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Abstract

The problem of exponential stability in mean square of the zero

solution for a class of singularly perturbed system of Itô differential

equations is investigated.

Estimates of the block components of the fundamental random

matrix are provided.

Keywords: Itô differential equations, singular perturbations, exponential
stability in mean square.

AMS classification: 34D15, 34F05 1

1 Problem formulation

Consider the system of Itô differential equations:

dx1(t) = [A11x1(t) + A12x2(t)]dt +
N
∑

k=1

Ak
11x1(t)dwk(t) (1.1)

εdx2(t) = [A21x1(t) + A22x2(t)]dt +
N
∑

k=1

Ak
21x1(t)dwk(t)

1This paper is in the final form and no version of it will be submitted for publication

elsewhere.
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where xi ∈ Rni, i = 1, 2, Aij, A
k
ij are constant matrices with apropriate di-

mensions, ε > 0 is a small parameter; w(t) = (w1(t) w2(t)...wN(t))∗ is a
standard Wiener process on a given probability space (Ω,F ,P).

For each ε > 0 a solution of the system (1.1) is a random process x(t, ε) =
(

x1(t, ε)
x2(t, ε)

)

which is continuous with probability 1, verifies (1.1) and for all

t, x(t, ε) is adapted to family of σ-algebras generated by the process w(t).

Definition 1.1 We say that the zero solution of the system (1.1) is mean
square exponentially stable if there exist β ≥ 1, α > 0 such that for any
solution x(t, ε) of the system (1.1) with x(0, ε) = x0 independent of w(t),
t ≥ 0, we have:

E|x(t, ε)|2 ≤ βe−αtE|x(0)|2

for all t ≥ 0 E being the expectation.

Remark

a) The constants α, β from the above definition may be dependent on the
small parameter ε > 0.

b) It can be seen [11] that in the definition of exponential stability we may
consider only the solutions with initial conditions x(0) ∈ Rn(n = n1 + n2).

The goal of this paper is to provide conditions assuring exponential stability
of the zero solution of the system (1.1). Such conditions are expressed in
terms of exponential stability of the zero solution of some subsytems of lower
dimension not depending upon small parameter ε.

If A22 is an invertible matrix we may associate the following system of Itô
differential equations of lower dimension:

dx1(t) = Arx1(t)dt +
N
∑

k=1

Ak
rx1(t)dwk(t) (1.2)

where

Ar = A11 − A12A
−1
22 A21

Ak
r = Ak

11 − A12A
−1
22 Ak

21, k = 1, 2, ..., N.

We shall investigate the relationship between the exponential stability of the
zero solution of the “reduced system” (1.2) and the exponential stability of
the zero solution of the system (1.1) for ε > 0 small enough.

We extend to the class of stochastic systems (1.1) the well known result of
Klimusev-Krasovski [9] from the ordinary differential equations.
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The same problem was investigated in [6] in the case when the fast equation
is

εdx2(t) = [A21x1(t) + A22x2(t)]dt +
√

ε
N
∑

k=1

[Ak
21x1(t) + Ak

22x2(t)]dwk(t).

The convergence in mean square of the slow component x1(t, ε) to a solution
of the reduced system is proved in [4] when the system (1.1) is nonlinear.

2 Some preliminary results

Recall several results which are used in the next section.

A. For each ε > 0 we denote Φ(t, t0, ε), t ≥ t0 the fundamental random
matrix solution of the system (1.1) (see [5]), the columns of Φ(t, t0, ε) are
solutions of the system (1.1) and Φ(t0, t0, ε) = In1+n2 .

If x(t) = x(t, t0, x0, ε) is the solution of the system (1.1) which verifies
x(t0, t0, x0, ε) = x0 then we have x(t, ε) = Φ(t, t0, ε)x0, x0 ∈ Rn1+n2 .

B. Consider the linear system of Itô differential equations

dx(t) = A0x(t)dt +
N
∑

k=1

Akx(t)dwk(t) (2.1)

we have

Lemma 2.1 [7] The following are equivalent:

(i) the zero solution of the system (2.1) is exponentially stable in mean square.

