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Abstract. In this paper, we investigate the existence of periodic solutions for the second
order systems at resonance:{

ü(t) + m2ω2u(t) +∇F(t, u(t)) = 0 a.e. t ∈ [0, T],
u(0)− u(T) = u̇(0)− u̇(T) = 0,

where m > 0, the potential F(t, x) is convex in x and satisfies some general subquadratic
conditions. The main results generalize and improve Theorem 3.7 in J. Mawhin and
M. Willem [Critical point theory and Hamiltonian systems, Springer-Verlag, New York,
1989].
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1 Introduction and main results

Consider the second order Hamiltonian systems{
ü(t) + m2ω2u(t) +∇F(t, u(t)) = 0 a.e. t ∈ [0, T],

u(0)− u(T) = u̇(0)− u̇(T) = 0,
(1.1)

where T > 0, ω = 2π/T and m > 0 is an integer. The potential F : [0, T]× RN → R satisfies
the following assumption:

(A) F(t, x) is measurable in t for every x ∈ RN and continuously differentiable in x for a.e.
t ∈ [0, T], and there exist a ∈ C(R+, R+), b ∈ L1(0, T; R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0, T].
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If m = 0, the non-resonant second order Hamiltonian systems have been extensively
investigated during the past two decades. Different solvability hypotheses on the poten-
tial are given, such as: the convexity conditions (see [6, 8, 12, 13]); the coercivity conditions
(see [1, 5, 10]); the subquadratic conditions (including the sublinear nonlinearity case, see
[7, 9, 11–14, 16, 18]); the superquadratic conditions (see [3, 7, 17, 18, 21]) and the asymptotically
quadratic conditions (see [19, 21, 24]).

Using the variational principle of Clarke and Ekeland together with an approximate ar-
gument of H. Brézis [2], Mawhin and Willem [6] proved an existence theorem for semilinear
equations of the form Lu = ∇F(x, u), where L is a noninvertible linear selfadjoint operator
and F is convex with respect to u and satisfies a suitable asymptotic quadratic growth con-
dition. This result was applied to periodic solutions of first order Hamiltonian systems with
convex potential. In [5], the authors considered the second order systems (1.1) with m = 0.
They proved that when the potential F satisfies the following assumptions:

(A′) F(t, x) is measurable in t for every x ∈ RN , and continuously differentiable and convex
in x for a.e. t ∈ [0, T];

(A1) There exists l ∈ L4(0, T; RN) such that

(l(t), x) ≤ F(t, x), ∀x ∈ RN and a.e. t ∈ [0, T];

(A′2) There exist α ∈ (0, ω2) and γ ∈ L2(0, T; R+) such that

F(t, x) ≤ 1
2

α|x|2 + γ(t), ∀x ∈ RN and a.e. t ∈ [0, T];

(A′3)
∫ T

0
F(t, x) dt→ +∞ as |x| → ∞, x ∈ RN ;

then problem (1.1) has at least one solution, see [5, Theorem 3.5]. This result was slightly
improved in Tang [8] by relaxing the integrability of l and γ. In [12], Tang and Wu dealt with
the (β, γ)-subconvex case, i.e.,

F(t, β(x + y)) ≤ γ(F(t, x) + F(t, y)), ∀x, y ∈ RN and a.e. t ∈ [0, T] (1.2)

for some γ > 0. Under assumptions (A), (A′3) and (1.2) and the subquadratic condition: there
exist 0 < µ < 2 and M > 0 such that

(∇F(t, x), x) ≤ µF(t, x), ∀|x| ≥ M and a.e. t ∈ [0, T],

they obtained the existence result by taking advantage of Rabinowitz’s saddle point theorem.
Recently, Tang and Wu [13] extended a theorem established by A. C. Lazer, E. M. Landesman
and D. R. Meyers [4] on the existence of critical points without compactness assumptions,
using the reduction method, the perturbation argument and the least action principle. As a
main application, they successively studied the existence of periodic solutions of problem (1.1)
(m = 0) with subquadratic convex potential, with subquadratic µ(t)-convex potential and with
subquadratic k(t)-concave potential, which unifies and significantly generalizes some earlier
results in [5, 8, 15, 22, 23] obtained by other methods.

