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Abstract. In this paper, we study the oscillation and asymptotic properties of solutions
of certain nonlinear third order differential equations with delay. In particular, we
extend results of I. Mojsej (Nonlinear Analysis 68, 2008) and we improve conditions on
the property B of N. Parhi and S. Padhi (Indian J. Pure Appl. Math. 33, 2002). Some
examples are considered to illustrate our main results.
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1 Introduction

We consider the third order nonlinear equations with delay of the form(
1

p(t)

(
1

r(t)
x′
)′)′

+ q(t)
∣∣x(g(t))∣∣1/λ sgn x

(
g(t)

)
= 0 (N, g)

and the adjoint equation(
1

r(t)

(
1

p(t)
z′
)′)′

− q(t)
∣∣z(g(t))∣∣λ sgn z

(
g(t)

)
= 0. (NA, g)

Throughout the paper we always assume that

(i) p, r, q ∈ C ([a, ∞), (0, ∞)),

(ii) g ∈ C ([a, ∞), R), g(t) < t, g(t) is nondecreasing, g(t)→ ∞ as t→ ∞,

(iii)
∫ ∞

a p(t)dt =
∫ ∞

a r(t)dt = ∞.

(iv) 0 < λ ≤ 1.
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We will denote by (L, g) and (LA, g) the linear versions of equations (N, g) and (NA, g),
respectively, i.e. (

1
p(t)

(
1

r(t)
x′
)′)′

+ q(t)x
(

g(t)
)
= 0 (L, g)

and the adjoint equation (
1

r(t)

(
1

p(t)
z′
)′)′

− q(t)z
(

g(t)
)
= 0. (LA, g)

Further, we denote by (L) and (LA) the corresponding linear equations without the delay.
Prototypes of equations (L, g) and (LA, g) are

x′′′(t)± q(t)x
(

g(t)
)
= 0, t ∈ [a, ∞]. (E±)

The asymptotic behaviour of solutions of special types of the above equations have been
studied by many authors. This paper benefits mostly from work of Kusano and Naito [8]
and from papers written by Cecchi, Došlá, Marini [4, 5], Akin-Bohner, Došlá, Lawrence [3] or
Mojsej [9], see also references there. Some other results are given in papers [2, 6, 10] or recently
in [1]. The extensive survey can be found in the excellent book [11], see also references there.
The equation (E±) has been studied in [12].

The aim of the paper is to extend some results from the paper by I. Mojsej [9] and to study
the influence of the delayed argument on the oscillation of equations (N, g) and (NA, g). Some
examples are considered to illustrate our results.

If x is a solution of (N, g) then functions

x[0] = x, x[1] =
1
r

x′, x[2] =
1
p

(
1
r

x′
)′

=
1
p
(
x[1]
)′

are called quasiderivatives of x. Similarly, we can proceed for (NA, g).
A solution x of (N, g) is said to be proper if it exists on the interval [a, ∞) and satisfies the

condition
sup{|x(s)| : t ≤ s < ∞} > 0 for any t ≥ a.

A proper solution is called oscillatory or nonoscillatory according to whether it does or does
not have arbitrarily large zeros. Similar definitions hold for (NA, g).

Following [7], we define property A and property B by the following way.

Definition 1.1. The equation (N, g) is said to have property A if any proper solution x of
(N, g) is either oscillatory or satisfies∣∣x[i](t)∣∣ ↓ 0 as t→ ∞, i = 0, 1, 2.

Definition 1.2. The equation (NA, g) is said to have property B if any proper solution z of
(NA, g) is either oscillatory or satisfies∣∣z[i](t)∣∣ ↑ ∞ as t→ ∞, i = 0, 1, 2.

The notation y(t) ↓ 0 (y(t) ↑ ∞) means that y monotonically decreases to zero as t → ∞
(y monotonically increases to ∞ as t→ ∞).
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From a slight modification of a lemma by Kiguradze (see [7]) nonoscillatory solutions x of
(N, g) and (L, g) can be divided into the two classes:

N0 =
{

x solution, ∃Tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ Tx

}
N2 =

{
x solution, ∃Tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ Tx

}
.