(ii) there exists a positive matrix X which solves the linear equation of Lia-
punov type

AX + XA∗ +
N
∑

k=1

AkX(Ak)∗ + I = 0. (2.2)

Moreover if (i) holds then the unique positive solution of the equation (2.2)
is given by

X = E

∫

∞

0
Φ(t, 0)Φ∗(t, 0)dt (2.3)

where Φ(t, 0) is the fundamental random matrix of the system (2.1).
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C. If I ⊂ R is an interval, we denote L2
w(I,Rn) the subspace of the measur-

able processes f : I ×Ω → Rn which are adapted with respect to the family
of the σ-algebras generated by the Wiener process w(t) and

E

∫

I
|f(t)|2dt < ∞.

Resoning as in the prove of proposition 1 in [2] we obtain:

Lemma 2.2 Assume that the zero solution of the system (2.1) is exponen-
tially stable in mean square. If x(t) is a solution of the affine system

dx(t) = [A0x(t) + f0(t)]dt +
N
∑

k=1

[Akx(t) + fk(t)]dwk(t),

t ≥ 0, x(t0) = x0 then

E|x(t)|2 ≤ β(e−α(t−t0)|x0|2 +
N
∑

k=0

∫ t

t0

e−α(t−s)E|fk(s)|2ds),

for all t ∈ [t0, t1], fk ∈ L2
w([t0, t1),R

n), α, β are positive constants not depend-
ing upon fk, x0.

3 The main result

Theorem 3.1 Assume

(i) the zero solution of the reduced system (1.2) is exponentially stable in
mean square;

(ii) the eigenvalues of the matrix A22 are located in the half plane Reλ < 0.

Then there exists ε0 > 0 such that for arbitrary ε ∈ (0, ε0) the zero solution
of the system (1.1) is exponentially stable in mean square. Moreover, if

(

Φ11(t, t0, ε) Φ12(t, t0, ε)
Φ21(t, t0, ε) Φ22(t, t0, ε)

)

is a partition of the fundamental “random” matrix Φ(t, t0, ε) of the system
(1.1) we have the estimates
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E|Φ11(t, t0, ε)|2 ≤ β1e
−α1(t−t0)

E|Φ12(t, t0, ε)|2 ≤ β1εe
−α1(t−t0) (3.1)

E|Φ21(t, t0, ε)|2 ≤ β2

ε
(e−α1(t−t0) − e−α2

t−t0
ε ) + β3e

−α1(t−t0)

E|Φ22(t, t0, ε)|2 ≤ β3e
−α1(t−t0)

for all t ≥ t0, βk, αk positive constants not depending upon t, t0, ε.

Proof: Consider the nonlinear equation

A21 + A22T21 − εT21(A11 + A12T21) = 0. (3.2)

By a standard implicit functions argument, we deduce that there exists ε1 > 0
and an anlytic function T21(ε) defined for |ε| < ε1 which is a solution for
equation (3.2) with T21(0) = −A−1

22 A21. Moreover T21(ε) = −A−1
22 A21 +

εT̂21(ε) with |T̂21(ε)| ≤ ĉ < ∞, (∀)|ε| < ε1.

Let T12(ε) be the unique solution of the equation

ε(A11 + A12T21(ε))T12 − T12(A22 − εT21(ε)A12) + A12 = 0. (3.3)

We have T12(ε) = A12A
−1
22 + εT̂12(ε) where |T̂12(ε)| ≤ ĉ < ∞ for all |ε < ε1.

If

(

x1(t, ε)
x2(t, ε)

)

is a solution of the system (1.1) we define

(

ξ1(t, ε)
ξ2(t, ε)

)

=

(

In1 −εT12(ε)
0 In2

)(

In1 0
−T21(ε) In2

)(

x1(t, ε)
x2(t, ε)

)

. (3.4)

Using the Itô formula ([5]) we deduce that

(

ξ1(t, ε)
ξ2(t, ε)

)

is a solution of the

following system:

dξ1(t) = A1(ε)ξ1(t)dt +
N
∑

k=1

(Âk
11(ε)ξ1(t) + εÂk

12(ε)ξ2(t))dwk(t)

εdξ2(t) = A2(ε)ξ2(t)dt +
N
∑

k=1

(Âk
21(ε)ξ1(t) + εÂk

22(ε)ξ2(t))dwk(t) (3.5)

where

A1(ε) = A11 + A12T21(ε) = Ar + O(ε)

