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Abstract. Consider the delay difference equation with continuous time of the form

x(t)− x(t− 1) +
m

∑
i=1

Pi(t)x(t− ki(t)) = 0, t ≥ t0,

where Pi : [t0, ∞) 7→ R, ki : [t0, ∞) 7→ {2, 3, 4, . . . } and limt→∞(t − ki(t)) = ∞, for
i = 1, 2, . . . , m.
We introduce the generalized characteristic equation and its importance in oscillation
of all solutions of the considered difference equations. Some results for the existence of
positive solutions of considered difference equations are presented as the application
of the generalized characteristic equation.
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1 Introduction

Difference equations with continuous time are difference equations in which the unknown
function is a function of a continuous variable. Equations of this type appear as natural
descriptions of observed evolution phenomena in many branches of the natural sciences and
therefore appear in various mathematical models. This is the main reason why they have been
studied in many papers recently. See, for example, the papers of Domshlak [1], Ferreira and
Pinelas [2, 3], Golda and Werbowski [4], Korenevskii and Kaizer [7], Ladas et al. [8], Medina
and Pituk [9], Meng et al. [10], Nowakowska and Werbowski [11, 12, 13, 14], Shaikhet [17],
Shen et al. [18, 19, 20, 21], Zhang et al. [22, 23, 24, 25], and the references cited therein.
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In this paper, we introduce the generalized characteristic equation and its importance in
oscillation of all solutions of linear delay difference equations with continuous time. Some
results regarding the existence of positive solutions of the considered difference equations are
presented as the application of the generalized characteristic equation.

The investigated equation is

x(t)− x(t− 1) +
m

∑
i=1

Pi(t)x(t− ki(t)) = 0, t ≥ t0, (1.1)

where m ≥ 1 is an integer,

(H1) Pi : [t0, ∞) 7→ R are bounded functions, i = 1, 2, . . . , m,

(H2) ki : [t0, ∞) 7→ {2, 3, 4, ...}, ki(t) < t and limt→∞(t− ki(t)) = ∞, i = 1, 2, . . . , m.

Let t0 be a positive real number such that

t−1(t0) = min
1≤i≤m

{inf{ξ − ki(ξ) : ξ ≥ t0}} > 0.

It is clear that t−1(t0) ≤ t0 − 2 < t0 − 1.
In this paper we introduce the concept of the generalized characteristic equation associated

to equation (1.1), namely, the nonlinear difference equation

λ(t)− 1 +
m

∑
i=1

Pi(t)
ki(t)−1

∏
j=1

1
λ(t− j)

= 0, t ≥ t0 + 1, (1.2)

and investigate how it relates to the existence of positive solutions of equation (1.1).
A real-valued function x (λ) is called the solution of the difference equation (1.1)

[of the difference equation (1.2)] if it is defined on the interval [t−1(t0), ∞) [on the interval
[t−1(t0) + 1, ∞)] and satisfies equation (1.1) [equation (1.2)] for any t ≥ t0.

Let F denote the space of real bounded functions φ : [t−1(t0), t0) → R. Then, for every
φ ∈ F, equation (1.1) has a unique solution x : [t−1(t0), ∞)→ R with the initial function

x(t) = φ(t) for t−1(t0) ≤ t < t0 (1.3)

and the generalized characteristic equation (1.2) has a unique solution λ : [t−1(t0) + 1, ∞)→ R

with the initial function

λ(t) = ψ(t), t−1(t0) + 1 ≤ t < t0 + 1, (1.4)

where

ψ(t) =


φ(t)

φ(t− 1)
, t−1(t0) + 1 ≤ t < t0;

x(t)
φ(t− 1)

, t0 ≤ t < t0 + 1,

assuming that the function φ is defined by (1.3) and φ(t) 6= 0, t−1(t0) ≤ t < t0.
We say that the solution x : [t−1(t0), ∞) 7→ R of equation (1.1) [λ : [t−1(t0) + 1, ∞) 7→ R of

equation (1.2)] is positive if x(t) > 0 for t ≥ t−1(t0) [λ(t) > 0 for t ≥ t−1(t0) + 1].
A motivating example is the equation

x(t)− x(t− 1) + P(t)x(t− s) = 0, t ≥ t0, (1.5)
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where
s ≥ 2 is a given integer and P : [t0, ∞)→ R. (1.6)

In this case t−1(t0) = t0 − s and hence the initial condition is

x(t) = φ(t), t0 − s ≤ t < t0. (1.7)

The generalized characteristic equation is

λ(t)− 1 + P(t)
s−1

∏
j=1

1
λ(t− j)

= 0, t ≥ t0 + 1, (1.8)

with the initial condition

λ(t) = ψ(t), t0 − s + 1 ≤ t < t0 + 1, (1.9)

where

ψ(t) =


φ(t)

φ(t− 1)
, t0 − s + 1 ≤ t < t0;

x(t)
φ(t− 1)

, t0 ≤ t < t0 + 1,

assuming that the function φ is defined by (1.7) and φ(t) 6= 0, t0 − s ≤ t < t0.
We can formulate the following statement.

Theorem 1.1. Assume that (1.6) holds. The solution x of the initial value problem (1.5) and (1.7) is
positive on [t0− s, ∞) if and only if the solution λ of the initial value problem (1.8) and (1.9) is positive
on [t0 − s + 1, ∞) with positive function φ defined by (1.7), and x may be written in the form

x(t) =


φ(t), t0 − s ≤ t < t0 − s + 1;

φ(t− n)
n−1

∏
j=0

λ(t− j), t0 − s + n ≤ t < t0 − s + n + 1, n ≥ 1.
(1.10)

Proof. Let x be a positive solution of the initial value problem (1.5) and (1.7). By dividing both
sides of equation (1.5) with x(t− 1) we get

x(t)
x(t− 1)

− 1 + P(t)
x(t− s)
x(t− 1)

= 0, t ≥ t0 + 1. (1.11)

Define the function

λ(t) =


ψ(t), t0 − s + 1 ≤ t < t0 + 1;

x(t)
x(t− 1)

, t ≥ t0 + 1.
(1.12)

From the definition is obvious that the function λ is positive and follows that

x(t) = λ(t)x(t− 1) and
x(t− s)
x(t− 1)

=
s−1

∏
j=1

1
λ(t− j)

for t ≥ t0 + 1, (1.13)

and so λ satisfies the initial value problem (1.8) and (1.9) on [t0 − s + 1, ∞).
On the other hand, let λ be a positive solution of the initial value problem (1.8) and (1.9)

on [t0 − s + 1, ∞) with positive function φ defined by (1.7). Then, function x defined by (1.10)
is positive. From the definition it follows also that it is equal to the initial function (1.7) for
t0 − s ≤ t < t0. For n = 1 it follows that x(t) = λ(t)x(t− 1) and so the equalities (1.13) hold.
That means that the characteristic equation (1.8) may be written in the form (1.11) and the
function x defined by (1.10) satisfying the difference equation (1.5). The proof is complete.
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The goal is to find necessary and sufficient conditions for the solutions of the initial value
problem (1.5) and (1.7) to be positive on [t0− s, ∞). The simplest case is P(t) ≤ 0, t ≥ t0, since
for every initial function φ(t) > 0, t0 − s ≤ t < t0, the solution of the initial value problem
(1.5) and (1.7) is positive. When P(t) ≥ 0, t ≥ t0, then the existence of a positive solution is
more delicate, while the most difficult case being whenever the coefficient P(t) is oscillatory
on [t0, ∞).

