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Abstract. In this paper, we consider the existence of triple positive solutions to the boundary

value problem of nonlinear delay differential equation











(φ(x′(t)))′ + a(t)f(t, x(t), x′(t), xt) = 0, 0 < t < 1,

x0 = 0,

x(1) = 0,

where φ : R → R is an increasing homeomorphism and positive homomorphism with φ(0) = 0,

and xt is a function in C([−τ, 0],R) defined by xt(σ) = x(t + σ) for −τ ≤ σ ≤ 0. By using a

fixed-point theorem in a cone introduced by Avery and Peterson, we provide sufficient conditions

for the existence of triple positive solutions to the above boundary value problem. An example

is also presented to demonstrate our result. The conclusions in this paper essentially extend and

improve the known results.
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1 Introduction

Throughout this paper, for any intervals I and J of R, we denote by C(I, J) the set of all continuous

functions defined on I with values in J . Let τ be a nonnegative real number and t ∈ [0, 1], and let

x be a continuous real-valued function defined at least on [t− τ, t]. We define xt ∈ C([−τ, 0],R) by

xt(σ) = x(t+ σ), − τ ≤ σ ≤ 0.
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In this paper we consider the nonlinear delay differential equation

(φ(x′(t)))′ + a(t)f(t, x(t), x′(t), xt) = 0, 0 < t < 1, (1.1)

with the conditions

x0 = 0 (1.2)

and

x(1) = 0. (1.3)

Note that, according to our notation, (1.2) means x(σ) = 0 for −τ ≤ σ ≤ 0. Also, f(t, u, v, µ) is a

nonnegative real-valued continuous function defined on [0, 1]× [0,∞)×R×C([−τ, 0),R), a(t) is a

nonnegative continuous function defined on (0, 1), and φ : R → R is an increasing homeomorphism

and positive homomorphism (defined below) with φ(0) = 0.

A projection φ : R → R is called an increasing homeomorphism and positive homomorphism if

the following conditions are satisfied:

(1) for all x, y ∈ R, φ(x) ≤ φ(y) if x ≤ y;

(2) φ is a continuous bijection and its inverse mapping φ−1 is also continuous;

(3) φ(xy) = φ(x)φ(y) for all x, y ∈ [0,+∞).

In the above definition, we can replace condition (3) by the following stronger condition:

(4) φ(xy) = φ(x)φ(y) for all x, y ∈ R.

If conditions (1), (2) and (4) hold, then φ is homogeneously generating a p-Laplacian operator,

i.e., φ(x) = |x|p−2x for some p > 1.

In recent years, the existence of solutions to nonlinear boundary values problems of delay

differential equations has been extensively studied, see [1], [4], [8], [10]-[25], and the references

therein. However, there is little research on problems involving the increasing homeomorphism

and positive homomorphism operator. In [18], Liu and Zhang study the existence of positive

solutions of the quasilinear differential equation

{

(φ(x′))′ + a(t)f(x(t)) = 0, 0 < t < 1,

x(0) − βx′(0) = 0, x(1) + δx′(1) = 0,

where φ : R → R is an increasing homeomorphism and positive homomorphism with φ(0) = 0.

They obtain the existence of one or two positive solutions by using a fixed-point theorem in cones.

However, in the literature, the existence of three positive solutions has never been established

for boundary value problems of delay differential equations with increasing homeomorphism and

positive homomorphism operators. Therefore, the aim of this paper is to offer some criteria for the

existence of triple positive solutions to the boundary value problem (1.1)–(1.3). We also emphasize

the generality of the nonlinear term f considered in (1.1) which involves the first-order derivative.

Our main tool is a fixed-point theorem in cones introduced by Avery and Peterson [2]. Note

that existence of triple solutions to many other boundary value problems of ordinary differential
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equations have been tackled in the literature; see for example [5, 6, 22, 23] and the references cited

therein.

By a solution of boundary value problem (1.1)–(1.3), we mean a function x ∈ C[−τ, 1]∩C1[0, 1]

that satisfies (1.1) when 0 < t < 1, while x(t) = 0 for −τ ≤ t ≤ 0, and x(1) = 0. Throughout, we

shall assume that

(H1) f ∈ C([0, 1] × [0,∞) × R × C([−τ, 0),R), [0,∞));

(H2) a ∈ C(0, 1) ∩ L1[0, 1] with a(t) > 0 on (0, 1).

