{
S (T0, 0)x0 +

∫ T0

0

S (T0, θ)f

(
θ, x(θ, x0),

∫ θ

0

g(θ, s, x(s, x0))ds

)
dθ

+
∑

0≤τk<T0

S
(
T0, τ

+
k

)
ck+δ

}

+

∫ t

0

S (t+ T0, θ + T0)f

(
θ + T0, x(θ + T0, x0),

∫ θ+T0

0

g(θ + T0, s, x(s, x0))ds

)
dθ

+
∑

T0≤τk+δ<t+T0

S
(
t+ T0, τ

+
k+δ

)
ck+δ

= S (t, 0)x(T0)

+

∫ t

0

S (t+ T0, θ + T0)f

(
θ + T0, x(θ + T0, x0),

∫ θ+T0

T0

g(θ + T0, s, x(s, x0))ds

)
dθ

+
∑

T0≤τk+δ<t+T0

S
(
t+ T0, τ

+
k+δ

)
ck+δ

= S (t, 0)x(T0) +

∫ t

0

S (t, θ)f

(
θ, x(θ + T0, x0),

∫ θ

0

g(θ + T0, s+ T0, x(s+ T0, x0))ds

)
dθ

+
∑

T0≤τk+δ<t+T0

S
(
t+ T0, τ

+
k+δ

)
ck+δ

= S (t, 0)x(T0) +

∫ t

0

S (t, θ)f

(
θ, y(θ, y(0)),

∫ θ

0

g(θ, s, y(s, y(0)))ds

)
dθ +

∑

0≤τk<t

S
(
t, τ+

k

)
ck.

= S (t, 0)y(0) +

∫ t

0

S (t, θ)f

(
θ, y(θ, y(0),

∫ θ

0

g(θ, s, y(s, y(0)))ds

)
dθ +

∑

0≤τk<t

S
(
t, τ+

k

)
ck.

This implies that y(·, y(0)) is a PC-mild solution of Cauchy problem (4.2) with initial value y(0) = x0.

Thus the uniqueness implies that x(·, x0) = y(·, y(0)) = x(· + T0, x0), so that x(·, x0) is a T0-

periodic. �

Next, we show that P defined by (4.5) is a continuous and compact operator.

Lemma 4.3: The operator P is a continuous and compact operator.
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Proof. (1) Show that P is a continuous operator on X .

Let x̄, ȳ ∈ Ξ ⊂ X , where Ξ is a bounded subset of X . Suppose x(·, x̄) and x(·, ȳ) are the PC-mild

solutions of Cauchy problem (4.2) corresponding to the initial value x̄ and ȳ ∈ X respectively given

by

x(t, x̄) = S (t, 0)x̄+

∫ t

0

S (t, θ)f

(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)
dθ +

∑

0≤τk<t

S
(
T0, τ

+
k

)
ck;

x(t, ȳ) = S (t, 0)ȳ +

∫ t

0

S (t, θ)f

(
θ, x(θ, ȳ),

∫ θ

0

g(θ, s, x(s, ȳ))ds

)
dθ +

∑

0≤τk<t

S
(
T0, τ

+
k

)
ck.

Thus, we obtain

‖x(t, x̄)‖ ≤ MT0
‖x̄‖ + (1 +MgT0)MT0

MfT0 +MT0

∑

0≤τk<T0

‖ck‖ +MT0
Mf

∫ t

0

‖x(θ, x̄)‖dθ

+MT0
MfMgT0

∫ t

0

‖x(s, x̄)‖ds

≤ a0 +MT0
Mf

∫ t

0

‖x(θ, x̄)‖dθ +MT0
MfMgT0

∫ t

0

‖xs,x̄‖Bds,

and

‖x(t, ȳ)‖ ≤ MT0
‖ȳ‖ + (1 +MgT0)MT0

MfT0 +MT0

∑

0≤τk<T0

‖ck‖ +MT0
Mf

∫ t

0

‖x(θ, ȳ)‖dθ

+MT0
MfMgT0

∫ t

0

‖x(s, ȳ)‖ds

≤ b0 +MT0
Mf

∫ t

0

‖x(θ, ȳ)‖dθ +MT0
MfMgT0

∫ t

0

‖xs,ȳ‖Bds

where ‖xs,x̄‖B = sup0≤ξ≤s ‖x(ξ, x̄)‖ and ‖xs,ȳ‖B = sup0≤ξ≤s ‖x(ξ, ȳ)‖.

By Lemma 3.1, one can verify that there exist constants M∗
1 and M∗

2 > 0 such that

‖x(t, x̄)‖ ≤M∗
1 and ‖x(t, ȳ)‖ ≤M∗

2 .