If m 6= 0, it is a resonance case. Using the dual least action principle and the perturbation
technique, Mawhin and Willem [5] also obtained the following theorem.
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Theorem A ([5, Theorem 3.7]). Suppose that F(t, x) satisfies conditions (A′), (A1) and the follow-
ing:

(A2) There exist α ∈ (0, (2m + 1)ω2) and γ ∈ L2(0, T; R+) such that

F(t, x) ≤ 1
2

α|x|2 + γ(t), ∀x ∈ RN and a.e. t ∈ [0, T].

(A3)
∫ T

0
F(t, a cos mωt + b sin mωt) dt→ +∞ as |a|+ |b| → ∞, a, b ∈ RN .

Then problem (1.1) has at least one solution in H1
T, where

H1
T =

{
u : [0, T]→ RN

∣∣∣∣ u is absolutely continuous,
u(0) = u(T) and u̇ ∈ L2(0, T; RN)

}
is a Hilbert space with the norm defined by

‖u‖ =
(∫ T

0
|u(t)|2 dt +

∫ T

0
|u̇(t)|2 dt

)1/2

.

Motivated by the works mentioned above, in this paper, we are interested in problem
(1.1), where the potential is convex and satisfies conditions which are more general than
(A2). Applying the abstract critical point theory established in [13], we prove some existence
results, which generalize Theorem A and complement the results in [13]. The main results are
the following theorems.

Theorem 1.1. Suppose that assumption (A) holds and F(t, x) is convex in x for a.e. t ∈ [0, T].
Assume that (A3) holds and:

(A4) There exists γ ∈ L1(0, T; R+) such that

F(t, x) ≤ 2m + 1
2

ω2|x|2 + γ(t) (1.3)

for all x ∈ RN and a.e. t ∈ [0, T], and

meas
{

t ∈ [0, T]
∣∣∣∣ F(t, x)− 2m + 1

2
ω2|x|2 → −∞ as |x| → ∞

}
> 0. (1.4)

Then problem (1.1) has at least one solution in H1
T.

Remark 1.2. Theorem 1.1 extends Theorem A, since (A4) is weaker than (A2) and assumption
(A) holds for functions F in Theorem A (see [13, Remark 1.3] for a proof). There are functions
F which match our setting but not satisfying Theorem A. For example, let

F(t, x) =
2m + 1

2
ω2
(
|x|2 − (1 + |x|2) 3

4

)
+ (l(t), x),

where l ∈ L3(0, T; RN)\L∞(0, T; RN). Then by Young’s inequality, one has

−2m + 1
2

ω2(1 + |x|2) 3
4 + (l(t), x) ≤ − 2m + 1

2
ω2|x| 32 + |l(t)||x|

≤ − 2m + 1
2

ω2|x| 32

+
2m + 1

2

(
ω

4
3 |x|

) 3
2
+

2m + 1
4

(
4

3(2m + 1)

)3

ω−4|l(t)|3

≤ 16
27(2m + 1)2 ω−4|l(t)|3
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for all x ∈ RN and a.e. t ∈ [0, T]. Thus F satisfies (1.3) with γ(t) = 16
27(2m+1)2 ω−4|l(t)|3.

Evidently, (A3) and (1.4) are satisfied, and F(t, ·) is convex because

f (x) := g(h(x))

is convex by the fact that
g(s) := (s− (1 + s)

3
4 ), s > 0

is convex and increasing, and
h(x) := |x|2, x ∈ RN

is convex. Hence F satisfies all the conditions of Theorem 1.1. But it does not satisfy Theo-
rem A, for (A2) does not hold.

Theorem 1.1 yields immediately the following corollary.

