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Abstract. In this paper, we determine a concrete interval of positive parameters λ, for
which we prove the existence of infinitely many solutions for an anisotropic discrete
Dirichlet problem

−∆
(

α (k) |∆u(k− 1)|p(k−1)−2∆u(k− 1)
)
= λ f (k, u(k)), k ∈ Z[1, T],

where the nonlinear term f : Z[1, T]×R → R has an appropriate behavior at infinity,
without any symmetry assumptions. The approach is based on critical point theory.
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1 Introduction

Difference equations serve as mathematical models in diverse areas, such as economy, bi-
ology, physics, mechanics, computer science, finance – see for example [1, 9, 20]. Some of
these models are of independent interest since their mathematical structure allows for obtain-
ing new abstract tools. One of the models arising in the study of elastic mechanics is the
p(x)-Laplacian. We consider the problem−∆

(
α (k) |∆u(k− 1)|p(k−1)−2∆u(k− 1)

)
= λ f (k, u(k)), k ∈ Z[1, T],

u(0) = u(T + 1) = 0,
(P f

λ)

where λ is a positive parameter, T ≥ 2 is an integer; Z[1, T] is a discrete interval {1, 2, . . . , T};
∆u(k− 1) = u(k)− u(k− 1) is the forward difference operator; u(k) ∈ R for all k ∈ Z[1, T];
α : Z[1, T + 1] → (0,+∞) and p : Z[0, T] → (1,+∞) are some fixed functions; f : Z[1, T] ×
R → R is a continuous function, i.e. for any fixed k ∈ Z[1, T] a function f (k, ·) is con-
tinuous. Let p− = mink∈Z[0,T] p(k), p+ = maxk∈Z[0,T] p(k), α− = mink∈Z[1,T+1] α(k), α+ =

maxk∈Z[1,T+1] α(k).
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Several authors have investigated discrete BVPs with Dirichlet, periodic and Neumann
boundary conditions by the critical point theory. They applied classical variational tools such
as direct methods, the mountain geometry, linking arguments, the degree theory. We refer to
the following works far from being exhaustive: [3,4,14,16,21,25,26]. Inspiration to our investi-
gations in this note lies in [22], where a concrete interval of positive parameters for which the
anisotropic problem (P f

λ) admits infinitely many nonzero solutions which converges to zero
is obtained. The main purpose of this paper is to investigate the existence of an unbounded
sequence of solutions for problem (P f

λ), by using the critical point theorem obtained in [23].
Our idea here is to transfer the problem of existence of solutions for problem (P f

λ) into the
problem of existence of critical points for a suitable associated energy functional. For the
case of constant exponents see [5, 7]. For some other approach towards discrete anisotropic
problems we refer to [11–13]

Continuous versions of problems like (P f
λ)are known to be mathematical models of various

phenomena arising in the study of elastic mechanics, see [27], electrorheological fluids, see
[24], or image restoration, see [8]. Variational continuous anisotropic problems were started
by Fan and Zhang in [10] and later considered by many authors and the use of many methods,
see [15] for an extensive survey of such boundary value problems. Finally, we cite the recent
monograph by Kristály, Rădulescu and Varga [19] as general reference on variational methods
adopted here.

We note that most multiplicity results for discrete problems assume that the nonlinearities
are odd functions. Only a few papers deal with nonlinearities for which this property does
not hold; see, for instance, the papers [17] and [18].

In our approach we do not require any symmetry hypothesis. A special case of our con-
tributions reads as follows.

Theorem 1.1. Let g : R→ R be a nonnegative and continuous function. Assume that

lim inf
t→+∞

∫ t
0 g(s) ds

tp− = 0 and lim sup
t→+∞

∫ t
0 g(s) ds

tp+ = +∞.

Then for each λ > 0, the problem−∆
(

α (k) |∆u(k− 1)|p(k−1)−2∆u(k− 1)
)
= λ g(u(k)), k ∈ Z[1, T],

u(0) = u(T + 1) = 0,
(Pg

λ)

admits an unbounded sequence of solutions.

The structure of the paper is the following: Section 2 is devoted to our abstract framework,
while Section 3 is dedicated to main results. Concrete examples of application of the attained
abstract results are presented in Section 4.