Similarly, nonoscillatory solutions z of (NA, g) and (LA, g) can be divided into the two follow-
ing classes:

M1 =
{

z solution, ∃Tz : z(t)z[1](t) > 0, z(t)z[2](t) < 0 for t ≥ Tz

}
M3 =

{
z solution, ∃Tz : z(t)z[1](t) > 0, z(t)z[2](t) > 0 for t ≥ Tz

}
.

It is clear, that (N, g) or (L, g) has property A if and only if all nonoscillatory solutions
of (N, g), or (L, g), respectively, belong to the class N0 and limt→∞ x[i](t) = 0, i = 0, 1, 2.
Similarly, (NA, g) or (LA, g) has property B if and only if all nonoscillatory solutions of (NA, g),
or (LA, g), respectively, belong to the classM3 and limt→∞ z[i](t) = ∞, i = 0, 1, 2.

We will study the relationship between property A for (L, g) and for (N, g) and property B
for (LA, g) and (NA, g). Our results complete recent ones in [9]. As a consequence, an equiv-
alence result for property A for (L, g) and for property B for (LA, g) is obtained. The paper is
completed by some examples, which illustrate the role of function g.

2 Preliminary results

Results about relationship between the oscillation and properties A and B for linear equations
without delay can be summarized as follows.

Theorem A ([4]). The following assertions are equivalent:

(i) (L) has property A.

(ii) (LA) has property B.

(iii) (L) is oscillatory and it holds∫ ∞

a
q(t)

∫ t

a
p(s)

∫ s

a
r(τ)dτ ds dt = ∞.

(iv) (LA) is oscillatory and it holds∫ ∞

a
q(t)

∫ t

a
p(s)

∫ s

a
r(τ)dτ ds dt = ∞.

Under our assumptions Theorem 1 from [8] reads as follows.

Theorem B. (i) If equation (L, g) has property A, then equation (L) has property A.

(ii) If equation (LA, g) has property B, then equation (LA) has property B.

We can reformulate Theorem 3.1 in [9] as follows.
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Theorem C. Consider (N, g) and function τ(t) such that

τ ∈ C
(
[a, ∞), R

)
, τ(t) > t, g

(
τ(t)

)
≤ t. (2.1)

Assume that

lim sup
t→∞

∫ τ(t)

t
q(s)

∫ g(s)

a
r(u)

∫ u

a
p(v)dv du ds > 1 if λ = 1 (2.2)

or

lim sup
t→∞

∫ τ(t)

t
q(s)

∫ g(s)

a
r(u)

∫ u

a
p(v)dv du ds > 0 if 0 < λ < 1.

If equation (L) has property A, then equation (N, g) has property A.

In particular, for (L, g) we have the following result.

Corollary 2.1. Let (2.1) and (2.2) hold. If equation (L) has property A, then equation (L, g) has
property A.

From the previous results we have the following corollary.

Corollary 2.2. Let (2.1) and (2.2) hold. Then

(L) has property A ks +3 (L, g) has property A

(LA) has property B
��

KS

(LA, g) has property Bks

In [12] there are criteria for the equation (E−) to have property B, which can be summa-
rized as follows.

Theorem D. The equation (E−) has property B if any of the following conditions hold

i)
∫ ∞

a q(t)dt < ∞ and
∫ ∞

a tq(t)dt = ∞,

ii) for every T ≥ a

lim sup
t→∞

(t− T)2
∫ ∞

2g−1(t)
q(s)ds > 2. (2.3)

Our aim is the extension of Theorem C for the equation (NA, g) and property B. In par-
ticular, the question is whether or not we can complete the diagram in Corollary 2.2 with the
last implication.

3 Main results

First we prove a slight modification of Theorem 2.1 from [3].

Theorem 3.1. Let ∫ ∞

a
q(s)

(∫ g(s)

a
p(τ)

∫ τ

a
r(v)dv dτ

)λ

ds = ∞ . (3.1)

Then every solution z of (NA, g) from the classM3 satisfies

lim
t→∞

z[i](t) = ∞, for i = 0, 1, 2.
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Proof. We rewrite (NA, g) as a system
z′(t) = p(t)y(t)

y′(t) = r(t)x(t)

x′(t) = q(t)
∣∣z(g(t))∣∣λ sgn z

(
g(t)

)
.