Corollary 1.3. The conclusion of Theorem 1.1 remains valid if we replace (A4) by

(A5) F(t, x)− 2m + 1
2

ω2|x|2 → −∞ as |x| → ∞ for a.e. t ∈ [0, T].

Remark 1.4. It is easy to see that (A5) is weaker than (A2). So Corollary 1.3 also generalizes
Theorem A.

Corollary 1.5. The conclusion of Theorem 1.1 remains valid if we replace (A4) by

(A6) There exist α ∈ L∞(0, T; R+) with meas
{

t ∈ [0, T] : α(t) < (2m + 1)ω2} > 0 and α(t) ≤
(2m + 1)ω2 for a.e. t ∈ [0, T], and γ ∈ L1(0, T; R+) such that

F(t, x) ≤ 1
2

α(t)|x|2 + γ(t) for all x ∈ RN and a.e. t ∈ [0, T]. (1.5)

Remark 1.6. Corollary 1.5 also generalizes Theorem A. There are functions F satisfying our
Corollary 1.5 and not satisfying Theorem A and Corollary 1.3. For example, let

F(t, x) =
1
2

β(t)|x|2 + (l(t), x),

where β ∈ L∞(0, T; R+) with β(t) ≤ (2m + 1)ω2 for a.e. t ∈ [0, T],
∫ T

0 β(t)dt > 0,

meas
{

t ∈ [0, T] : β(t) < (2m + 1)ω2} > 0,

and l ∈ L∞(0, T; RN) with |l(t)| ≤ 1
2 ((2m + 1)ω2 − β(t)) for a.e. t ∈ [0, T]. Then one has

F(t, x) ≤ 1
2

β(t)|x|2 + |l(t)||x| ≤ 1
2
(β(t) + |l(t)|)|x|2 + 1

2
|l(t)|,

which is just (1.5) with α = β(t) + |l(t)| and γ = |l(t)|/2. Hence F satisfies Corollary 1.5. But
in the case that meas

{
t ∈ [0, T] : β(t) = (2m + 1)ω2} > 0, F does not satisfy the conditions of

Theorem A and Corollary 1.3.

Theorem 1.7. Suppose that assumption (A) holds and F(t, x) is convex in x for a.e. t ∈ [0, T].
Assume that (A3) holds and the following condition is fulfilled.
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(A7) There exists α ∈ L∞(0, T; R+) with meas
{

t ∈ [0, T]
∣∣α(t) < (2m + 1)ω2} > 0 and α(t) ≤

(2m + 1)ω2 for a.e. t ∈ [0, T] such that

lim sup
|x|→∞

|x|−2F(t, x) ≤ 1
2

α(t) uniformly for a.e. t ∈ [0, T].

Then problem (1.1) has at least one solution in H1
T.

Remark 1.8. The conditions (A6) and (A7) are not equivalent in general. There are functions
F satisfying (A7) but not (A6). For example, let

F(t, x) =
1
2

µ(t)|x|2 + |x| 32 , ∀x ∈ RN and a.e. t ∈ [0, T],

where µ ∈ L1(0, T; R) with µ(t) ≤ (2m + 1)ω2 for a.e. t ∈ [0, T],
∫ T

0 µ(t) dt > 0, and
meas

{
t ∈ [0, T] : µ(t) < ω2} > 0. Then (A7) holds with α = µ+(t). But F does not satisfy

(A6) if meas
{

t ∈ [0, T] : µ(t) = ω2} > 0. On the other hand, there are functions F satisfying
(A6) but not (A7). For example, let

F(t, x) =
1
3

t−
1
8

(√
2m + 1ω|x|

) 3
2

, ∀x ∈ RN and a.e. t ∈ [0, T].

By Young’s inequality, one has

F(t, x) ≤ 1
3

(
3
4

(√
2m + 1ω|x|

)2
+

(t−
1
8 )4

4

)
=

(2m + 1)ω2

4
|x|2 + t−

1
2

12
,

which is just (1.5) with α = (2m + 1)ω2/2 and γ = t−
1
2 /12. However, F(t, x) does not satisfy

(A7), because

lim sup
|x|→∞

1
3 t−

1
8
(√

2m + 1ω|x|
) 3

2

|x|2 ≤ (2m + 1)ω2

4

does not uniformly hold for a.e. t ∈ [0, T].