A2(ε) = A22 − εT21(ε)A12

Âk
21(ε) = Ak

21 − εT21(ε)A
k
11 (3.6)

Ak
11(ε) = Ak

r + O(ε), Âk
12(ε) = Âk

11(ε)T12(ε)

Âk
22(ε) = Âk

21(ε)T12(ε).
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Since the zero solution of the reduced system (1.2) is exponentially stable in
mean square it follows that the linear equation

ArX + XA∗

r +
N
∑

k=1

A∗

rX(Ak
r)

∗ + In1 = 0 (3.7)

has a unique symmetric solution Xr > 0.

Also, since A22 is stable, it follows that the Liapunov equation

A22X2 + X2A
∗

22 + In2 = 0

has a unique solution X2 > 0 (see (2.3)).

By a standard argument based on implicit function theorem we deduce that
the linear equations

A1(ε)X1 + X1A
∗

1(ε) +
N
∑

k=1

Âk
11(ε)X1(A

k
11(ε))

∗ + In1 = 0

A2(ε)X2 + X2A
∗

2(ε) + ε
N
∑

k=1

Âk
22(ε)X2(Â

k
22(ε))

∗ + In2 = 0

have positive solutions X1(ε), X2(ε) respectively defined for all ε ∈ (0, ε2).
Moreover, there exist µ1, µ2, ν1, ν2 not depending upon ε such that

0 < µ1In1 ≤ X1(ε) ≤ µ2In1 ;

0 < ν1In2 ≤ X2(ε) ≤ ν2In2.

Applying Lemma 2.1 we conclude that the zero solution of the system

dξ1(t) = A1(ε)ξ1(t)dt +
N
∑

k=1

Âk
11(ε)ξ1(t)dwk(t) (3.8)

and the one of the system

εdξ2(t) = A2(ε)ξ2(t)dt + ε
N
∑

k=1

Âk
22(ε)ξ2(t)dwk(t) (3.9)

respectively, are exponentially stable in mean square.

Applying Lemma 2.2 to the first equation in the system (3.5) we deduce that
there exist β̃1 > 0, α̃1 > 0 such that

E|ξ1(t, ε)|2 ≤ β̃1(e
−α̃1(t−t0)E|ξ1(t0)|2 + ε2

∫ t

t0

e−α̃1(t−σ)E|ξ2(s, ε)|2ds. (3.10)
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Also, applying Lemma 2.2 to the second equation in the system (3.5) we
deduce that there exist β̃2 > 0, α̃2 > 0 such that

E|ξ2(t, ε)|2 ≤ β̃2[e
−α̃2

(t−t0)
ε E|ξ2(t0, ε)|2 +

1

ε2

∫ t

t0

e−α̃2
(t−σ)

ε E|ξ1(σ, ε)|2dσ](3.11)

for all t ≥ t0.

Substituting (3.11) in (3.10) and changing the order of integration we get

E|ξ1(t, ε)|2 ≤ β̃3e
−α̃1(t−t0)[E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2]

+β̃4

∫ t

t0

[εe−α̃1(t−s) + e−α̃2
(t−s)

ε ]E|ξ1(s, ε)|2ds.

By a standard argument in singular perturbation theory (see [1, 12]) we
deduce that there exists 0 < ε0 ≤ ε2 such that for arbitrary ε ∈ (0, ε0) we
have

E|ξ1(t, ε)|2 ≤ β̃5e
−α1(t−t0)[E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2] (3.12)

for all t ≥ t0, where β̃5 > 0, α1 ∈ (0, α̃1).

Using (3.12) in (3.11) we obtain

E|ξ2(t, ε)| ≤ β̃2e
−α̃2

(t−t0)

ε [E|ξ2(t0, ε)|2] (3.13)

+
β̃6

ε
[e−α1(t−t0) − e−α̃2

(t−t0)

ε ][E|ξ1(t0, ε)|2 + εE|ξ2(t0, ε)|2].