Theorem 1.2. Assume that (1.6) holds. Let P(t) ≥ 0 for t ≥ t0, and assume that there are two positive
functions α, β : [t0 − s + 1, ∞) 7→ R+ such that

α(t) ≤ β(t), α(t) ≤ 1− P(t)
s−1

∏
j=0

1
α(t− j)

and 1− P(t)
s−1

∏
j=0

1
β(t− j)

≤ β(t), t ≥ t0 + 1.

(1.14)
Then there exists a solution λ : [t0 − s + 1, ∞) 7→ (0, ∞) of the initial value problem (1.8) and (1.9)
with

α(t) = ψ(t), t0 − s + 1 ≤ t < t0 + 1.

Proof. Let λ0(t) = α(t) for t ≥ t0 − s + 1, and

λr+1(t) =


α(t), t0 − s + 1 ≤ t < t0 + 1;

1− P(t)
s−1

∏
j=0

1
λr(t− j)

, t ≥ t0 + 1, for any integer r ≥ 0.

In this case we can prove that

α(t) = λ0(t) ≤ λ1(t) ≤ · · · ≤ λk(t) ≤ · · · ≤ β(t) for t ≥ t0 − s + 1,

and hence the limit function λ of the sequence of functions {λr(t)}r∈N exists for t ≥ t0− s+ 1.
That means

λ(t) = lim
r→∞

λr(t) for t ≥ t0 − s + 1

exists. Moreover, α(t) ≤ λ(t) ≤ β(t) for any t ≥ t0 − s + 1. Then, the function λ satisfies the
initial value problem (1.8) and (1.9) with the initial function λ(t) = α(t) for t0 − s + 1 ≤ t <
t0 + 1.

Remark 1.3. In the special case when α(t) = α, β(t) = β and P(t) = p are positive constants,
from the hypothesis (1.14) of Theorem 1.2 we get βs(1− β) ≤ p ≤ αs(1− α). The maximum
value of the function f (α) = αs(1− α) we obtain for

α =
s

s + 1
and so fmax

(
s

s + 1

)
=

ss

(s + 1)s+1 .

So the new form of hypothesis (1.14) for the existence of positive solutions may be p ≤ ss

(s+1)s+1 .

Thus, there exists a positive solution of the initial value problem (1.5) and (1.7). Similar
result may be proved for the general case.
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2 Preliminaries

In the work of Győri and Ladas [6] some results, such as Theorem 3.1.1, are shown related to
the generalized characteristic equation of linear delay differential equation

x′(t) +
n

∑
i=1

pi(t)x(t− τi(t)) = 0, t0 ≤ t ≤ T (2.1)

with an initial condition of the form

x(t) = ϕ(t), t−1 ≤ t ≤ t0, t−1 = min
1≤i≤n

{
inf

t0≤t<T
{t− τi(t)}

}
, (2.2)

with ϕ ∈ C[[t−1, t0], R], where t0 < T ≤ ∞ and

(H∗1 ) pi ∈ C[[t0, T), R], τi ∈ C[[t0, T), R+], i = 1, 2, . . . , n.

In Theorem 3.1.1, a condition for the existence of a positive solution of the initial value
problem (2.1) and (2.2) is formulated. The unique solution of the initial value problem (2.1)
and (2.2) is denoted with x(ϕ)(t) and exists for t0 ≤ t ≤ T.

Győri and Ladas have also obtained some results for the existence of positive solutions of
the considered differential equation.

Theorem A ([6, Theorem 3.3.2]). Assume that (H∗1 ) holds and that there exists a positive
number µ such that

n

∑
i=1
|pi(t)|eµτi(t) ≤ µ for t ≥ t0.

Then, for every ϕ ∈
{

ϕ ∈ C[[t−1, t0], R+] | ϕ(t0) > 0 and ϕ(t) ≤ ϕ(t0) for t−1 ≤ t ≤ t0
}

, the
solution x(ϕ)(t) of equation (2.1) through (t0, ϕ), remains positive on t0 ≤ t ≤ T.

Papers [15] and [16] deal with the discrete analogues of the generalized characteristic
equation and Theorem A. Consider the linear retarded difference equation

an+1 − an +
m

∑
i=1

Pi(n)an−ki(n) = 0, n ∈N∗, (2.3)

where N∗ = {n ∈N : n0 ≤ n < M, n0 < M ≤ ∞} and N is the set of positive integers. Let

(H∗2 ) {Pi(n)} a sequence of real numbers for i = 1, 2, . . . , m, n ∈N∗;

(H∗3 ) {ki(n)} a sequence of positive real numbers for i = 1, 2, . . . , m, n ∈N∗.

Associated with equation (2.3), we define the initial condition

an = φn, for n = n−1, n−1 + 1, ..., n0, φn ∈ R, (2.4)

where

n−1 = min
1≤i≤m

{
inf

n0≤n<M
{n− ki(n)}

}
.

The unique solution of the initial value problem (2.3) and (2.4) is denoted with a(φ)n and
exists for n ∈N∗.
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Theorem B ([16, Theorem 3.2]). Assume that (H∗2 ) and (H∗3 ) hold and there exists a real num-
ber µ ∈ (0, 1) such that

m

∑
i=1
|Pi(n)|(1− µ)−ki(n) ≤ µ for n ∈N∗.

Then, for every {φn} ∈
{
{φj} : φn0 > 0, 0 < φj ≤ φn0 for j = n−1, n−1 + 1, . . . , n0

}
, the solu-

tion a(φ)n of (2.3) remains positive for n ∈N∗.

The papers of Golda and Werbowski [4], Shen and Stavroulakis [21], Zhang and Choi [25]
deal with the functional equation with variable coefficients of the form

x(g(t)) = P(t)x(t) + Q(t)x(g2(t)), (2.5)

where P, Q ∈ C([0, ∞), [0, ∞)), g ∈ C([0, ∞), R), g is increasing, g(t) > t or g(t) < t and
g(t)→ ∞ as t→ ∞.

Theorem C ([4, Theorem 1]). Assume that P, Q ∈ C([0, ∞), [0, ∞)), g ∈ C([0, ∞), R), g is
increasing, g(t) > t or g(t) < t and g(t) → ∞ as t → ∞. If the equation (2.5) has a non-
oscillatory solution, then

lim inf
I3t→∞

Q(t)P(g(t)) ≤ 1
4

, (2.6)

for large t.