Remark 1.9. Theorem 1.7 generalizes Theorem A. There are functions F satisfying our
Theorem 1.7 and not satisfying Theorems A and 1.1. For example, let

F(t, x) =
1
2

α(t)|x|2 + |x| 32 + (l(t), x),

where α ∈ L∞(0, T; R+) with α(t) ≤ (2m + 1)ω2 for a.e. t ∈ [0, T],
∫ T

0 α(t) dt > 0,

meas
{

t ∈ [0, T] : α(t) < (2m + 1)ω2} > 0,

and l ∈ L∞(0, T; RN). Then F satisfies all the conditions of Theorem 1.7. But obviously F does
not satisfy Theorems A and 1.1.

Theorem 1.10. Suppose that assumption (A) holds and F(t, x) is convex in x for a.e. t ∈ [0, T].
Assume that (A3) holds and:

(A8) There exist α ∈ L1(0, T; R+) with
∫ T

0 α(t) dt < 12(2m+1)
T(m+1)2 and γ ∈ L1(0, T; R+) such that

F(t, x) ≤ 1
2

α(t)|x|2 + γ(t), ∀x ∈ RN and a.e. t ∈ [0, T]. (1.6)

Then problem (1.1) has at least one solution in H1
T.
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Remark 1.11. There are functions F satisfying our Theorem 1.10 and not satisfying the results
mentioned above. For example, let

F(t, x) =
1
2

β(t)|x|2 + (l(t), x),

where β ∈ L1(0, T; R+) with 0 <
∫ T

0 β(t) dt < 12(2m+1)
T(m+1)2 and l ∈ L2(0, T; RN). Then one has

F(t, x) ≤ 1
2

β(t)|x|2 + |l(t)||x|

≤ 1
2

(
β(t) +

12(2m + 1)− T(m + 1)2|β|1
2T2(m + 1)2

)
|x|2 + T2(m + 1)2

12(2m + 1)− T(m + 1)2|β|1
|l(t)|2,

which is just (1.6) with

α = β(t) +
12(2m + 1)− T(m + 1)2|β|1

2T2(m + 1)2 and γ =
T2(m + 1)2

12(2m + 1)− T(m + 1)2|β|1
|l(t)|2.

Thus F satisfies all the conditions of Theorem 1.10. But in the case that

meas
{

t ∈ [0, T] : β(t) > (2m + 1)ω2} > 0,

F does not satisfy the conditions of Theorems A, 1.1 and 1.7.

2 Proofs of the theorems

Under assumption (A), the energy functional associated to problem (1.1) given by

ϕ(u) = −1
2

∫ T

0
|u̇(t)|2 dt +

m2ω2

2

∫ T

0
|u(t)|2 dt +

∫ T

0
F(t, u(t)) dt

is continuously differentiable and weakly upper semi-continuous on H1
T. Furthermore,

〈ϕ′(u), v〉 = −
∫ T

0
(u̇(t), v̇(t)) dt + m2ω2

∫ T

0
(u(t), v(t)) dt +

∫ T

0
(∇F(t, u(t)), v(t)) dt

for all u, v ∈ H1
T, and ϕ′ is weakly continuous. It is well known that the weak solutions of

problem (1.1) correspond to the critical points of ϕ (see [5]).

For u ∈ H̃1
T
4
=
{

u ∈ H1
T :
∫ T

0 u(t) dt = 0
}

, we have

‖u‖∞ ≤
T
12

∫ T

0
|u̇(t)|2 dt (Sobolev’s inequality),

which implies that
‖u‖∞ ≤ C‖u‖, ∀u ∈ H1

T (2.1)

for some C > 0, where ‖u‖∞ = maxt∈[0,T] |u(t)| (see [5, Proposition 1.3]).