The plan of the paper is as follows. In Section 2, for the convenience of the readers we give some

definitions and the fixed-point theorem of Avery and Peterson [2]. The main results are developed

in Section 3. As an application, we also include an example.

2 Preliminaries

In this section, we provide some background materials cited from cone theory in Banach spaces. The

following definitions can be found in the books by Deimling [7] and by Guo and Lakshmikantham

[9].

Definition 2.1 Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex set P ⊂ E is

said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;

(b) if y ∈ P and −y ∈ P, then y = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤, i.e., x ≤ y if and only if

y − x ∈ P.

Definition 2.2 A map α is said to be a nonnegative continuous concave functional in a cone P

of a real Banach space E if α : P → [0,∞) is continuous and for all x, y ∈ P and t ∈ [0, 1],

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y).

A map γ is said to be a nonnegative continuous convex functional in a cone P of a real Banach

space E if γ : P → [0,∞) is continuous and for all x, y ∈ P and t ∈ [0, 1],

γ(tx+ (1 − t)y) ≤ tγ(x) + (1 − t)γ(y).

Let γ and θ be nonnegative continuous convex functionals on P , α be a nonnegative continuous

concave functional on P , and ψ be a nonnegative continuous functional on P . For positive numbers

a, b, c, d, we define the following convex sets of P :

P (γ, d) = {x ∈ P : γ(x) < d},

P (γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},
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and the closed set

R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ ≤ d}.

The following fixed-point theorem due to Avery and Peterson is fundamental in the proof of

our main result.

Theorem 2.1 ([2]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative

continuous convex functionals on P , α be a nonnegative continuous concave functional on P , and

ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for all 0 ≤ λ ≤ 1, and

for some positive numbers M, d,

α(x) ≤ ψ(x), ‖x‖ ≤Mγ(x), for all x ∈ P (γ, d). (2.1)

Suppose that T : P (γ, d) → P (γ, d) is completely continuous and there exist positive numbers

a, b, c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d) : α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2) with α(x2) < b; ψ(x3) < a.

3 Main Results

In this section, we impose growth conditions on f which allow us to apply Theorem 2.1 to establish

the existence of triple positive solutions to the boundary value problem (1.1)–(1.3).

Let E = C1[−τ, 1] be a Banach space equipped with the norm

‖x‖ = max

{

max
t∈[−τ,1]

|x(t)|, max
t∈[−τ,1]

|x′(t)|

}

.

From (1.1) we have (φ(x′(t)))′ = −a(t)f(t, x(t), x′(t), xt) ≤ 0; thus x is concave on [0, 1]. Conse-

quently, we define a cone P ⊂ E by

P = {x ∈ E : x(t) ≥ 0 for t ∈ [−τ, 1], x0 = 0, x(1) = 0, x is concave on [0, 1]}. (3.1)

For x ∈ P, define

u(t) =

∫ t

0

φ−1

(
∫ t

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds−

∫ 1

t

φ−1

(
∫ s

t

a(r)f(r, x(r), x′(r), xr)dr

)

ds,

where 0 < t < 1. Clearly, u(t) is continuous and strictly increasing in (0, 1) and u(0+) < 0 < u(1−).

Thus, u(t) has a unique zero in (0, 1). Let t0 = tx (i.e., t0 is dependent on x) be the zero of u(t) in

(0, 1). It follows that

∫ t0

0

φ−1

(
∫ t0

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds =

∫ 1

t0

φ−1

(
∫ s

t0

a(r)f(r, x(r), x′(r), xr)dr

)

ds. (3.2)
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To apply Theorem 2.1, we define the nonnegative continuous concave functional α1, the non-

negative continuous convex functionals θ1, γ1, and the nonnegative continuous functional ψ1 on the

cone P by

α1(x) = min
t∈[1/k,(k−1)/k]

|x(t)|, γ1(x) = max
t∈[0,1]

|x′(t)|, ψ1(x) = θ1(x) = max
t∈[0,1]

|x(t)|,

where x ∈ P and k (≥ 3) is an integer.

We will need the following lemmas in deriving the main result.

Lemma 3.1 For x ∈ P, there exists a constant M ≥ 1 such that

max
t∈[−τ,1]

|x(t)| ≤M max
t∈[−τ,1]

|x′(t)|.