Theorem D ([21, Theorem 1]). Assume that P, Q ∈ C([0, ∞), [0, ∞)), g ∈ C([0, ∞), R), g is
increasing, g(t) > t or g(t) < t and g(t)→ ∞ as t→ ∞. If

Q(t)P(g(t)) ≤ 1
4

, (2.7)

for large t, then equation (2.5) has a non-oscillatory solution.

Theorem E ([25, Remark 3.3]). Assume that P, Q ∈ C([0, ∞), [0, ∞)), g ∈ C([0, ∞), R), g is
increasing, g(t) > t or g(t) < t and g(t)→ ∞ as t→ ∞. If

Q+(t)P(t) ≤ 1
4

, for t ≥ T, (2.8)

then equation (2.5) has a positive solution.

Shen and Stavroulakis [21] studied the linear functional equation of the form

x(t)− px(t− τ) + q(t)x(t− σ) = 0, (2.9)

where p, τ, σ ∈ (0, ∞), q ∈ C([0, ∞), [0, ∞)).

Theorem F ([21, Theorem 2]). If p, τ, σ ∈ (0, ∞), q ∈ C([0, ∞), [0, ∞)), σ > τ and for large t

p−
σ
τ · q(t) ≤

(
σ− τ

σ

) σ
τ
(

σ− τ

τ

)−1

, (2.10)

then equation (2.9) has a non-oscillatory solution.

Zhang and Choi [25] have studied also the functional equation of the form

x(g(t)) = P(t)x(t) + Q(t)x(gk(t)), where k ≥ 1 is a positive integer. (2.11)
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Theorem G ([25, Corollary 3.4]). Assume that P, Q ∈ C([0, ∞), [0, ∞)), g ∈ C([0, ∞), R), g
is increasing, g(t) > t or g(t) < t, g(t) → ∞ as t → ∞ and k ≥ 1 is a positive integer. If
lim supt→∞ p(t) = p and

Q+(t) ≤ (k− 1)k−1

kk , (2.12)

then equation (2.11) has a positive solution.

3 Main results

The following lemma can be easily proved by mathematical induction.

Lemma 3.1. Let λ : [t−1(t0) + 1, ∞) 7→ R and ϕ : [t−1(t0), t−1(t0) + 1) 7→ R be two given functions
and consider the difference equation

x(t) = λ(t)x(t− 1), t ≥ t−1(t0) + 1 (3.1)

with the initial condition

x(t) = ϕ(t), t−1(t0) ≤ t < t−1(t0) + 1. (3.2)

Then, the initial value problem (3.1) and (3.2) has a solution which is given in the form

x(t) =


ϕ(t), t−1(t0) ≤ t < t−1(t0) + 1;

ϕ(t− n)
n−1

∏
j=0

λ(t− j), t−1(t0) + n ≤ t < t−1(t0) + n + 1, n ≥ 1.
(3.3)

Theorem 3.2. Assume that (H1) and (H2) hold. Then x : [t−1(t0), ∞) 7→ R is a positive solution
of equation (1.1) if and only if there are two positive functions λ : [t−1(t0) + 1, ∞) 7→ (0, ∞) and
ϕ : [t−1(t0), t−1(t0) + 1) 7→ (0, ∞) such that

(a) λ is a solution of equation (1.2) on the interval [t−1(t0) + 1, ∞);

(b) x satisfies (3.1) and (3.2) or equivalently it is given by (3.3).

Proof. Let us assume that equation (1.1) has a positive solution, say x : [t−1(t0), ∞) 7→ R. Then,
one can show that

λ(t) =
x(t)

x(t− 1)
, t ≥ t−1(t0) + 1,

is a positive solution of equation (1.2). Moreover, x(t) = λ(t)x(t− 1), t ≥ t−1(t0) + 1, with the
initial function ϕ(t) = x(t) > 0 for t−1(t0) ≤ t < t−1(t0) + 1. So Lemma 3.1 shows that the
form (3.3) is satisfied.

On the other hand, if (a) and (b) hold then one can get that x is a positive solution of
equation (1.1).

The following lemma will be useful in proving the main results.

Lemma 3.3. Let k be a given natural number and a1, a2, . . . , ak, b1, b2, . . . , bk positive real numbers.
Then

k

∏
j=1

1
aj
−

k

∏
j=1

1
bj

=
1

k

∏
j=1

ajbj

k

∑
j=1

(
j−1

∏
`=1

a`

)(
k

∏
i=j+1

bi

) (
bj − aj

)
=

k

∑
j=1

1
j

∏
i=1

bi

k

∏
`=j

a`

(
bj − aj

)
.
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Proof. The left side of the equality we can rewrite in the form

k

∏
j=1

1
aj
−

k

∏
j=1

1
bj

=
1

k

∏
j=1

ajbj

(
k

∏
j=1

bj −
k

∏
j=1

aj

)
,

where
k

∏
j=1

bj −
k

∏
j=1

aj =
k

∏
i=1

bi ±
k−1

∑
j=1

(
j

∏
`=1

a`
k

∏
i=j+1

bi

)
−

k

∏
`=1

a`

=

(
k

∏
i=1

bi − a1

k

∏
i=2

bi

)
+

(
a1

k

∏
i=2

bi − a1a2

k

∏
i=3

bi

)
+

(
a1a2

k

∏
i=3

bi − a1a2a3

k

∏
i=4

bi

)

+ · · ·+
((

k−2

∏
`=1

a`

)
bk−1bk −

(
k−1

∏
`=1

a`

)
bk

)
+

((
k−1

∏
`=1

a`

)
bk −

k

∏
`=1

a`

)

=

(
k

∏
i=2

bi

)
(b1 − a1) + a1

(
k

∏
i=3

bi

)
(b2 − a2) + a1a2

(
k

∏
i=4

bi

)
(b3 − a3)

+ · · ·+
(

k−2

∏
`=1

a`

)
bk (bk−1 − ak−1) +

(
k−1

∏
`=1

a`

)
(bk − ak)

=
k

∑
j=1

(
j−1

∏
`=1

a`

)(
k

∏
i=j+1

bi

) (
bj − aj

)
.

Using the above transformation we get

k

∏
j=1

1
aj
−

k

∏
j=1

1
bj

=
1(

k

∏
`=1

a`

)(
k

∏
i=1

bi

) k

∑
j=1

(
j−1

∏
`=1

a`

)(
k

∏
i=j+1

bi

) (
bj − aj

)
=

k

∑
j=1

1
j

∏
i=1

bi

k

∏
`=j

a`

(
bj − aj

)
.

The following theorem is the discrete analogue of Theorem 3.1.1 [6] and simultaneously
the generalization of the Theorem 1.1 [15] for continuous time.

Theorem 3.4. Assume that (H1) and (H2) hold, φ ∈ F with φ(t) > 0 for t−1(t0) ≤ t < t0. Then
the following statements are equivalent:

(a) The solution of the initial value problem (1.1) and (1.3) is positive for t ≥ t−1(t0).