We recall an abstract critical point theorem which will be used in the sequel.
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Proposition 2.1 ([13, Theorem 1.1]). Suppose that V and W are reflexive Banach spaces, ϕ ∈
C1(V ×W, R), ϕ(v, ·) is weakly upper semi-continuous for all v ∈ V and ϕ(·, w) : V → R is convex
for all w ∈W, that is,

ϕ(λv1 + (1− λ)v2, w) ≤ λϕ(v1, w) + (1− λ)ϕ(v2, w)

for all λ ∈ [0, 1] and v1, v2 ∈ V, w ∈W, and ϕ′ is weakly continuous. Assume that

ϕ(0, w)→ −∞ as ‖w‖ → ∞,

and for every M > 0,

ϕ(v, w)→ +∞ as ‖v‖ → ∞ uniformly for ‖w‖ ≤ M.

Then ϕ has at least one critical point.

Proposition 2.2 ([13, Lemma 5.1]). Assume that H is a real Hilbert space, f : H × H → R is a
bilinear functional. Then g : H → R given by

g(u) = f (u, u), ∀u ∈ H

is convex if and only if
g(u) ≥ 0, ∀u ∈ H.

For m > 0, set

Hm =

{
m

∑
j=0

(aj cos jωt + bj sin jωt) : aj, bj ∈ RN , j = 0, . . . , m

}
,

and denote the orthogonal complement of Hm in H1
T by H⊥m . Applying Proposition 2.2, we

obtain the following result.

Lemma 2.3. Assume that F(t, x) is convex in x for a.e. t ∈ [0, T]. Then, for every w ∈ H⊥m , ϕ(v + w)

is convex in v ∈ Hm.

Proof. The convexity of F(t, ·) implies that F(t, v + w) is convex in v ∈ Hm for every w ∈ H⊥m ,
and hence

∫ T
0 F(t, v + w)dt is convex in v ∈ Hm for every w ∈ H⊥m . Notice that

−1
2

∫ T

0
|v̇(t)|2 dt +

m2ω2

2

∫ T

0
|v(t)|2 dt ≥ 0, ∀v ∈ Hm.

Lemma 2.2 implies that

−1
2

∫ T

0
|v̇(t)|2 dt +

m2ω2

2

∫ T

0
|v(t)|2 dt

is convex in v ∈ Hm. Hence, for each w ∈ H⊥m ,

ϕ(v + w) = − 1
2

∫ T

0
|v̇(t) + ẇ(t)|2 dt +

m2ω2

2

∫ T

0
|v(t) + w(t)|2 dt +

∫ T

0
F(t, v(t) + w(t)) dt

=

(
−1

2

∫ T

0
|v̇(t)|2 dt +

m2ω2

2

∫ T

0
|v(t)|2 dt

)
+
∫ T

0
F(t, v(t) + w(t)) dt

− 1
2

∫ T

0
|ẇ(t)|2dt +

m2ω2

2

∫ T

0
|w(t)|2 dt

is convex in v ∈ Hm. This completes the proof.



8 Y. Ye

Lemma 2.4. Suppose that assumptions (A) and (A3) hold and F(t, x) is convex in x for a.e. t ∈ [0, T].
Then for every M > 0,

ϕ(v + w)→ +∞ as ‖v‖ → ∞, v ∈ Hm,

uniformly for w ∈ H⊥m with ‖w‖ ≤ M.

Proof. We prove this assertion by contradiction. Suppose that the statement of the theorem
does not hold, then there exist M > 0, c1 > 0 and two sequences (vn) ⊂ Hm and (wn) ⊂ H⊥m
with ‖vn‖ → ∞ (n→ ∞) and ‖wn‖ ≤ M for all n such that

ϕ(vn + wn) ≤ c1, ∀n ∈ N.

For v ∈ Hm, write
v = u + a cos mωt + b sin mωt,

where a, b ∈ RN and

u ∈ Hm−1
4
=

{
m−1

∑
j=0

(
aj cos jωt + bj sin jωt

)
| aj, bj ∈ RN , j = 0, 1, . . . , m− 1

}
.