Reversing (3.4) and taking into account (3.12), (3.13) we get:

E|x1(t, ε)|2 ≤ β1e
−α1(t−t0)[E|x1(t0, ε)|2 + εE|x2(t0, ε)|2]

E|x2(t, ε)|2 ≤ β2e
−α2

(t−t0)
ε E|x2(t0, ε)| (3.14)

+
β̃2

ε
(e−α1(t−t0) − e−α2

(t−t0)

ε )(E|x1(t0, ε)|2 + εE|x2(t0, ε)|2)

which means the exponential stability of the zero solution of the system (1.1).

The estimations (3.1) follows from (3.14) replacing

(

x1(t0, ε)
x2(t0, ε)

)

by

(

In1

0

)

and

(

0
In2

)

respectively.

Remark. The estimates of the block components of the fundamental matrix
solution Φ(t, t0, ε) of the system (1.1) obtained in the above theorem differ
essentially from the ones obtained in the deterministic framework (see [1]).

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 7, p. 7



This is due to the intensity of the white noise from the second equation of
the system (1.1).

Let us consider the system of differential equations:

dx1(t) = [A11x1(t)+A12x2(t)]dt+
N
∑

k=1

[Ak
11x1(t)+εAk

12x1(t)]dwk(t) (3.15)

εdx2(t) = [A21x1(t)+A22x2(t)]dt+
√

ε
N
∑

k=1

[Ak
21x1(t)+Ak

22x2(t)]dwk(t).

In this case the reduced system is :

dx1(t) = [A11 − A12A
−1
22 A21]x1(t)dt +

N
∑

k=1

Ak
11x1(t)dwk(t). (3.16)

We associate to system (3.15) the following system:

dx2(τ) = A22x2(τ)dτ +
N
∑

k=1

Ak
22x2(τ)dwk(τ) (3.17)

which is called “the boundary layer subsystem”.

If in the system (3.15) we perform the coordinates transformation (3.4) we
get:

dξ1(t) = A1(ε)ξ1(t)dt +
N
∑

k=1

(Âk
11(ε)ξ1(t) + εÂk

12(εξ2(t))dwk(t) (3.18)

εdξ2(t) = A2(ε)ξ2(t)dt +
√

ε
N
∑

k=1

(Âk
21(ε)ξ1(t) + Âk

22(ε)ξ2(t))dwk(t).

With the same arguments as in the proof of Theorem 3.1 we obtain:

Theorem 3.1’ Assume

a) A22 is a invertible matrix.

b) The zero solution of the reduced system (3.16) and the one of the boundary
layer system (3.17), respectively, is exponentially stable in mean square.

Under these assumptions the block components of the fundamental random
matrix solution of the system (3.15) verify:

E|Φ11(t, t0, ε)|2 ≤ β1e
−α1(t−t0)

E|Φ12(t, t0, ε)|2 ≤ β1εe
−α1(t−t0)

E|Φ21(t, t0, ε)|2 ≤ β2e
−α1(t−t0) (3.19)

E|Φ22(t, t0, ε)|2 ≤ β2(e
−α2

(t−t0)
ε + εe−α1(t−t0))
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for all t ≥ t0, ε > 0 small enough; αk, βk positive constants not depending
upon t, t0, ε.

The estimates obtained in Theorem 3.1’ are similar to the ones obtained in
deterministic framework [1]. In the case of system (3.15) we are able to prove
the following converse result:

Theorem 3.2 Assume that A22 is an invertible matrix. If the fundamental
random matrix solution Φ(t, t0, ε) of the system (3.15) verifies the estimates
(3.19), then the zero solution of the reduced subsystem (3.16) and the one
of the boundary layer subsystem (3,17) respectively is exponentially stable in
mean square.

Proof. Denote X(ε) = E
∫

∞

0 Φ(t, 0, ε)I(ε)Φ∗(t, 0, ε)dt where

I(ε) =

(

In1 0
0 ε−1In2

)

. If

(

X11(ε) X12(ε)
X∗

12(ε) X22(ε)

)

is the partition of X(ε)

it is easy to see that

X11(ε) = E

∫

∞

0
(Φ11(t, 0, ε)Φ

∗

11(t, 0, ε) + ε−1Φ12(t, 0, ε)Φ
∗

12(t, 0, ε))dt

X12(ε) = E

∫

∞

0
(Φ11(t, 0, ε)Φ

∗

21(t, 0, ε) + ε−1Φ12(t, 0, ε)Φ
∗

22(t, 0, ε))dt

X22(ε) = E

∫

∞

0
(Φ21(t, 0, ε)Φ

∗

21(t, 0, ε) + ε−1Φ22(t, 0, ε)Φ
∗

22(t, 0, ε))dt.