(3.2)

Let z(t) be a solution of (NA, g) from the class M3. Then the vector
(
z(t), y(t), x(t)

)
,

where y(t) = 1
p(t)z′(t) and x(t) = 1

r(t)y′(t), is a solution of system (3.2) such that

sgn x(t) = sgn y(t) = sgn z(t) for large t.

We prove that
lim
t→∞
|x(t)| = lim

t→∞
|y(t)| = lim

t→∞
|z(t)| = ∞ .

There exists T ≥ a such that x(t) > 0, y(t) > 0, z(t) > 0 for t ≥ T. As y(t) is eventually
increasing, there exists T1 ≥ T and K > 0 such that

z′(t) = p(t)y(t) ≥ p(t)K for t ≥ T1,

so integrating in [T1, t] we get

z(t) ≥ K
∫ t

T1

p(s)ds.

Using the assumption
∫ ∞ p(t)dt = ∞ we get limt→∞ z(t) = ∞.

Since x(t) is eventually increasing, there exists T2 ≥ T1 and L > 0 such that

y′(t) = r(t)x(t) ≥ r(t)L for t ≥ T2,

and integrating in [T2, t]

y(t) ≥ L
∫ t

T2

r(s)ds. (3.3)

Using the assumption
∫ ∞ r(t)dt = ∞ we get limt→∞ y(t) = ∞.

Integrating the first equation of (3.2) from T1 to g(t) and using (3.3) we obtain

z
(

g(t)
)
≥
∫ g(t)

T1

p(s)y(s)ds ≥ L
∫ g(t)

T1

p(s)
∫ s

T1

r(u)du ds . (3.4)

Using the third equation of (3.2) and (3.3), there exists T2 ≥ T1 such that

x′(t) = q(t)
(
z
(

g(t)
))λ ≥ q(t)

(
L
∫ g(t)

T1

p(s)
∫ s

T1

r(u)du ds
)λ

.

Integrating the last inequality from T2 to t gives

x(t) ≥ Lλ
∫ t

T2

q(s)
(∫ g(s)

T2

p(τ)
∫ τ

T1

r(v)dv dτ

)λ

ds

and using the (3.1) we have limt→∞ x(t) = ∞ .

In order to the equation (NA, g) having the property B we establish sufficient condition for
M1 = ∅. To this aim the following lemma will be needed.
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Lemma 3.2. Assume that z is a solution of (NA, g) such that z ∈ M1. Then

lim
t→∞

z[2](t) = 0.

Proof. We rewrite (NA, g) as a system (3.2) and apply Lemma 4.2 from [3].

Theorem 3.3. Let (2.1) hold and assume that

lim sup
t→∞

∫ τ(t)

t
q(s)

( ∫ g(s)

a
r(u)

∫ u

a
p(v)dv du

)λ

ds > 1. (3.5)

ThenM1 = ∅ for (NA, g).

Proof. Without loss of generality we suppose that there exists T ≥ a such that z(t) > 0 for
t ≥ T. Let z ∈ M1. As z is a positive nonoscillatory solution of (NA, g) in class M1, there
exists T1 ≥ T such that z(t) > 0, z[1](t) > 0 and z[2](t) < 0 for t ≥ T1. Let T2 ≥ T1 be such
that g(t) ≥ T1 for t ≥ T2. Because (z[2](t))′ = q(t)zλ

(
g(t)

)
> 0 for t ≥ T2, z[2](t) is a negative

increasing function, so we have
0 ≤ −z[2](t) < ∞ .

Integrating the equation (NA, g) in [t, ∞) we get

z[2](∞)− z[2](t) =
∫ ∞

t
q(s)zλ

(
g(s)

)
ds

and using the fact that 0 ≤ −z[2](∞) < ∞ we obtain the inequality

− z[2](t) ≥
∫ ∞

t
q(s)zλ

(
g(s)

)
ds . (3.6)

Integrating the identity −z[2](t) = −z[2](t) twice, for the first time in [t, ∞) and for the second
time in [T1, t], we obtain

z(t) ≥
∫ t

T1

p(s)
∫ ∞

s
r(u)(−z[2](u))du ds .