Define the function F̄ : R2N → R by

F̄(a, b) =
∫ T

0
F(t, a cos mωt + b sin mωt) dt.

It follows from the continuous differentiability and the convexity of F(t, ·) that F̄ is continu-
ously differentiable and convex on R2N , which yields that F̄ is weakly lower semi-continuous
on R2N . Using (A3), one has

F̄(a, b) =
∫ T

0
F(t, a cos mωt + b sin mωt) dt→ +∞ as |a|+ |b| → ∞.

Hence, by the least action principle [5, Theorem 1.1], F̄ has a minimum at some (a0, b0) ∈ R2N

for which ∫ T

0
(∇F(t, a0 cos mωt + b0 sin mωt), cos mωt) dt

=
∫ T

0
(∇F(t, a0 cos mωt + b0 sin mωt), sin mωt) dt

= 0.

By the convexity of F(t, ·), we obtain

F(t, v + w) ≥ F(t, a0 cos mωt + b0 sin mωt)

+ (∇F(t, a0 cos mωt + b0 sin mωt), u + w + (a− a0) cos mωt + (b− b0) sin mωt),

and then, using assumption (A), (2.2) and (2.1),∫ T

0
F(t, v + w) dt ≥

∫ T

0
F(t, a0 cos mωt + b0 sin mωt) dt

+
∫ T

0
(∇F(t, a0 cos mωt + b0 sin mωt), u + w) dt

≥ − max
s∈[0,|a0|+|b0|]

a(s)
∫ T

0
b(t) dt− max

s∈[0,|a0|+|b0|]
a(s)

∫ T

0
b(t)|u + w| dt

≥ − max
s∈[0,|a0|+|b0|]

a(s)
∫ T

0
b(t)dt(1 + ‖u‖∞ + ‖w‖∞)

≥ − c2(1 + ‖u‖∞)
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for all w ∈ H⊥m with ‖w‖ ≤ M, where c2 = maxs∈[0,|a0|+|b0|] a(s)
∫ T

0 b(t)dt(1 + CM). Rewrite
vn = un + an cos mωt + bn sin mωt, where an, bn ∈ RN and un ∈ Hm−1. Then one has

c1 ≥ ϕ(vn + wn)

= − 1
2

∫ T

0
|u̇n|2 dt +

m2ω2

2

∫ T

0
|un|2 dt− 1

2

∫ T

0
|ẇn|2 dt

+
m2ω2

2

∫ T

0
|wn|2 dt +

∫ T

0
F(t, vn + wn) dt

≥ 1
2
(m2 − (m− 1)2)ω2

∫ T

0
|un|2 dt− M2

2
− c2(1 + ‖un‖∞)

for all n, which implies that (un) is bounded by the equivalence of the norms on the finite-
dimensional space Hm−1. Combining this with assumption (A), the convexity of F(t, ·) and
(2.1), we obtain

c1 ≥ ϕ(vn + wn)

≥ − c3 +
∫ T

0
F(t, vn + wn) dt

≥ − c3 + 2
∫ T

0
F
(

t,
1
2
(an cos mωt + bn sin mωt)

)
dt−

∫ T

0
F(t,−un − wn) dt

≥ − c3 + 2
∫ T

0
F
(

t,
1
2
(an cos mωt + bn sin mωt)

)
dt

− max
s∈[0,C‖un+wn‖]

a(s)
∫ T

0
b(t) dt,

which yields that the sequences (an) and (bn) are also bounded. This contradicts the fact that
‖vn‖ → ∞ as n→ ∞. Therefore the conclusion holds.

Now we are in the position to prove our theorems.