Using the estimates (3.19) we see hat the integral from definition of X(ε) is
convegent. Moreover we get:

Xij(ε) ≤ ĉ < ∞ (3.20)

for ε > 0 small enough, ĉ not depending upon ε.

Based on Itô formula [5] we conclude that X(ε) verifies the equation

A(ε)X(ε) + X(ε)A∗(ε) +
N
∑

k=1

Ak(ε)X(ε)(Ak(ε))∗ + I(ε) = 0 (3.21)

where

A(ε) =

(

A11 A12

ε−1A21 ε−1A22

)

Ak(ε) =

(

Ak
11 εAk

12

ε−
1
2 Ak

21 ε−
1
2 Ak

22

)

.

If

T (ε) =

(

In1 −εT12(ε)
0 In2

)(

In1 0
−T21(ε) In2

)

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 7, p. 9



is the matrix used in (3.4) we denote
(

Y11(ε) Y12(ε)
Y ∗

12(ε) Y22(ε)

)

= T (ε)X(ε)T ∗(ε).

Based on (3.20) we have

|Yij(ε)| ≤ c̃ < ∞ (3.22)

for ε > 0 small enough, c̃ not depending upon ε. Using (3.21) we obtain that
Yij(ε) solve the following system

A1(ε)Y11(ε) + Y11(ε)A
∗

1(ε) +
N
∑

i=1

[Âi
11(ε)Y11(ε)(Â

i
11(ε))

∗

+εÂi
12(ε)Y

∗

12(ε)(Â
i
11(ε))

∗ + εÂi
11(ε)Y12(ε)(Â

i
12(ε))

∗

+ε2Âi
12(ε)Y22(ε)(Â

i
12(ε))

∗] + M11(ε) = 0

εA1(ε)Y12(ε) + Y12(ε)A
∗

2(ε) +
N
∑

i=1

[ε
1
2 Âi

11(ε)Y11(ε)(Â
i
21(ε))

∗

+ε
3
2 Âi

12(ε)Y
∗

12(ε)(Â
i
21(ε))

∗ + ε
1
2 Âi

11(ε)Y12(ε)(Â
i
22(ε))

∗

+ε
3
2 Âi

12(ε)Y22(ε)(Â
i
22(ε))

∗ + M12(ε) = 0 (3.23)

A2(ε)Y22(ε) + Y22(ε)A
∗

2(ε) +
N
∑

i=1

[Âi
21(ε)Y11(ε)(Â

i
21(ε))

∗

+Âi
22(ε)Y

∗

12(ε)(Â
i
21(ε))

∗ + Âi
21(ε)Y12(ε)(Â

i
22(ε))

∗

+Âi
22(ε)Y22(ε)(Â

i
22(ε))

∗] + M22(ε) = 0

where

M11(ε) = [In1 + εT12(ε)T21(ε)][In1 + εT12(ε)T21(ε)]
∗ + εT12(ε)T

∗

12(ε)

M12(ε) = −[In1 + εT12(ε)T21(ε)]T
∗

21(ε) − T12(ε)

M22(ε) = In2 + εT21(ε)T
∗

21(ε).

If εk, k ≥ 0 is a sequence with limk→∞ εk = 0 then from (3.22) it follows that
there exist a subsequence εkl

such that liml→∞ Yij(εkl
) are well defined.

Set Y 0
ij = liml→∞ Yij(εkl

).Replacing ε by εkl
in (3.23) and taking the limit for

l → ∞ we get

ArY
0
11 + Y 0

11A
∗

r +
N
∑

i=1

Ai
rY

0
11(A

i
r)

∗ + In1 = 0

A22Y
0
22 + Y 0

22A
∗

22 +
N
∑

i=1

Ai
22Y

0
22(A

i
22)

∗ + In2 +
N
∑

i=1

Ai
21Y

0
11(A

i
21)

∗ = 0 (3.24)

Y 0
12 = 0.