Let ρ = max{M∗
1 ,M

∗
2 } > 0, then ‖x(·, x̄)‖, ‖x(·, ȳ)‖ ≤ ρ which imply that they are locally bounded.

By assumptions [F1], [F2], [G1], [G2] and (2) of Lemma 4.1, we obtain

‖x(t, x̄) − x(t, ȳ)‖

≤ ‖S (t, 0)‖‖x̄− ȳ‖

+

∫ t

0

‖S (t, θ)‖

∥∥∥∥∥f
(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)
− f

(
θ, x(θ, ȳ),

∫ θ

0

g(θ, s, x(s, ȳ))ds

)∥∥∥∥∥ dθ

≤ MT0
‖x̄− ȳ‖ +MT0

Lf (ρ)

∫ t

0

‖x(θ, x̄) − x(θ, ȳ)‖dθ +MT0
Lf (ρ)Lg(ρ)T0

∫ t

0

‖xs,x̄ − xs,ȳ‖Bds.

By Lemma 3.1 again, one can verify that there exists constant M∗
3 > 0 such that

‖x(t, x̄) − x(t, ȳ)‖ ≤M∗
3MT0

‖x̄− ȳ‖ ≡ L‖x̄− ȳ‖, for all t ∈ [0, T0],

which implies that

‖P (x̄) − P (ȳ)‖ =
∥∥x(T0, x̄) − x(T0, ȳ)

∥∥ ≤ L‖x̄− ȳ‖.

Hence, P is a continuous operator on X .
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(2) Verify that P takes a bounded set into a precompact set in X .

Let Γ is a bounded subset of X . Define K = PΓ = {P (x̄) ∈ X | x̄ ∈ Γ}.

For 0 < ε ≤ T0, define

Kε = PεΓ = S (T0, T0 − ε)
{
x(T0 − ε, x̄) | x̄ ∈ Γ

}
.

Next, we show that Kε is precompact in X . In fact, for x̄ ∈ Γ fixed, we have

‖x(T0 − ε, x̄)‖

≤ ‖S (T0 − ε, 0)x̄‖ +

∫ T0−ε

0

∥∥∥∥∥S (T0 − ε, θ)f

(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)∥∥∥∥∥ dθ

+
∑

0≤τk<T0−ε

∥∥S
(
T0 − ε, τ+

k

)
ck
∥∥

≤ MT0
‖x̄‖ +MT0

MfT0(1 +MgT0) +MT0
Mf

∫ T0

0

‖x(θ, x̄)‖dθ

+MT0

∑

0≤τk<T0

‖ck‖ +MT0
MfMgT0

∫ T0

0

‖xs,x̄‖Bds

≤ MT0
‖x̄‖ +MT0

MfT0(1 +MgT0) + (1 +MgT0)MT0
MfT0ρ+MT0

∑

0≤τk<T0

‖ck‖.

This implies that the set
{
x(T0 − ε, x̄) | x̄ ∈ Γ

}
is totally bounded.

By virtue of (5) of Lemma 2.3, S (T0, T0 − ε) is a compact operator. Thus, Kε is precompact in

X .

On the other hand, for arbitrary x̄ ∈ Γ,

Pε(x̄) = S (T0, 0)x̄+

∫ T0−ε

0

S (T0, θ)f

(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)
dθ +

∑

0≤τk<T0−ε

S
(
T0, τ

+
k

)
ck.

Thus, combined with (4.5), we have

∥∥Pε(x̄) − P (x̄)
∥∥ ≤

∥∥∥∥
∫ T0−ε

0

S (T0, θ)f

(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)
dθ

−

∫ T0

0

S (T0, θ)f

(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)
dθ

∥∥∥∥

+

∥∥∥∥∥∥

∑

0≤τk<T0−ε

S
(
T0, τ

+
k

)
ck −

∑

0≤τk<T0

S
(
T0, τ

+
k

)
ck

∥∥∥∥∥∥

≤

∫ T0

T0−ε

‖S (T0, θ)‖

∥∥∥∥∥f
(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)∥∥∥∥∥ dθ

+MT0

∑

T0−ε≤τk<T0

‖ck‖ for τk ∈ [T0 − ε, T0)

≤ MT0
Mf (1 +MgT0)(1 + ρ)ε+MT0

∑

T0−ε≤τk<T0

‖ck‖ for τk ∈ [T0 − ε, T0).

If there are no impulsive points between [T0 − ε, T0], it is clear that
∑

T0−ε≤τk<T0
‖ck‖ being zero.

As a result, it is showing that the set K can be approximated to an arbitrary degree of accuracy

by a precompact set Kε. Hence K itself is precompact set in X . That is, P takes a bounded set

into a precompact set in X . As a result, P is a compact operator. �
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In order to use Leray-Schauder fixed pointed theorem to examine the operator P has a fixed

point, we have to make the assumptions [F2] and [G2] a little stronger as following.