By changing the order of integration we get

z(t) ≥
∫ t

T1

r(s)(−z[2](s))
∫ s

T1

p(u)du ds for t ≥ T1

and therefore

z(g(t)) ≥
∫ g(t)

T1

r(s)(−z[2](s))
∫ s

T1

p(u)du ds for t ≥ T2 . (3.7)

Using (3.7) in (3.6) we have

−z[2](t) ≥
∫ ∞

t
q(s)

(∫ g(s)

T1

r(u)(−z[2](u))
∫ u

T1

p(v)dv du
)λ

ds.

Considering the fact that −z[2](t) is decreasing and −z[2](g(t)) is nonincreasing, we get

−z[2](t) ≥
(
−z[2]

(
g(τ(t))

))λ
∫ τ(t)

t
q(s)

(∫ g(s)

T1

r(u)
∫ u

T1

p(v)dv du
)λ

ds.
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Since −z[2](t) is decreasing, limt→∞ z[2](t) = 0, λ ≤ 1 and (3.5) holds we have

1 ≥ −z[2](t)(
−z[2]

(
g(τ(t))

))λ
≥
∫ τ(t)

t
q(s)

(∫ g(s)

T1

r(u)
∫ u

T1

p(v)dv du
)λ

ds > 1 ,

which is a contradiction.

Lemma 3.4. If (2.1) and (3.5) hold, then

∫ ∞

a
q(s)

(∫ g(s)

a
r(u)

∫ u

a
p(v)dv du

)λ

ds = ∞ .

Proof. By contradiction, let
∫ ∞

a q(s)
∫ g(s)

a r(u)
∫ u

a p(v)dv du ds < ∞. Then there exists t0 > a

such that
∫ ∞

t0
q(s)

∫ g(s)
a r(u)

∫ u
a p(v)dv du ds < 1. For every t > t0 we have

1 >
∫ ∞

t0

q(s)
(∫ g(s)

a
r(u)

∫ u

a
p(v)dv du

)λ

ds

>
∫ ∞

t
q(s)

(∫ g(s)

a
r(u)

∫ u

a
p(v)dv du

)λ

ds

>
∫ τ(t)

t
q(s)

(∫ g(s)

a
r(u)

∫ u

a
p(v)dv du

)λ

ds.

Passing t→ ∞ and using (3.5) we get the contradiction.

The main result is the following extension of Theorem C to property B.

Theorem 3.5. Let (2.1) and (3.5) hold and assume that

lim sup
t→∞

∫ τ(t)

t
q(s)

(∫ g(s)

a
p(u)

∫ u

a
r(v)dv du

)λ

ds > 1. (3.8)

Then the equations (LA) and (NA, g) have property B.

Proof. Since (2.1) and (3.8) hold, then by using Lemma 3.4, where functions r and p are ex-
changed, we get ∫ ∞

a
q(t)

(∫ g(t)

a
p(s)

∫ s

a
r(τ)dτ ds

)λ

dt = ∞ .

As g(t) < t and 0 < λ ≤ 1, we have∫ ∞

a
q(t)

∫ t

a
p(s)

∫ s

a
r(τ)dτ ds dt = ∞ ,

which, due to Theorem A, means that the equation (LA) has property B.
Moreover, assumption (3.8) implies that (3.1) holds, so by Theorem 3.1, every solution z(t)

of (NA, g) from the classM3 satisfies

lim
t→∞

z[i](t) = ∞, for i = 0, 1, 2.

According to Theorem 3.3 the condition (3.5) implies that M1 = ∅, thus (NA, g) has prop-
erty B.
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4 Applications and examples

(1) Now we can complete Corollary 2.2.

Corollary 4.1. Let (2.1), (3.5) and (3.8) hold. Then

(L) has property A ks +3 (L, g) has property A

(LA) has property B
��

KS

(LA, g) has property B+3ks
��

KS

Proof. It follows from Theorem 3.5 and Corollary 2.2.

(2) Let us consider the equations (N, g) and (NA, g) with symmetrical operator, i.e. r(t) = p(t)(
1

p(t)

(
1

p(t)
x′
)′)′

+ q(t)
∣∣x(g(t))∣∣1/λ sgn x

(
g(t)

)
= 0 (S, g)

and (
1

p(t)

(
1

p(t)
z′
)′)′

− q(t)
∣∣z(g(t))∣∣λ sgn z

(
g(t)

)
= 0. (SA, g)

Further, we denote (S) and (SA) corresponding linear equations without the deviating argu-
ment, i.e. equations (S, g) and (SA, g), where g(t) = t and λ = 1.