Proof. By Lemma 3.1 of [3], there exists a constant L > 0 such that

max
t∈[0,1]

|x(t)| ≤ L max
t∈[0,1]

|x′(t)|. (3.3)

Since x0 = 0 implies x(t) = 0 = x′(t) for t ∈ [−τ, 0], it is then clear that

max
t∈[−τ,0]

|x(t)| = max
t∈[−τ,0]

|x′(t)|. (3.4)

Now let M = max{L, 1}; thus (3.3) and (3.4) yield that

max
t∈[−τ,1]

|x(t)| ≤M max
t∈[−τ,1]

|x′(t)|. 2 (3.5)

With Lemma 3.1 and the concavity of x for all x ∈ P, the functionals defined above satisfy

1

k
θ1(x) ≤ α1(x) ≤ θ1(x), ‖x‖ = max{θ1(x), γ1(x)} ≤Mγ1(x), α1(x) ≤ ψ1(x). (3.6)

Therefore, condition (2.1) of Theorem 2.1 is satisfied.

Let the operator T : P → E be defined by

Tx(t) :=































0, −τ ≤ t ≤ 0,
∫ t

0

φ−1

(
∫ t0

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds, 0 ≤ t ≤ t0,

∫ 1

t

φ−1

(
∫ s

t0

a(r)f(r, x(r), x′(r), xr)dr

)

ds, t0 ≤ t ≤ 1,

(3.7)

where t0 is defined by (3.2). It is well known that boundary value problem (1.1)–(1.3) has a positive

solution x if and only if x ∈ P is a fixed point of T .

Lemma 3.2 Suppose that (H1) and (H2) hold. Then TP ⊂ P and T : P → P is completely

continuous.

Proof. By (3.7), we have for x ∈ P,

Tx(t) ≥ 0, t ∈ [−τ, 1], Tx(σ) = 0, σ ∈ [−τ, 0], Tx(1) = 0. (3.8)
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Moreover, Tx(t0) is the maximum value of Tx on [0, 1], since

(Tx)′(t) :=































0, −τ ≤ t ≤ 0,

φ−1

(
∫ t0

t

a(r)f(r, x(r), x′(r), xr)dr

)

≥ 0, 0 ≤ t ≤ t0,

−φ−1

(
∫ t

t0

a(r)f(r, x(r), x′(r), xr)dr

)

≤ 0, t0 ≤ t ≤ 1,

(3.9)

is continuous and nonincreasing in [0, 1] and (Tx)′(t0) = 0. So Tx is concave on [0, 1], which

together with (3.8) shows that TP ⊂ P. Using a similar argument as in [3], one can show that

T : P → P is completely continuous. 2

We can further prove the following result: for x ∈ P,

min
t∈[1/k,(k−1)/k]

Tx(t) ≥
1

k
max

t∈[0,1]
Tx(t). (3.10)

In fact, from (3.7) we have

Tx(t) ≥



















Tx(t0)

t0
t ≥ max

t∈[0,1]
Tx(t)t, 0 ≤ t ≤ t0,

Tx(t0)

1 − t0
(1 − t) ≥ max

t∈[0,1]
Tx(t)(1 − t), t0 ≤ t ≤ 1,

which implies that (3.10) holds.

Let

δ = min

{

∫ 1/2

1/k

φ−1

(

∫ 1/2

s

a(r)dr

)

ds,

∫ (k−1)/k

1/2

φ−1

(

∫ s

1/2

a(r)dr

)

ds

}

,

ρ = φ−1

(
∫ 1

0

a(r)dr

)

,

N = max

{

∫ 1/2

1/k

φ−1

(

∫ 1/2

s

a(r)dr

)

ds,

∫ (k−1)/k

1/2

φ−1

(

∫ s

1/2

a(r)dr

)

ds

}

.

We are now ready to apply the Avery-Peterson fixed point theorem to the operator T to give

sufficient conditions for the existence of at least three positive solutions to boundary value problem

(1.1)–(1.3).

Theorem 3.1 Suppose that (H1) and (H2) hold. Let 0 < a < b ≤ Md
k and suppose that f satisfies

the following conditions:

(A1) f(t, u, v, µ) < φ(d
ρ) for (t, u, v) ∈ [0, 1] × [0,Md] × [−d, d], ‖µ‖ ≤Md;

(A2) f(t, u, v, µ) > φ(kb
δ ) for (t, u, v) ∈ [ 1

k ,
k−1

k ] × [b, kb] × [−d, d], ‖µ‖ ≤ kb;

(A3) f(t, u, v, µ) < φ( a
N ) for (t, u, v) ∈ [0, 1]× [0, a] × [−d, d], ‖µ‖ ≤ kb.