(b) The initial value problem (1.2) and (1.4) has positive solution on [t−1(t0) + 1, ∞).

(c) There exist functions β, γ : [t−1(t0) + 1, ∞) 7→ R+ such that β(t) ≤ ψ(t) ≤ γ(t) on the interval
[t−1(t0) + 1, t0 + 1), β(t) ≤ γ(t) for t ≥ t0 + 1 and for every function δ : [t−1(t0) + 1, ∞) 7→ R

with δ(t) = ψ(t) for t−1(t0) + 1 ≤ t < t0 + 1, where the positive function ψ is defined by (1.4),
such that β(t) ≤ δ(t) ≤ γ(t) for t ≥ t0 + 1, the following inequalities hold:

β(t) ≤ (Sδ)(t) ≤ γ(t), t ≥ t0 + 1, (3.4)

where

(Sδ)(t) ≡ 1−
m

∑
i=1

Pi(t)
ki(t)−1

∏
j=1

1
δ(t− j)

, t ≥ t0 + 1. (3.5)
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Proof. (a) =⇒ (b). Let x : [t−1(t0), ∞) → R be the solution of the initial value problem (1.1)
and (1.3) and suppose that x(t) > 0 for t ≥ t−1(t0). Our aim is to show that the positive
function

λ(t) =


ψ(t), t−1(t0) + 1 ≤ t < t0 + 1;

x(t)
x(t− 1)

, t ≥ t0 + 1.
(3.6)

is a solution of the characteristic equation (1.2) with the initial condition (1.4). From definition
(3.6)

x(t) =


φ(t), t−1(t0) ≤ t < t−1(t0) + 1;

φ (t− n(t))
n(t)−1

∏
j=0

λ(t− j), t ≥ t−1(t0) + 1.
(3.7)

is obtained, where n(t)= [t− (t−1(t0))] with the properties that t−1(t0) ≤ t−n(t) < t−1(t0)+ 1
and t− n(t) + 1 ≥ t−1(t0) + 1 for a real number t ≥ t0 + 1 ([t] denotes the integer part of the
real number t).

By dividing both sides of equation (1.1) with x(t− 1) we get

x(t)
x(t− 1)

− 1 +
m

∑
i=1

Pi(t)
x(t− ki(t))

x(t− 1)
= 0, t ≥ t0 + 1.

Because of (3.7) we have

x(t− ki(t))
x(t− 1)

=

φ(t− n(t))
n(t)−1

∏
j=ki(t)

λ(t− j)

φ(t− n(t))
n(t)−1

∏
j=1

λ(t− j)

=
ki(t)−1

∏
j=1

1
λ(t− j)

, t ≥ t0 + 1.

Thus, this part of the proof is complete.
(b) =⇒ (c). Let the function λ : [t−1(t0) + 1, ∞) → R be a positive solution of the

characteristic equation (1.2) with the initial condition (1.4), and set β(t) = γ(t) = λ(t) for
t ≥ t−1(t0) + 1. Then the statement of the proof follows from (1.2) and (3.5), so λ(t) = (Sλ)(t)
for t ≥ t0 + 1.

(c) =⇒ (a). First, we show that under hypothesis (c), the initial value problem (1.2) and
(1.4) has a positive solution λ : [t−1(t0) + 1, ∞) → R. The solution λ will be constructed by
the method of successive approximation as the limit of a sequence of functions {λr(t)} for
t ≥ t−1(t0) + 1 defined as follows.
Take any function λ0 : [t−1(t0) + 1, ∞) 7→ R+] between the functions β and γ:

0 < β(t) ≤ λ0(t) ≤ γ(t), t ≥ t0 + 1 and λ0(t) = ψ(t), t−1(t0) + 1 ≤ t < t0 + 1.

Set

λr+1(t) =

{
λ0(t), t−1(t0) + 1 ≤ t < t0 + 1;

(Sλr)(t), t ≥ t0 + 1, r = 0, 1, 2, . . . .

By condition (3.4) and using induction, it follows that

β(t) ≤ λr(t) ≤ γ(t), t ≥ t−1(t0) + 1, r = 1, 2, . . . (3.8)
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and so λr : [t−1(t0) + 1, ∞) 7→ R+. Next, we show that the sequence {λr(t)}r∈N converges
uniformly on any subinterval [t0 + 1, T1] of [t0 + 1, ∞). Set

L = max
{

max
t−1(t0)+1≤t≤T1

{γ(t)}, 1
}

, M = max
t0+1≤t≤T1

{
m

∑
i=1
|Pi(t)|

ki(t)−1

∏
`=1

1
(β(t− `))2

}
,

k = max
1≤i≤m

{
max

t0+1≤t≤T1
{ki(t)}

}
, M1 = max

{
MLk−1, 1

}
.

Then from (3.8) it follows that

max
t−1(t0)+1≤t≤T1

{λr(t)} ≤ L for r = 0, 1, 2, . . .

By elementary transformations and applying Lemma 3.3, we can show the following inequal-
ities:

|λr+1(t)− λr(t)| ≤
m

∑
i=1
|Pi(t)|

∣∣∣∣∣ki(t)−1

∏
j=1

1
λr−1(t− j)

−
ki(t)−1

∏
j=1

1
λr(t− j)

∣∣∣∣∣

≤
m

∑
i=1
|Pi(t)|

Lki(t)−1
ki(t)−1

∑
j=1
|λr(t− j)− λr−1(t− j)|

ki(t)−1

∏
`=1

(β(t− `))2

≤ MLk−1
k−1

∑
j=1
|λr(t− j)− λr−1(t− j)|

≤ M1

k−1

∑
j=1
|λr(t− j)− λr−1(t− j)| for t ≥ t0 + 1.

Thus for all r = 1, 2, . . . and t0 + 1 ≤ t ≤ T1 the inequality

|λr+1(t)− λr(t)| ≤ M1

k−1

∑
j=1
|λr(t− j)− λr−1(t− j)|

holds. By induction, we can show that for all r = 0, 1, 2, . . . and t0 + 1 ≤ t ≤ T1

|λr+1(t)− λr(t)| ≤ 2L
Mr

1tr

r!
.

For r = 0 we have

|λ1(t)− λ0(t)| ≤ 2L = 2L
M0

1t0

0!
.

Suppose that the inequality is true for r = q, i.e.

∣∣λq+1(t)− λq(t)
∣∣ ≤ 2L

Mq
1tq

q!
.



Existence of positive solutions 11

We will show that the inequality is true also for r = q + 1.

∣∣λq+2(t)− λq+1(t)
∣∣ ≤ M1

k−1

∑
j=1

∣∣λq+1(t− j)− λq(t− j)
∣∣

= M1

t−1

∑
`=t−k+1

∣∣λq+1(`)− λq(`)
∣∣ ≤ M1

t−1

∑
`=t−k+1

2L
Mq

1`
q

q!