Corollary 4.2. Let (2.1) hold and assume that

lim sup
t→∞

∫ τ(t)

t
q(s)

(∫ g(s)

a
p(u)

∫ u

a
p(v)dv du

)λ

ds > 1. (4.1)

Then the following holds.

(a) Equations (S) and (S, g) have property A.

(b) Equations (SA) and (SA, g) have property B.

Proof. As the condition (4.1) holds, Lemma 3.4 implies that∫ ∞

a
q(t)

∫ t

a
p(s)

∫ s

a
p(τ)dτ ds dt = ∞,

i.e. equation (S) or equation (SA) has property A or property B, respectively.
Due to Theorem C, equation (S, g) has property A. By Lemma 3.4, condition (4.1) implies

(3.1). Thus applying Theorem 3.3 and Theorem 3.1 we get the assertion.

The following examples illustrate our results.

Example 4.3. Consider the equation

z′′′ − q(t)zλ
(

g(t)
)
= 0, λ ≤ 1. (4.2)

Let τ satisfy (2.1). We have

∫ τ(t)

t
q(s)

(∫ g(s)

a
(u− a)du

)λ

ds =
1

2λ

∫ τ(t)

t

[
(q(s)− a)2]λ

ds,
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thus condition (4.1) gives

lim sup
t→∞

∫ τ(t)

t
q(s) (g(s)− a)2λ ds > 2λ. (4.3)

By Corollary 4.2, if (4.3) holds, then equation (4.2) has property B.
In particular, the equation

z′′′ − 1
t2λ

zλ(t− τ) = 0, (t ≥ 1)

has property B if τ > 2λ. Indeed, if we take τ(t) = t + τ, then condition (2.1) is fulfilled and
(4.3) gives τ > 2λ.

Example 4.4. Consider the equations

x′′′ +
µ

t3 x(kt) = 0, (t ≥ 1) (4.4)

and
z′′′ − µ

t3 z(kt) = 0, (t ≥ 1), (4.5)

where k < 1.
If we take τ(t) = t

k , then condition (2.1) is fulfilled. We have

∫ t
k

t

µ

s3 (ks− 1)2 ≥ µk2
(

ln
t
k
− ln t

)
= µk2 ln

1
k

.

Passing t→ ∞ condition (4.3) gives

− µk2 ln k > 2. (4.6)

Thus, by Corollary 4.2, if (4.6) holds, then equation (4.4) has property A and equation (4.5)
has property B.

In particular, condition (4.6) is satisfied for the following equations

x′′′ +
160
t3 x

(
t
3

)
= 0, z′′′ − 160

t3 z
(

t
3

)
= 0,

x′′′ +
44
t3 x

(
3t
5

)
= 0, z′′′ − 44

t3 z
(

3t
5

)
= 0,

x′′′ +
82
t3 x

(
3t
4

)
= 0, z′′′ − 82

t3 z
(

3t
4

)
= 0,

x′′′ +
46
t3 x

(
10t
11

)
= 0, z′′′ − 46

t3 z
(

10t
11

)
= 0,

(4.7)

hence all these equations have property A or property B, respectively.
In the book [11], see Section 6.3, or in [12] oscillation of equations (4.4) and (4.5) has

been investigated in the terms of property Ā and property B. There are given some sufficient
conditions for equation (4.4) to have property Ā and for equation (4.5) to have property B. In
general, property Ā is weaker than property A and means that every nonoscillatory solution
of (4.4) is in the class N0.

Observe that equations (4.7) appear in [11, 12], where various criteria are used to verify
that equations of the type (4.4) have property Ā. As far as property B is concerned, conditions
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from [12] are summarized in Theorem D. The first condition can not be applied and condition
(2.3) gives the following

lim sup
t→∞

(t− T)2
∫ ∞

2t
k

µ

s3 ds = lim
t→∞

µ(t− T)2k2

8t2 =
µk2

8
> 2,

i.e.
µk2 > 16, T ≥ 1. (4.8)

For example, if we take k = 1
3 , condition (4.8) gives that equation (4.5) has property B if

µ > 144 while our (4.6) condition gives that equation (4.5) has property B for µ > 18
log 3

.
= 16.38.

Hence, we can say that our condition (4.6) improves those mentioned there.
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