Then the boundary value problem (1.1)–(1.3) has at least three positive solutions x1, x2 and x3

such that

max
t∈[0,1]

|x′i(t)| ≤ d, i = 1, 2, 3,
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b < min
t∈[1/k,(k−1)/k]

|x1(t)|, a < max
t∈[0,1]

|x2(t)|

with

min
t∈[1/k,(k−1)/k]

|x2(t)| < b,

and

max
t∈[0,1]

|x3(t)| < a.

Proof. The boundary value problem (1.1)–(1.3) has a solution x if and only if x solves the operator

equation x = Tx. Thus, we set out to verify that the operator T satisfies the Avery-Peterson fixed

point theorem, which then implies the existence of three fixed points of T.

For x ∈ P (γ1, d), we have γ1(x) = maxt∈[0,1] |x
′(t)| ≤ d, and, by Lemma 3.1, maxt∈[0,1] |x(t)| ≤

Md for t ∈ [0, 1]. Then condition (A1) implies that f(t, x(t), x′(t), xt) ≤ φ(d/ρ). On the other hand,

x ∈ P implies that Tx ∈ P , so Tx is concave on [0, 1] and

max
t∈[0,1]

|(Tx)′(t)| = max{|(Tx)′(0)|, |(Tx)′(1)|}.

Thus,

γ1(Tx) = max
t∈[0,1]

|(Tx)′(t)|

= max

{

φ−1

(
∫ t0

0

a(r)f(r, x(r), x′(r), xr)dr

)

ds, φ−1

(
∫ 1

t0

a(r)f(r, x(r), x′(r), xr)dr

)

ds

}

≤
d

ρ
φ−1

(
∫ 1

0

a(r)dr

)

=
d

ρ
ρ = d.

Therefore, T : P (γ1, d) → P (γ1, d).

To check condition (S1) of Theorem 2.1, choose

x0(t) = −4k2b

(

t−
1

2k

)2

+ kb, 0 ≤ t ≤ 1.

It is easy to see that x0 ∈ P (γ1, θ1, α1, b, kb, d) and α1(x0) > b, and so

{x ∈ P (γ1, θ1, α1, b, kb, d) : α1(x) > b} 6= ∅.

Now, for x ∈ P (γ1, θ1, α1, b, kb, d) with α1(x) > b} and t ∈ [1/k, (k − 1)/k], we have

b ≤ x(t) ≤ kb, |x′(t)| ≤ d.

Thus, for t ∈ [1/k, (k − 1)/k], it follows from condition (A2) that

f(t, x(t), x′(t), xt) > φ(kb/δ).

EJQTDE, 2009 No. 14, p. 7



By definition of α1 and P , by (3.10) we have

α1(Tx) = min
t∈[1/k,(k−1)/k]

|(Tx)(t)| ≥
1

k
max
[0,1]

Tx(t) =
1

k
(Tx)(t0)

=
1

k

∫ t0

0

φ−1

(
∫ t0

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds

=
1

k

∫ 1

t0

φ−1

(
∫ s

t0

a(r)f(r, x(r), x′(r), xr)dr

)

ds

≥
1

k

{

min{

∫ 1/2

0

φ−1

(

∫ 1/2

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds,

∫ 1

1/2

φ−1

(

∫ s

1/2

a(r)f(r, x(r), x′(r), xr)dr

)

dsr

}

≥
1

k
min

{

∫ 1/2

1/k

φ−1

(

∫ 1/2

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds,

∫ (k−1)/k

1/2

φ−1

(

∫ s

1/2

a(r)f(r, x(r), x′(r), xr)dr

)

ds

}

>
1

k

kb

δ
δ = b,

i.e., α1(Tx) > b for all x ∈ P (γ1, θ1, α1, b, kb, d). This shows that condition (S1) of Theorem 2.1 is

satisfied.

Moreover, by (3.6) we have

α1(Tx) ≥
1

k
θ1(Tx) >

1

k
kb = b, (3.11)

for all x ∈ P (γ1, θ1, α1, b, kb, d) with θ1(Tx) > kb. Hence, condition (S2) of Theorem 2.1 is fulfilled.