2 Auxiliary results

Solutions to (P f
λ) will be investigated in the function space

X = {u : Z[0, T + 1]→ R; u(0) = u(T + 1) = 0}
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considered with the inner product

〈u, v〉 =
T+1

∑
k=1

∆u(k− 1)∆v(k− 1), ∀ u, v ∈ X,

with which X becomes a T-dimensional Hilbert space (see [2]) with a corresponding norm

‖u‖ =
(

T+1

∑
k=1
|∆u(k− 1)|2

)1/2

.

Let Jλ : X → R be the functional associated to problem (P f
λ) defined by

Jλ(u) = Φ(u)− λΨ(u),

where

Φ(u) :=
T+1

∑
k=1

α(k)
p(k− 1)

|∆u(k− 1)|p(k−1) and Ψ(u) :=
T

∑
k=1

F(k, u(k)),

and F(k, s) =
∫ s

0 f (k, t) dt for s ∈ R and k ∈ Z[1, T]. The functional Jλ is continuously Gâteaux
differentiable and its Gâteaux derivative J′λ at u reads

J′λ(u)(v) =
T+1

∑
k=1

α (k) |∆u(k− 1)|p(k−1)−2∆u(k− 1)∆v(k− 1)− λ
T

∑
k=1

f (k, u(k))v(k),

for all v ∈ X. Summing by parts and taking boundary values into account, we have

J′λ(u)(v) = −
T

∑
k=1

∆(α (k) |∆u(k− 1)|p(k−1)−2∆u(k− 1))v(k)− λ
T

∑
k=1

f (k, u(k))v(k),

for all v ∈ X. Hence, an element u ∈ X is a solution for (P f
λ) iff J′λ(u)(v) = 0 for every v ∈ X,

i.e. u is a critical point of Jλ.
Our main tool is a general critical points theorem due to Bonanno and Molica Bisci (see [6])

that is generalization of a result of Ricceri [23]. Here we state it in a smooth version for the
reader’s convenience.

Theorem 2.1. Let (X, ‖·‖) be a reflexive real Banach space, let Φ, Ψ : X → R be two functions of
class C1 on X with Φ coercive, i.e. lim‖u‖→∞ Φ(u) = +∞. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1((−∞,r))

(
supv∈Φ−1((−∞,r)) Ψ(v)

)
−Ψ(u)

r−Φ(u)

and

γ := lim inf
r→+∞

ϕ(r).

Let Jλ := Φ(u)− λΨ(u) for all u ∈ X. If γ < +∞ then, for each λ ∈
(
0, 1

γ

)
, the following alternative

holds:
either
(a) Jλ possesses a global minimum,
or
(b) there is a sequence {un} of critical points (local minima) of Jλ such that limn→+∞ Φ(un) = +∞.
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We will also need the following lemma.

Lemma 2.2. The functional Φ : X → R is coercive, i.e.

lim
‖u‖→+∞

T+1

∑
k=1

α(k)
p(k− 1)

|∆u(k− 1)|p(k−1) = +∞.

Proof. By [21, Lemma 1, part (a)], there exist two positive constants C1 and C2 such that

T+1

∑
k=1
|∆u(k− 1)|p(k−1) ≥ C1 ‖u‖ − C2,

for every u ∈ X with ‖u‖ > 1. Hence we have

Φ(u) =
T+1

∑
k=1

α(k)
p(k− 1)

|∆u(k− 1)|p(k−1) ≥ α−

p+

(
T+1

∑
k=1
|∆u(k− 1)|p(k−1)

)

≥ α−

p+
(C1 ‖u‖ − C2)→ +∞,

as ‖u‖ → ∞.

3 Main results

We state our main result. Let

A := lim inf
t→+∞

∑T
k=1 max|ξ|≤t F(k, ξ)

tp−

and

B+ := lim sup
t→+∞

∑T
k=1 F(k, t)

|t|p+
, B− := lim sup

t→−∞

∑T
k=1 F(k, t)

|t|p+
.

Let B := max{B+, B−}. For convenience we put 1
0+ = +∞ and 1

+∞ = 0.

Theorem 3.1. Assume that the following inequality holds: A < p−α−

2p+α+Tp− · B. Then, for each

λ ∈
( 2α+

Bp− , α−

ATp− p+
)
, problem (P f

λ) admits an unbounded sequence of solutions.