[F2′]: There exist constant Nf > 0 and 0 < λ < 1 such that

‖f(t, x, y)‖ ≤ Nf

(
1 + ‖x‖λ + ‖y‖λ

)
for all x, y ∈ X.

[G2′]: There exists a positive constant Ng > 0 and 0 < λ < 1 such that

‖g(t, s, x)‖ ≤ Ng(1 + ‖x‖λ) for all x ∈ X.

Now, we can give the main results in this paper.

Theorem 4.2: Assumptions [A1], [A2], [A3], [B], [C], [F1], [F2′], [F3], [G1], [G2′], [G3] hold.

Then system (4.1) has a T0-periodic PC-mild solution on [0,+∞).

Proof. By virtue of (5) of Lemma 2.3, S (T0, 0) is a compact operator on infinite dimensional space

X . Thus, S (T0, 0) 6= αI, α ∈ R. Then, there exists β > 0 such that
∥∥[σS (T0, 0) − I]x̄

∥∥ ≥

β‖x̄‖ for σ ∈ [0, 1]. In fact, define Πσ = I−σS (T0, 0), σ ∈ [0, 1], and Πσ : [0, 1] → £b(X) and h(σ) =

‖Πσ‖ : [0, 1] → R
+. It is obvious that h ∈ C([0, 1]; R+). Thus, there exist σ∗ ∈ [0, 1] and β > 0 such

that

h(σ∗) = min{h(σ) | σ ∈ [0, 1]} ≥ β > 0.

If not, there exits σ̄ ∈ [0, 1] such that h(σ̄) = 0. We can assert that σ̄ 6= 0 unless h(σ̄) = 1. Thus,

for σ̄ ∈ (0, 1],

S (T0, 0) =
1

σ̄
I where

1

σ̄
≥ 1,

which is a contradiction with S (T0, 0) 6= αI, α ∈ R.

By Theorem 4.1, for fixed x̄ ∈ X , the Cauchy problem (4.2) corresponding to the initial value

x(0) = x̄ has the PC-mild solution x(·, x̄). By Lemma 4.3, the operator P defined by (4.5), is

compact.

According to Leray-Schauder fixed point theory, it suffices to show that the set {x̄ ∈ X | x̄ =

σP x̄, σ ∈ [0, 1]} is a bounded subset of X . In fact, let x̄ ∈ {x̄ ∈ X | x̄ = σP x̄, σ ∈ [0, 1]}, we have

β ‖x̄‖ ≤
∥∥[σS (T0, 0) − I]x̄

∥∥

= σ

∫ T0

0

‖S (T0, θ)‖

∥∥∥∥∥f
(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)∥∥∥∥∥ dθ + σ
∑

0≤τk<T0

∥∥S
(
T0, τ

+
k

)∥∥ ‖ck‖.

By assumptions [F2′] and [G2′],

‖x̄‖ ≤
σ

β

∫ T0

0

‖S (T0, θ)‖

∥∥∥∥∥f
(
θ, x(θ, x̄),

∫ θ

0

g(θ, s, x(s, x̄))ds

)∥∥∥∥∥ dθ +
σ

β

∑

0≤τk<T0

∥∥S
(
T0, τ

+
k

)∥∥ ‖ck‖

≤
σ

β
MT0


(Nf +NgT0)T0 +Nf

∫ T0

0

‖x(θ, x̄)‖λdθ +NfNgT0

∫ T0

0

‖xs,x̄‖
λ
Bdθ +

∑

0≤τk<T0

‖ck‖


 .
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For t ∈ [0, T0], we obtain

‖x(t, x̄)‖

≤ MT0
‖x̄‖ +MT0


(Nf +NgT0)T0 +Nf

∫ t

0

‖x(θ, x̄)‖λdθ +NfNgT0

∫ t

0

‖xs,x̄‖
λ
Bdθ +

∑

0≤τk<t

‖ck‖




≤
σ

β
M2

T0



(Nf +NgT0)T0 +Nf

∫ T0

0

‖x(θ, x̄)‖λdθ +NfNgT0

∫ T0

0

‖xs,x̄‖
λ
Bdθ +

∑

0≤τk<T0

‖ck‖





+MT0


(Nf +NgT0)T0 +Nf

∫ t

0

‖x(θ, x̄)‖λdθ +NfNgT0

∫ t

0

‖xs,x̄‖
λ
Bdθ +

∑

0≤τk<t

‖ck‖




≤

(
σ

β
MT0

+ 1

)
MT0



(Nf +NgT0)T0 +
∑

0≤τk<T0

‖ck‖



+MT0
Nf

∫ t

0

‖x(θ, x̄)‖λdθ

+
σ

β
M2

T0
Nf

∫ T0

0

‖x(θ, x̄)‖λdθ +MT0
NfNgT0

∫ t

0

‖xs,x̄‖
λ
Bdθ +

σ

β
M2

T0
NfNgT0

∫ T0

0

‖xs,x̄‖
λ
Bdθ.