= 2L
Mq

1
q!

t−1

∑
`=t−k+1

`q ≤ 2L
Mq

1
q!

t−1

∑
`=t−k+1

∫ `+1

`
sq ds

= 2L
Mq

1
q!

∫ t

t−k+1
sq ds = 2L

Mq
1

q!

[
sq+1

q + 1

]∣∣∣∣t
t−k+1

= 2L
Mq

1
q!

(
tq+1 − (t− k + 1)q+1

)
< 2L

Mq+1
1 tq+1

(q + 1)!
,

because t−1(t0) > 0 and so t− k + 1 > 0.
For given n ∈N, t ∈ R+ and a function f : R→ R we use the standard notation

t

∑
`=t−n

f (`) = f (t− n) + f (t− n + 1) + · · ·+ f (t).

It follows by the Weierstrass M-test that the series

∞

∑
r=0
|λr+1(t)− λr(t)|

converges uniformly on every compact interval [t0 + 1, T1] and therefore the sequence

λr(t) = λ0(t) +
r−1

∑
j=0

∣∣λj+1(t)− λj(t)
∣∣ for t0 + 1 ≤ t ≤ T1, r = 0, 1, 2, . . .

also converges uniformly. Thus, the limit function

λ(t) = lim
r→∞

λr(t) (3.9)

is positive for t0 + 1 ≤ t ≤ T1. Because of the convergence,

λ(t) = lim
r→∞

λr+1(t) = lim
r→∞

(
1−

m

∑
i=1

Pi(t)
ki(t)−1

∏
j=1

1
λr(t− j)

)

= 1−
m

∑
i=1

Pi(t)
ki(t)−1

∏
j=1

1
λ(t− j)

, t0 + 1 ≤ t ≤ T1,

and λ(t) = λ0(t) for t−1(t0) + 1 ≤ t < t0 + 1, which shows that λ, as defined by (3.9), is a
solution of characteristic equation (1.2) on [t−1(t0) + 1, T1]. As T1 is an arbitrary fixed point
on [t0 + 1, ∞), it follows that λ, as defined by (3.9), is a solution of (1.2) on [t−1(t0) + 1, ∞).

Finally, we define the function x : [t−1(t0), ∞) 7→ R+ by (3.7). It is obvious that the function
x, defined by (3.7), is a solution of the initial value problem (1.1) and (1.3), and the proof of
the theorem is complete.
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For the special case, when ki(t) = ki ∈ {2, 3, 4, . . . }, Pi ∈ C[[t0, ∞), R], i = 1, 2, . . . , m, the
equation (1.1) is a linear difference equation with continuous time and constant delay:

x(t)− x(t− 1) +
m

∑
i=1

Pi(t)x(t− ki) = 0, t ≥ t0 (3.10)

and the generalized characteristic equation

λ(t)− 1 +
m

∑
i=1

Pi(t)
ki−1

∏
j=1

1
λ(t− j)

= 0, t ≥ t0 + 1. (3.11)

Now, t−1(t0) = t0 −max{k1, k2, . . . , km}.
Let φ ∈ C[[t−1(t0), t0) → R]. Let FC denote the space of continuous functions

φ : [t−1(t0), t0) → R. Then, for every φ ∈ FC, equation (3.10) has a unique piecewise con-
tinuous solution x : [t−1(t0), ∞)→ R with the continuous initial function defined by (1.3), and
equation (3.11) has a unique piecewise continuous solution λ : [t−1(t0) + 1, ∞) → R with the
continuous initial function defined by (1.4).

We can formulate the following corollary.

Corollary 3.5. Assume that Pi ∈ C[[t0, ∞), R] and ki ∈ {2, 3, 4, . . . .} for i = 1, 2, . . . , m. Let φ ∈ FC

such that φ(t) > 0 for t−1(t0) ≤ t < t0. Then the following statements are equivalent.

(a) The solution of the initial value problem (3.10) and (1.3) is positive piecewise continuous for
t ≥ t−1(t0).

(b) The initial value problem (3.11) and (1.4) has positive piecewise continuous solution on
[t−1(t0) + 1, ∞).

(c) There exist functions β, γ ∈ C[[t−1(t0)+ 1, ∞), R+] such that β(t) ≤ ψ(t) ≤ γ(t) on the interval
[t−1(t0) + 1, t0 + 1), β(t) ≤ γ(t) for t ≥ t0 + 1 and for every function δ ∈ C[[t−1(t0) + 1, ∞), R]

with δ(t) = ψ(t) for t−1(t0) + 1 ≤ t < t0 + 1 such that β(t) ≤ δ(t) ≤ γ(t) for t ≥ t0 + 1, the
following inequalities hold:

β(t) ≤ 1−
m

∑
i=1

Pi(t)
ki−1

∏
j=1

1
δ(t− j)

≤ γ(t), t ≥ t0 + 1.

4 Comparison results

Consider, now, the delay functional equation

y(t)− y(t− 1) +
m

∑
i=1

qi(t)y(t− ki(t)) = 0 for t ≥ t0 (4.1)

and the delay functional inequalities

x(t)− x(t− 1) +
m

∑
i=1

pi(t)x(t− ki(t)) ≤ 0 for t ≥ t0, (4.2)

z(t)− z(t− 1) +
m

∑
i=1

ri(t)z(t− ki(t)) ≥ 0 for t ≥ t0. (4.3)
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The oscillatory behavior of delay differential equations and inequalities has been the subject
of many investigations. For a result we refer to [6, 5] and the references therein. The next
result is a discrete analogue of Theorem 3.2.1 [6] formulated for differential equations and
inequalities and the generalization of the Theorem 1.2 [16] in the continuous time domain.

Theorem 4.1. Suppose that pi, qi, ri : [t0, ∞)→ R+ for i = 1, 2, . . . , m such that

pi(t) ≥ qi(t) ≥ ri(t) for t ≥ t0, i = 1, 2, . . . , m.

Assume that (H2) holds and x : [t−1(t0), ∞) 7→ R, y : [t−1(t0), ∞) 7→ R and z : [t−1(t0), ∞) 7→ R

are solutions of (4.2), (4.1) and (4.3), respectively, such that

z(t0) ≥ y(t0) ≥ x(t0), x(t) > 0 for t ≥ t0, (4.4)

0 <
x(t)

x(t− 1)
≤ y(t)

y(t− 1)
≤ z(t)

z(t− 1)
for t−1(t0) + 1 ≤ t < t0 + 1. (4.5)

Then
z(t) ≥ y(t) ≥ x(t) for t ≥ t0. (4.6)

Proof. Set

α0(t) =
x(t)

x(t− 1)
, β0(t) =

y(t)
y(t− 1)

, γ0(t) =
z(t)

z(t− 1)
, for t ≥ t−1(t0) + 1.