The conclusion follows using Lemma 2.1 and the first two equations of the
system (3.24).
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4 Application

In this section we shall present an application of the result of Theorem 3.1
designing of a stabilizing state feedback for the following class of controlled
stochastic linear systems:

dx1(t) = [A11x1(t)+A12x2(t)+B1u(t)]dt+
N
∑

k=1

Ak
11x1(t)dwk(t) (4.1)

εdx2(t) = [A21x1(t)+A22x2(t)+B2u(t)]dt+
N
∑

k=1

Ak
21x1(t)dwk(t)

u ∈ Rm is the control, xi ∈ Rni, i = 1, 2 are the states and Ak
ij, Bj are real

constant matrices of appropriate dimensions.

Our aim is to construct a control law of the form:

u(t) = F1x1(t) + F2x2(t) (4.2)

with the property that the zero solution of the corresponding closed-loop
system:

dx1(t) = [(A11+B1F1)x1(t)+(A12+B1F2)x2(t)]dt

+
N
∑

k=1

Ak
11x1(t)dwk(t) (4.3)

εdx2(t) = [(A21+B2F1)x1(t)+(A22+B2F2)x2(t)]dt

+
N
∑

k=1

Ak
21x1(t)dwk(t)

be mean square exponentially stable. To avoind the ill conditioning due to
the presence of the small parameter ε in the system (4.1) the designing of the
stabilizing state feedback (4.2) is made in two steps. In each step we shall
design a stabilizing feedback gain for a controlled system of lower dimensions
and independent of the small parameter ε.

To the system (4.1) with A22 invertible we associate the following reduced
subsystem:

dx1(t) = [Arx1(t) + Bru(t)]dt +
N
∑

k=1

Ak
rx1(t)dwk(t) (4.4)

where Ar and Ak
r are the same as in (1.2) and Br = B1 = A12A

−1
22 B2.

The corresponding boundary layer subsystem of the system (4.1) is:

x′

2(σ) = A22x2(σ) + B2u(σ) (4.5)
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σ = t
ε
. If the pair (A22, B2) is stabilizable (see [10]) we choose F2 ∈ Rm×n2

such that the matrix A22 + B2F2 have the eigenvalues located in the half
plane Reλ < 0.

Now, using this choice of the feedback gain F2 we consider the following
system:

dx1(t) = [Arx1(t) + Bru(t)]dt +
N
∑

k=1

Ak
r(F2)x1(t)dwk(t) (4.6)

where Ak
r(F2) = Ak

11 − [A12 + B1F2][A22 + B2F2]
−1Ak

21.

Assuming that the system (4.6) is stochastically stabilizable we choose the
matrix Fr ∈ Rm×n1 such that the zero solution of the closed-loop system

dx1

dt
= [Ar + BrFr]x1(t)dt +

N
∑

k=1

Ak
r(F2)x1(t)dwk(t) (4.7)

be mean square exponentially stable.

Set

F1 = [Im + F2A
−1
22 B2]Fr + F2A

−1
22 A21. (4.8)

The matrix F1 given by (4.8) and the matrix F2 obtained before, can be used
to provide a stabilizing control law (4.2).

To show that such a control stabilizes the system (4.1) for ε > 0 small enough,
we shall use the result of the Theorem 3.1 to the closed-loop system (4.3).
To this end we show that the assumption of the Theorem 3.1 are fulfild.

Indeed the matrix coefficients of the boundary layer subsystem is now A22 +
B2F2 which is stable. On the other hand the reduced subsystem associated
to the closed-loop system is

dx1(t) = [A11+B1F1−(A12+B1F2)(A22+B2F2)
−1(A21+B2F1)]x1(t)dt

+
N
∑

k=1

Ak
r(F2)x1(t)dwk(t). (4.9)

By algebraic manipulations, similar with the ones in deterministic framework,
(see e.g. [3, 8]) we obtain that (4.9) is equivalent to (4.7) and hence the zero
solution of the system (4.9) is exponentially stable in mean square.

Thus we obtain that the assumptions from Theorem 3.1 hold and hence the
zero solution of the closed-loop system is mean square exponentially stable
for arbitrary ε > 0 small enough.

Remark: In the case of the stochastic systems (4.1) the designing of the
feedback gain Fr cannot be performed independently of the stabilizing feed-
back gain F2 as it happens in the deterministic framework [3, 8].
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