By Lemma 3.2, there exists M∗ > 0 such that

‖x(t, x̄)‖ ≤M∗ for t ∈ [0, T0].

This implies that ‖x(0, x̄)‖ = ‖x̄‖ ≤M∗ for all x̄ ∈
{
x̄ ∈ X | x̄ = σP x̄, σ ∈ [0, 1]

}
.

Thus, by Leray-Schauder fixed pointed theory, there exits x0 ∈ X such that Px0 = x0. By

Lemma 4.2, we know that the PC-mild solution x(·, x0) of Cauchy problem (4.2) corresponding to

the initial value x(0) = x0, is just T0-periodic. Therefore x(·, x0) is a T0-periodic PC-mild solution

of system (4.1). �

5. An Example

Consider the following non-autonomous integrodifferential periodic population evolution equation

with periodic impulsive perturbations

(5.1)





∂
∂t
x(r, t) + sin t ∂

∂r
x(r, t) = −0.2 sin tx(r, t) + x

2
3 (r, t)

+
∫ t

0
ψ(s)(1 + sin(t− s))

√
3x

2
3 (r, s) + 2ds,

r ∈ Ω = (0, rm), t > s and t, s ∈ (0, 2π] \ { 1
2π, π,

3
2π},

∆x(r, τi) = x(r, τ+
i ) − x(r, τ−i ) =






0.05Ix(r, τi), i = 1,

−0.05Ix(r, τi), i = 2,

0.05Ix(r, τi), i = 3,

r ∈ Ω, τi = i
2π, i = 1, 2, 3,

x(r, 0) = x0(r), r ∈ Ω,

x(0, t) = ϕ0(t), t ∈ (0, 2π) \ { 1
2π, π,

3
2π},

x(r, 0) = x(r, 2π).

where t denotes time, r denotes age, rm is the highest age ever attained by individuals of the

population, x(r, t) is called age density function, x0(r) is an initial age density of the people, ϕ0(t)

is the absolute infant fertility rate of population.
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Set X = L2(0, rm). Let A(t) be defined by

(A(t)ϕ)(r) = sin t

(
−

d

dr
ϕ(r) − 0.2ϕ(r)

)
, for arbiartry ϕ ∈ D(A(t))

where

D(A(t)) = {ϕ | ϕ, A(t)ϕ ∈ L2(0, rm); ϕ(0) = ϕ0}.

It is well known that operator A ≡ − d
dr
ϕ(r) − 0.2ϕ(r) with t > rm is the infinitesimal generator

of a compact semigroup {T (t) , t ≥ 0} on X with domain D(A) = {ϕ | ϕ, Aϕ ∈ L2(0, rm); ϕ(0) =

ϕ0}. Thus, one can immediately obtain that {A(t), t > rm} can determine a compact, 2π-periodic

evolutionary process {U (t, θ), t ≥ θ ≥ 0}.

Define x(·)(r) = x(r, ·), sin(·)(r) = sin(r, ·), f
(
·, x(·),

∫ ·

0
g(·, s, x)ds

)
(r) = x

2
3 (·)(r) +

∫ t

0
ψ(s)(1 +

sin(· − s))
√

3x
2
3 (·) + 2ds(r) where ψ(· + 2π) = ψ(·) ∈ L1

loc([0,+∞);X),
∫ 2π

0
ψ(s)(1 + sin(t −

s))

√
3x

2
3 (t) + 2ds = 0, and

Bi =





0.05I, i = 1,

−0.05I, i = 2,

0.05I, i = 3.

Thus we formulate (5.1) as the following abstract integrodifferential impulsive periodic system

(5.2)






ẋ(t) = A(t)x(t) + f
(
t, x,

∫ t

0
g(t, s, x)ds

)
, t ∈ (0, 2π] \ { 1

2π, π,
3
2π},

∆x
(

i
2π
)

= Bix
(

i
2π
)
, i = 1, 2, 3,

x(0) = x(2π).

It satisfies all the assumptions given in Theorem 4.2, our results can be used to system (5.1). That

is, system (5.1) has a 2π-periodic PC-mild solution x2π(r, ·) ∈ PC2π

(
[0 + ∞);L2(0, rm)

)
, where

PC2π([0,+∞);L2(0, rm)) ≡
{
x ∈ PC

(
[0,+∞);L2(0, rm)

)
| x(t) = x(t+ 2π), t ≥ 0

}
;
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