Then, by using the previous notation, it follows that

α0(t)− 1 +
m

∑
i=1

pi(t)
ki(t)−1

∏
j=1

1
α0(t− j)

≤ 0, t ≥ t0 + 1,

β0(t)− 1 +
m

∑
i=1

qi(t)
ki(t)−1

∏
j=1

1
β0(t− j)

= 0, t ≥ t0 + 1,

γ0(t)− 1 +
m

∑
i=1

ri(t)
ki(t)−1

∏
j=1

1
γ0(t− j)

≥ 0, t ≥ t0 + 1.

We will show by induction and by using Theorem 3.4 that

α0(t) ≤ β0(t) ≤ γ0(t) for t ≥ t0 + 1. (4.7)

For the first part of inequality (4.7) let δ : [t−1(t0) + 1, ∞) 7→ R be an arbitrary function such
that δ(t) = β0(t) for t−1(t0) + 1 ≤ t < t0 + 1 and α0(t) ≤ δ(t) ≤ 1 for t ≥ t0 + 1. Then

α0(t) ≤ 1−
m

∑
i=1

pi(t)
ki(t)−1

∏
j=1

1
α0(t− j)

≤ 1−
m

∑
i=1

qi(t)
ki(t)−1

∏
j=1

1
δ(t− j)

≡ Sδ(t) ≤ 1, t ≥ t0 + 1.

Then, the statement (c) of Theorem 3.4 is true with β(t) = α0(t) and γ(t) ≡ 1 for t ≥
t−1(t0) + 1, so by the same theorem, the initial value problem

δ(t)− 1 +
m

∑
i=1

qi(t)
ki(t)−1

∏
j=1

1
δ(t− j)

= 0, t ≥ t0 + 1

δ(t) = β0(t), t−1(t0) + 1 ≤ t < t0 + 1,
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has exactly one solution for t ≥ t−1(t0) + 1, and the solution of this equation is between the
functions α0 and 1 on [t−1(t0) + 1, ∞). Since β0 : [t−1(t0) + 1, ∞) 7→ R+ is the unique solution
of the same initial value problem, hence it follows that δ(t) = β0(t) for t ≥ t0 + 1, and so
α0(t) ≤ β0(t) ≤ 1 for t ≥ t0 + 1.

In order to prove the second part of inequality (4.7), we will show that α0(t) ≤ γ0(t)
for t ≥ t0 + 1. Then, in a similar way as before, with β(t) = α0(t) and γ(t) ≡ γ0(t) for
t ≥ t−1(t0) + 1, the second part of inequality (4.7) can be proved. From inequality (4.5) we
have that 0 < α0(t) ≤ γ0(t) for t−1(t0) + 1 ≤ t < t0 + 1. Let t ≥ t0 + 1 be such a point, that
t− 1 < t0 + 1. Then

α0(t) ≤ 1−
m

∑
i=1

pi(t)
ki(t)−1

∏
j=1

1
α0(t− j)

≤ 1−
m

∑
i=1

ri(t)
ki(t)−1

∏
j=1

1
γ0(t− j)

≤ γ0(t) for t ≥ t0 + 1.

Let t ≥ t0 + 1 be such a point that t− ` < t0 + 1, and suppose that α0(t) ≤ γ0(t) for t ≥ t0 + 1.
Now, let t ≥ t0 + 1 be such a point that t− (`+ 1) < t0 + 1. Using the previous inequality it
follows α0(t) ≤ γ0(t) for t ≥ t0 + 1, too. Because of the equalities

x(t) = φ(t− n(t))
n(t)−1

∏
j=0

α0(t− j) for t ≥ t0,

y(t) = φ(t− n(t))
n(t)−1

∏
j=0

β0(t− j) for t ≥ t0,

z(t) = φ(t− n(t))
n(t)−1

∏
j=0

γ0(t− j) for t ≥ t0,

(4.4) and (4.7) imply that (4.6) holds and the proof is complete.

5 Existence of positive solutions

Our aim in this section is to derive results on the existence of positive solutions of equation
(1.1) by applying statement (c) of Theorem 3.4. To that end, we will postulate first the Theorem
which is the discrete analogue of the Theorem 3.3.2 [6] and at the same time the generalization
of Theorem 3.2 [16] in the continuous time domain.

Theorem 5.1. Assume that (H1), (H2) hold and that there exists a positive number µ ∈ (0, 1) such
that

m

∑
i=1
|Pi(t)|(1− µ)1−ki(t) ≤ µ for t ≥ t0 + 1. (5.1)

Then for every φ ∈ F such that φ(t) > 0 for t−1(t0) ≤ t < t0, the solution x : [t−1(t0), ∞) → R of
the initial value problem (1.1) and (1.3) remains positive for t ≥ t0.

Proof. Let µ ∈ (0, 1) be a given number such that all the conditions of the theorem hold. Let
φ ∈ F be a fixed initial function such that 1− µ ≤ ψ(t) ≤ 1 + µ for t−1(t0) + 1 ≤ t < t0 + 1,
where the function ψ is defined by (1.4). Let the operator (Sδ)(t) be defined by (3.5) for
δ : [t0 + 1, ∞) 7→ R. We will show that statement (c) of Theorem 3.4 is true with β(t) = 1− µ
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and γ(t) = 1 + µ for t ≥ t−1(t0) + 1. Let δ : [t−1(t0) + 1, ∞) 7→ R be a function such that
δ(t) = ψ(t) for t−1(t0) + 1 ≤ t < t0 + 1 and 1− µ ≤ δ(t) ≤ 1 + µ for t ≥ t0 + 1. From (5.1), it
follows that

(Sδ)(t) ≤ 1 +
m

∑
i=1
|Pi(t)|

ki(t)−1

∏
j=1

1
1− µ

= 1 +
m

∑
i=1
|Pi(t)| (1− µ)1−ki(t) ≤ 1 + µ

and

(Sδ)(t) ≥ 1−
m

∑
i=1
|Pi(t)|

ki(t)−1

∏
j=1

1
1− µ

= 1−
m

∑
i=1
|Pi(t)| (1− µ)1−ki(t) ≥ 1− µ

for t ≥ t0 + 1, and the proof is complete.

The next theorem is a generalization of Theorem 5.1.

Theorem 5.2. Assume that (H1), (H2) hold and that there exists a real function µ : [t0 + 1, ∞) →
(0, 1) such that

m

∑
i=1
|Pi(t)|

ki(t)−1

∏
j=1

1
1− µ(t− j)

≤ µ(t) for t ≥ t0 + 1. (5.2)

Then for every φ ∈ F such that φ(t) > 0 for t−1(t0) ≤ t ≤ t0, the solution x : [t−1(t0), ∞) → R of
the initial value problem (1.1) and (1.3) remains positive for t ≥ t0.