Proof of Theorem 1.1. According to Proposition 2.1, it remains to show that

ϕ(w)→ −∞ as ‖w‖ → ∞, w ∈ H⊥m . (2.2)

We follow an argument in [13]. Arguing indirectly, assume that there exists a sequence
(un) ⊂ H⊥m satisfying ‖un‖ → ∞ and

ϕ(un) ≥ c4, ∀n ∈ N (2.3)

for some c4 ∈ R. Write un = an‖un‖ cos(m + 1)ωt + bn‖un‖ sin(m + 1)ωt + wn, where
an, bn ∈ RN and wn ∈ H⊥m+1. Then we have, using (1.3),

c4 ≤ ϕ(un)

≤ − 1
2

∫ T

0
|u̇n|2 dt +

m2ω2

2

∫ T

0
|un|2 dt +

(2m + 1)
2

ω2
∫ T

0
|un|2 dt +

∫ T

0
γ(t) dt

= − 1
2

∫ T

0
|ẇn|2 dt +

m2ω2

2

∫ T

0
|wn|2 dt +

(2m + 1)
2

ω2
∫ T

0
|wn|2 dt +

∫ T

0
γ(t) dt

≤ − 1
2

(
1− m2

(m + 2)2 −
(2m + 1)
(m + 2)2

) ∫ T

0
|ẇn|2dt +

∫ T

0
γ(t) dt

= − 2m + 3
2(m + 2)2

∫ T

0
|ẇn|2 dt +

∫ T

0
γ(t) dt,



10 Y. Ye

which implies that (wn) is bounded. Taking vn = un/‖un‖, then ‖vn‖ = 1, and hence the
sequences {an}, {bn} are bounded. Up to a subsequence, we can assume that

an → a and bn → b as n→ ∞

for some a, b ∈ RN . By the boundedness of (wn), one has wn/‖un‖ → 0 as n→ ∞. Hence,

vn → a cos(m + 1)ωt + b sin(m + 1)ωt in H1
T,

and |a| + |b| 6= 0, which yields that vn(t) → a cos(m + 1)ωt + b sin(m + 1)ωt uniformly
for a.e. t ∈ [0, T] by (2.1). Hence |un(t)| → ∞ as n → ∞ for a.e. t ∈ [0, T], because
a cos(m + 1)ωt + b sin(m + 1)ωt only has finite zeros.

Now set

E =

{
t ∈ [0, T]

∣∣∣∣ F(t, x)− (2m + 1)
2

ω2|x|2 → −∞ as |x| → ∞
}

.

It follows from Fatou’s lemma (see [20]) that

lim sup
n→∞

ϕ(un) ≤ lim sup
n→∞

∫ T

0

[(
− (m + 1)2ω2

2
+

m2ω2

2

)
|un|2 + F(t, un)

]
dt

= lim sup
n→∞

∫ T

0

(
F(t, un)−

(2m + 1)ω2

2
|un|2

)
dt

≤ lim sup
n→∞

∫
E

(
F(t, un)−

(2m + 1)ω2

2
|un|2

)
dt +

∫ T

0
γ(t) dt

= −∞,

a contradiction with (2.3).
A combination of (2.2), Lemmas 2.3, 2.4 and Proposition 2.1 shows that ϕ has at least a

critical point. Consequently, problem (1.1) possesses at least one solution in H1
T and the proof

is completed.

Proof of Theorem 1.7. First, we claim that there exists a constant a0 < 2m+1
(m+1)2 such that∫ T

0
α(t)|u|2 dt ≤ a0

∫ T

0
|u̇|2 dt, ∀u ∈ H⊥m . (2.4)

The proof is similar to the first part of [13, Proof of Theorem 3.2], for the convenience of the
readers we sketch it here briefly. Arguing indirectly, we assume that there exists a sequence
(un) ⊂ H⊥m such that∫ T

0
α(t)|un|2 dt >

(
2m + 1
(m + 1)2 −

1
n

) ∫ T

0
|u̇n|2 dt, ∀n ∈ N, (2.5)

which implies that un 6= 0 for all n. By the homogeneity of the above inequality, we may
assume that

∫ T
0 |u̇n|2dt = 1 and∫ T

0
α(t)|un|2 dt >

2m + 1
(m + 1)2 −

1
n

, ∀n ∈ N. (2.6)