Finally, we show that condition (S3) of Theorem 2.1 holds as well. Clearly, 0 6∈ R(γ1, ψ1, a, d)

since ψ1(0) = 0 < a. Suppose that x ∈ R(γ1, ψ1, a, d) with ψ1(x) = a. Then, by condition (A3), we

obtain that

ψ1(Tx) = max
t∈[0,1]

|(Tx)(t)| = (Tx)(t0)

=

∫ t0

0

φ−1

(
∫ t0

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds

=

∫ 1

t0

φ−1

(
∫ s

t0

a(r)f(r, x(r), x′(r), xr)dr

)

ds

≤ max

{

∫ 1/2

0

φ−1

(

∫ 1/2

s

a(r)f(r, x(r), x′(r), xr)dr

)

ds,

∫ 1

1/2

φ−1

(

∫ s

1/2

a(r)f(r, x(r), x′(r), xr)dr

)

ds

}

<
a

N
max

{

∫ 1/2

0

φ−1

(

∫ 1/2

s

a(r)dr

)

ds,

∫ 1

1/2

φ−1

(

∫ s

1/2

a(r)dr

)

ds

}

=
a

N
N = a.
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Hence, we have ψ1(Tx) = maxt∈[0,1] |Tx(t)| < a. So condition (S3) of Theorem 2.1 is met.

Since (3.6) holds for x ∈ P , all the conditions of Theorem 2.1 are satisfied. Therefore, the

boundary value problem (1.1)–(1.3) has at least three positive solutions x1, x2 and x3 such that

max
t∈[0,1]

|x′i(t)| ≤ d, i = 1, 2, 3,

b < min
t∈[1/k,(k−1)/k]

|x1(t)|, a < max
t∈[0,1]

|x2(t)|,

with

min
t∈[1/k,(k−1)/k]

|x2(t)| < b,

and

max
t∈[0,1]

|x3(t)| < a.

The proof is complete. 2

To illustrate our main results, we shall now present an example.

Example 3.1 Consider the boundary value problem with increasing homeomorphism and positive

homomorphism


















(φ(x′(t)))′ + f(t, x(t), x′(t), xt) = 0, 0 ≤ t ≤ 1,

x(σ) = 0, −τ ≤ σ ≤ 0,

x(1) = 0,

(3.12)

where φ(x′) = |x′(t)|x′(t),

f(t, u, v, µ) =



















































et

4
+ 2306u10 +

v

15000
+
( µ

30000

)3

, u ≤ 4,

et

4
+ 2306(5 − u)u10 +

v

15000
+
( µ

30000

)3

, 4 ≤ u ≤ 5,

et

4
+ 2306(u− 5)u10 +

v

15000
+
( µ

30000

)3

, 5 ≤ u ≤ 6,

et

4
+ 2306 · 610 +

v

15000
+
( µ

30000

)3

, u ≥ 6.

Choose a = 1/2, b = 1, k = 4, M = 1, d = 30000. We note that δ = 1
12 , ρ = 1, N =

√
2

6 .

Consequently, f(t, u, v, µ) satisfies

f(t, u, v, µ) < φ

(

d

ρ

)

= 9 × 108

for 0 ≤ t ≤ 1, 0 ≤ u ≤ 30000, − 30000 ≤ v ≤ 30000, ‖µ‖ ≤ 30000, and

f(t, u, v, µ) > φ

(

4b

δ

)

= 2304

for 1/4 ≤ t ≤ 3/4, 1 ≤ u ≤ 4, − 30000 ≤ v ≤ 30000, ‖µ‖ ≤ 4, and

f(t, u, v, µ) < φ
( a

N

)

= 4.5

for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1/2, − 30000 ≤ v ≤ 30000, ‖µ‖ ≤ 4.
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All the conditions of Theorem 3.1 are satisfied. Hence, the boundary value problem (3.12) has

at least three positive solutions x1, x2 and x3 such that

max
t∈[0,1]

|x′i(t)| ≤ 30000, i = 1, 2, 3,

1 < min
t∈[1/4,3/4]

|x1(t)|,
1

2
< max

t∈[0,1]
|x2(t)|,

with

min
t∈[1/4,3/4]

|x2(t)| < 1,

and

max
t∈[0,1]

|x3(t)| <
1

2
.

Remark 3.1 The same conclusions of Theorem 3.1 hold when φ fulfills conditions (1), (2) and

(4). In particular, for the p-Laplacian operator φ(x) = |x|p−2x, for some p > 1, our conclusions

are true and new.
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