Proof. Let µ : [t−1(t0) + 1, ∞) → (0, 1) be a given function such that the conditions of the
theorem hold for t ≥ t0 + 1. Let φ ∈ F be a fixed initial function such that 1− µ(t) ≤ ψ(t) ≤
1 + µ(t) for t−1(t0) + 1 ≤ t < t0 + 1, where the function ψ is defined by (1.4). Let the operator
(Sδ)(t) be defined by (3.5) for δ : [t0 + 1, ∞) 7→ R. We will show that statement (c) of Theorem
3.4 is true with β(t) = 1− µ(t) and γ(t) = 1 + µ(t) for t ≥ t0 + 1. Let δ : [t−1(t0) + 1, ∞) 7→ R

be a function such that δ(t) = ψ(t) for t−1(t0) + 1 ≤ t < t0 + 1 and 1− µ(t) ≤ δ(t) ≤ 1 + µ(t)
for t ≥ t0 + 1. From (5.2), it follows that

(Sδ)(t) ≤ 1 +
m

∑
i=1
|Pi(t)|

ki(t)−1

∏
j=1

1
1− µ(t− j)

≤ 1 + µ(t)

and

(Sδ)(t) ≥ 1−
m

∑
i=1
|Pi(t)|

ki(t)−1

∏
j=1

1
1− µ(t− j)

≥ 1− µ(t)

for t ≥ t0 + 1, and the proof is complete.

Set, now, that P+
i (t) = max{0, Pi(t)} for t ≥ t0, i = 1, 2, . . . , m, and suppose that

(H3) ki : [t0, ∞) 7→ {2, 3, 4, . . . } are real functions such that lim
t→∞

ki(t) = Ti, for i = 1, 2, . . . , m

and let max
1≤i≤m

{Ti} = T.

Theorem 5.3. Assume that (H1), (H3) hold and let

m

∑
i=1

P+
i (t) ≤ (T − 1)T−1

TT for t ≥ t0 + 1. (5.3)

Then for every φ ∈ F such that φ(t) > 0 for t−1(t0) ≤ t < t0, the solution x : [t−1(t0), ∞) → R of
the initial value problem (1.1) and (1.3) remains positive for t ≥ t0.
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Proof. Consider the functional equation

y(t)− y(t− 1) +
m

∑
i=1

P+
i (t)y(t− ki(t)) = 0 for t ≥ t0 (5.4)

with initial condition y(t) = φ(t) for t−1(t0) ≤ t < t0. Let φ ∈ F be a fixed initial function
such that T−1

T ≤ ψ(t) ≤ 1 for t−1(t0) + 1 ≤ t < t0 + 1, where the function ψ is such that

ψ(t) =
φ(t)

φ(t− 1)
for t−1(t0) + 1 ≤ t < t0, and ψ(t) ≥ y(t)

φ(t− 1)
for t0 ≤ t < t0 + 1.

It is possible to show that the statement (c) of Theorem 3.5 is true for any function
δ : [t−1(t0) + 1, ∞) 7→ R such that δ(t) = ψ(t) for t−1(t0) + 1 ≤ t < t0 + 1 and

0 < β(t) ≡ T − 1
T
≤ δ(t) ≤ 1 ≡ γ(t) for t ≥ t0 + 1. (5.5)

Because of (H3) and (5.5), it follows that

ki(t)−1

∏
j=1

1
δ(t− j)

≤
T−1

∏
j=1

T
T − 1

≤ TT−1

(T − 1)T−1 . (5.6)

Combining (5.3), (5.5) and (5.6), we obtain

1 ≥ 1−
m

∑
i=1

P+
i (t)

ki(t)−1

∏
j=1

1
δ(t− j)

≡ Sδ(t)

≥ 1−
m

∑
i=1

P+
i (t)

TT−1

(T − 1)T−1 ≥
T − 1

T
.

Therefore, the solution y(φ)(t) of (5.4) is positive for t ≥ t0. Since the solution x(φ)(t) of (1.1)
is also a solution of inequality

x(t)− x(t− 1) +
m

∑
i=1

P+
i (t)x(t− ki(t)) ≥ 0 for t ≥ t0,

and by using Theorem 4.1, it follows that x(φ)(t) ≥ y(φ)(t) > 0 for t ≥ t0, the proof is
complete.

Theorem 5.4. Assume that (H1), (H2) hold and 0 ≤ k1(t) ≤ k2(t) ≤ · · · ≤ km(t) for t ≥ t0 and

s

∑
i=1

Pi(t) ≤ 0 for s = 1, 2, . . . , m, t ≥ t0 + 1. (5.7)

Then equation (1.1) has positive increasing solution for t ≥ t0.

Proof. Let φ(t) ≡ 1 for t−1(t0) ≤ t < t0. The statement (c) of Theorem 3.5 will be true for any
function δ : [t−1(t0) + 1, ∞) 7→ R such that δ(t) = 1 for t−1(t0) + 1 ≤ t < t0, δ(t) = x(t) for
t0 ≤ t < t0 + 1 and

β(t) ≡ 1 ≤ δ(t) ≤ 1 +
m

∑
i=1
|Pi(t)| = γ(t) for t ≥ t0 + 1. (5.8)
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Because of t− k1(t) ≥ t− k2(t) ≥ · · · ≥ t− km(t), (5.7) and (5.8), it follows that

1 ≤ 1−
{

m

∑
i=1

Pi(t)

}
km(t)−1

∏
j=1

1
δ(t− j)

≤ 1−
m

∑
i=1

Pi(t)
ki(t)−1

∏
j=1

1
δ(t− j)

≡ Sδ(t)

≤ 1 +
m

∑
i=1
|Pi(t)|

ki(t)−1

∏
j=1

1
δ(t− j)

≤ 1 +
m

∑
i=1
|Pi(t)| for t ≥ t0 + 1.

Therefore, by Theorem 3.5, the solution x(φ)(t) of equation (1.1) is positive for t ≥ t0.
Moreover, x(φ)(t) = ∏n(t)−1

j=0 λ(t− j) for t ≥ t0 + 1, where λ is a positive solution of the
characteristic equation associated with equation (1.1), greater than 1 for t ≥ t0 + 1.

Hence, x(φ)(t) is an increasing solution of equation (1.1) and the proof is complete.

6 Examples and remarks

Consider the delay difference equation with continuous time of the form

x(t)− x(t− 1) +
m

∑
i=1

Pi(t)x(t− [τi(t)]) = 0, t ≥ t0,

where Pi ∈ C[[t0, ∞), R], τi ∈ C[[t0, ∞), [2, ∞)] and lim
t→∞

(t− τi(t)) = ∞, for i = 1, 2, . . . , m.

Now, the delay functions satisfy the hypotheses (H2) with ki(t) = [τi(t)], i = 1, 2, . . . , m.

Remark 6.1. For the special case, when m = 1 and k1(t) = k ∈ {2, 3, 4, . . . }, condition (5.1)
has the form

|P(t)|(1− µ)1−k ≤ µ or |P(t)| ≤ µ(1− µ)k−1.

Let F(µ) = µ(1 − µ)k−1. Then F′(µ) = µ(1 − µ)k−2(1 − kµ), Fmax
( 1

k

)
= (k−1)k−1

kk and the
condition of non-oscillation is

|P(t)| ≤ (k− 1)k−1

kk .