It follows from the weak compactness of the unit ball of H⊥m that there exists a subsequence,
still denoted by (un), such that un ⇀ u in H⊥m , un → u in C(0, T; RN). This, jointly with (2.6),
shows that ∫ T

0
α(t)|u|2 dt ≥ 2m + 1

(m + 1)2 .
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Hence

2m + 1
(m + 1)2 ≥

2m + 1
(m + 1)2

∫ T

0
|u̇|2 dt ≥ (2m + 1)ω2

∫ T

0
|u|2 dt ≥

∫ T

0
α(t)|u|2 dt ≥ 2m + 1

(m + 1)2 ,

and then

1 =
∫ T

0
|u̇|2 dt = (m + 1)2ω2

∫ T

0
|u|2 dt

and ∫ T

0

(
(2m + 1)ω2 − α(t)

)
|u|2 dt = 0,

which implies that u = a cos(m + 1)ωt + b sin(m + 1)ωt, a, b ∈ RN , u 6= 0 and u = 0 on a
positive measure subset. This contradicts the fact that u = a cos(m + 1)ωt + b sin(m + 1)ωt
only has finite zeros if u 6= 0.

It follows from assumptions (A) and (A7) that, for ε ∈
(
0, 2m+1

(m+1)2 − a0
)
, there exists Mε > 0

such that
F(t, x) ≤ 1

2
(
α(t) + ε(m + 1)2ω2) |x|2 + max

s∈[0,Mε]
a(s)b(t)

for all x ∈ RN and a.e. t ∈ [0, T]. Combining this with (2.4), we obtain

ϕ(w) ≤ − 1
2

∫ T

0
|ẇ|2dt +

m2w2

2

∫ T

0
|w|2 dt +

1
2

∫ T

0
(α(t) + ε(m + 1)2ω2)w2 dt + c5

≤ − 1
2

(
1− m2

(m + 1)2 − a0 − ε

) ∫ T

0
|ẇ|2 dt + c5

≤ − 1
2

(
2m + 1
(m + 1)2 − a0 − ε

) ∫ T

0
|ẇ|2 dt + c5

for w ∈ H⊥m , where c5 = maxs∈[0,Mε] a(s)
∫ T

0 b(t) dt, which implies that

ϕ(w)→ −∞ as ‖w‖ → ∞ on H⊥m ,

by the equivalence of the L2-norm of ẇ and the H1
T-norm on H⊥m . This, jointly with Lemmas

2.3, 2.4 and Proposition 2.1, yields that ϕ possesses at least one critical point, and hence
problem (1.1) has at least one solution in H1

T. This concludes the proof.

Proof of Theorem 1.10. By (A8) and Sobolev’s inequality, we have

ϕ(w) ≤ − 1
2

(
1− m2

(m + 1)2

) ∫ T

0
|ẇ|2 dt +

1
2

∫ T

0
α(t)|w|2 dt +

∫ T

0
γ(t) dt

≤ − 2m + 1
2(m + 1)2

∫ T

0
|ẇ|2 dt +

1
2

∫ T

0
α(t) dt · ‖w‖2

∞ +
∫ T

0
γ(t) dt

≤ − 2m + 1
2(m + 1)2

∫ T

0
|ẇ|2 dt +

1
2

∫ T

0
α(t) dt · T

12

∫ T

0
|ẇ|2 dt +

∫ T

0
γ(t) dt

≤ − 1
2

(
2m + 1
(m + 1)2 −

T
12

∫ T

0
α(t)dt

) ∫ T

0
|ẇ|2 dt +

∫ T

0
γ(t) dt

for all w ∈ H⊥m . Noting
∫ T

0 α(t) dt < 12(2m+1)
T(m+1)2 , the last inequality implies that

ϕ(w)→ −∞ as ‖w‖ → ∞, w ∈ H⊥m .

Consequently, Theorem 1.10 follows from Lemmas 2.3, 2.4 and Proposition 2.1. This completes
the proof.
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