For m = 1, for positive function P and for constant delay function, the condition (5.3) has the
same form as the above condition.

Remark 6.2. For 0 < a+ 1 < t0 and µ(t) =
a
t

the condition 0 < µ(t) < 1 is valid for t ≥ t0 > 0.

Now, for the special case when ki(t) = ki ∈ {2, 3, 4, . . . }, i = 1, 2, . . . , m, condition (5.2) can be
reformulated as

m

∑
i=1
|Pi(t)|

ki−1

∏
j=1

t− j
t− j− a

≤ a
t

or t
m

∑
i=1
|Pi(t)|

ki−1

∏
j=1

t− j
t− j− a

≤ a.

For m = 1 and k1 = 2 we have

|P(t)| t− 1
t− 1− a

≤ a
t

or |P(t)| ≤ a
t

(
1− a

t− 1

)
.

Let F(a) = a
t

(
1− a

t−1

)
. Then F′(a) = t−1−2a

t(t−1) , F′(a) = 0 for a = t−1
2 , and Fmax

( t−1
2

)
= t−1

4t .
Now, we can reformulate condition (5.2) of non-oscillation as

|P(t)| ≤ t− 1
4t

,
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where the condition

|P(t)| ≤ 1
4

(6.1)

is satisfied, too.

Remark 6.3. In the Theorems C, D and E, for P(t) = 1, g(t) = t − 1 and positive function
Q(t) = P(t), the conditions (2.6), (2.7) and (2.8), for the existence of non-oscillatory solutions
of the equation

x(t)− x(t− 1) + P(t)x(t− 2) = 0

are of the form

P(t) ≤ 1
4

, (6.2)

and it is the same as (6.1), or the condition (5.3) for T = 2 and positive function P.

Remark 6.4. In the Theorem F, for τ = 1, σ > 1 and positive function q(t) = P(t), the
condition for the existence of non-oscillatory solutions of the equation

x(t)− x(t− 1) + P(t)x(t− σ) = 0

is of the form

P(t) ≤ (σ− 1)σ−1

σσ
, (6.3)

and it is the same as (5.3) for T = σ and positive function P.

Remark 6.5. In the Theorem G, for p = 1, k > 1 and an arbitrary real function Q(t) = P(t),
the condition for the existence of non-oscillatory solutions of the equation

x(t)− x(t− 1) + P(t)x(t− k) = 0

is of the form

P+(t) ≤ (k− 1)k−1

kk , (6.4)

and it is the same as the condition (5.3) for T = k.

Example 6.6. Consider the functional equation

x(t)− x(t− 1) +
(t− 1) sin t

4t
x(t− 2) = 0

with t0 = 4, t−1 = 2 and positive initial functions φ = j(t2 − 2) (Figure 6.1) and φ = j
√

t
(Figure 6.2), j ∈ {0.5, 1, 5, 2.5, 3.5, 4.5, 5.5}. Since

|P(t)| =
∣∣∣∣ (t− 1) sin t

4t

∣∣∣∣ ≤ t− 1
4t

,

the solutions with positive initial functions remain positive.
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Example 6.7. Consider the functional equation

x(t)− x(t− 1) +
1
4t

x(t− 2)− 1
8t

x(t− 3) = 0

with t0 = 5, t−1 = 2 and positive initial functions φ = j(t2 − 2) (Figure 6.3) and φ = j
√

t
(Figure 6.4), j ∈ {0.5, 1, 5, 2.5, 3.5, 4.5, 5.5}.

The condition of non-oscillation has the form:

|P1(t)|(1− µ)(1−k1) + |P2(t)|(1− µ)(1−k2) ≤ µ.

For m = 2, k1 = 2, k2 = 3, P1(t) =
1
4t

, P2(t) = −
1
8t

and µ = 0.5 we have

|P1(t)|(1− µ)(1−k1) + |P2(t)|(1− µ)(1−k2)

=
1
4t
(1− 0.5)(1−2) +

1
8t
(1− 0.5)(1−3)

=
2
4t

+
4
8t

=
1
t
≤ 1

2
= µ for t ≥ 2.
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Example 6.8. Consider the functional equation

x(t)− x(t− 1) +
sin t

2[
t
2 ]

x
(

t−
[

t
2

])
= 0
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with t0 = 5, t−1 = 2 and positive initial functions φ = j
√

t (Figure 6.5) and φ = j(sin 6t + 2)
(Figure 6.6) for the values j ∈ {0.5, 1, 5, 2.5, 3.5, 4.5, 5.5}.

The condition of non-oscillation (5.1) has the form:

|P1(t)|(1− µ)1−[τ1(t)] ≤ µ.

For m = 1, τ1(t) =
t
2

, P1(t) = sin t 2−[
t
2 ] and µ = 0.5 we have

|P1(t)|(1− µ)1−[τ1(t)] =
| sin t|
2[

t
2 ]

(1− 0.5)1−[ t
2 ] = | sin t| · 1

2
≤ 1

2
= µ

and the condition of non-oscillation is satisfied.
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Example 6.9. Consider the functional equation

x(t)− x(t− 1) +
cos t

2[t−
3√t]

x
(

t−
[
t− 3
√

t
])

= 0

with t0 = 8, t−1 = 2 and positive initial functions φ = j
√

t (Figure 6.7) and φ = j(sin 6t + 2)
(Figure 6.8) for the values j ∈ {0.5, 1, 5, 2.5, 3.5, 4.5, 5.5}.

For m = 1, τ1(t) = t− 3
√

t, P1(t) = cos t 2−[t−
3√t] and µ = 0.5 we have

|P1(t)|(1− µ)1−[τ1(t)] =
| cos t|
2[t−

3√t]
(1− 0.5)1−[t− 3√t] = | cos t| · 1

2
≤ 1

2
= µ

and the condition (5.1) of non-oscillation is satisfied.

Example 6.10. Consider the functional equation

x(t)− x(t− 1) +
2 sin t

27
x
(

t−
[

2t + 3
t + 1

])
+

2 cos t
27

x
(

t−
[

3t + 5
t + 1

])
= 0

with t0 = 5, t−1 = 2 and the positive initial functions φ = j(t2 − 2) (Figure 6.9) and
φ = j(sin 6t + 2) (Figure 6.10), j ∈ {0.5, 1, 5, 2.5, 3.5, 4.5, 5.5}.

Since

T1 = lim
t→∞

τ1(t) = lim
t→∞

2t + 3
t + 1

= 2, T2 = lim
t→∞

τ2(t) = lim
t→∞

3t + 5
t + 1

= 3,

T = max{T1, T2} = 3,
(T − 1)T−1

TT =
4

27
,

P+
1 (t) + P+

2 (t) =
2
27

((sin t)+ + (cos t)+) ≤ 4
27

=
(T − 1)T−1

TT ,

the condition of non-oscillation (5.3) is satisfied.
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