Proof. It is clear that A ≥ 0. Put λ ∈
( 2α+

Bp− , α−

ATp− p+
)

and put Φ, Ψ, Jλ as in the previous section.

Our aim is to apply Theorem 2.1 to function Jλ. By Lemma 2.2, the functional Φ is coercive.
Therefore, our conclusion follows provided that γ < +∞ as well as that Jλ does not possess a
global minimum. To this end, let {cm} ⊂ (0,+∞) be a sequence such that limm→∞ cm = +∞
and

lim
m→+∞

∑T
k=1 max|ξ|≤cm F(k, ξ)

cp−
m

= A.

Set

rm :=
α−

Tp− p+
cp−

m

for every m ∈N.



On sequences of large solutions for discrete anisotropic equations 5

Let m0 ∈N be such that p+
α− rm > 1 for all m > m0. We claim that

Φ−1 ((−∞, rm)) ⊂ {v ∈ X : |v(k)| ≤ cm for all k ∈ Z[0, T + 1]} . (3.1)

Indeed, if v ∈ X and Φ(v) < rm, one has

T+1

∑
k=1

α(k)
p(k− 1)

|∆v(k− 1)|p(k−1) < rm.

Then

|∆v(k− 1)| <
(

p(k− 1)
α(k)

rm

)1/p(k−1)

≤
(

p+

α−
rm

)1/p−

for every k ∈ Z[1, T + 1] and m > m0. From this and since v ∈ X we deduce by easy induction
that

|v(k)| ≤ |∆v(k− 1)|+ |v(k− 1)| <
(

p+

α−
rm

)1/p−

+ |v(k− 1)|

≤ k ·
(

p+

α−
rm

)1/p−

≤ T ·
(

p+

α−
rm

)1/p−

= cm

for every k ∈ Z[1, T] and this gives (3.1). From this and Φ(0) = Ψ(0) = 0 we have

ϕ(rm) ≤
supΦ(v)<rm

∑T
k=1 F(k, v(k))

rm
≤

∑T
k=1 max|t|≤cm F(k, t)

rm

=
Tp− p+

α−
·

∑T
k=1 max|t|≤cm F(k, t)

cp−
m

for every m > m0. Hence, it follows that

γ ≤ lim
m→+∞

ϕ(rm) ≤
Tp− p+

α−
· A <

1
λ
< +∞.

Next we show that Jλ does not possess a global minimum. First, we assume that B = B−.
We begin with B = +∞. Accordingly, let M be such that M > 2α+

λp− and let {bm} be a sequence
of positive numbers, with limm→+∞ bm = +∞, such that bm > 1 and

T

∑
k=1

F(k,−bm) > Mbp+
m

for all m ∈ N. Thus, take in X a sequence {sm} such that, for every m ∈ N, sm(k) := −bm for
every k ∈ Z[1, T]. Then, one has

Jλ(sm) =
T+1

∑
k=1

α(k)
p(k− 1)

|∆sm(k− 1)|p(k−1) − λ
T

∑
k=1

F(k, sm(k))

<
2α+bp+

m

p−
− λMbp+

m =

(
2α+

p−
− λM

)
bp+

m

which gives limm→+∞ Jλ(sm) = −∞.
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Next, assume that B < +∞. Since λ > 2α+

Bp− , we can fix ε > 0 such that ε < B − 2α+

λp− .
Therefore, also taking {bm} a sequence of positive numbers, with limm→+∞ bm = +∞, such
that bm > 1 and

(B− ε) bp+
m <

T

∑
k=1

F(k,−bm) < (B + ε) bp+
m

for all m ∈N, choosing {sm} in X as above, one has

Jλ(sm) <

(
2α+

p−
− λ(B− ε)

)
bp+

m .

So, also in this case, limm→+∞ Jλ(sm) = −∞. The same reasoning applies to the case B = B+.
Finally, the above facts mean that Jλ does not possess a global minimum. Hence, by
Theorem 2.1, we obtain a sequence {um} of critical points (local minima) of Jλ such that
limm→+∞ Φ(um) = +∞. Since Φ is continuous on the finite dimensional space X, we have
limm→+∞ ‖um‖ = +∞. The proof is complete.

Remark 3.2. We note that, if f (k, ·) is a nonnegative continuous function for each k ∈ Z[1, T],
then max|ξ|≤t F(k, ξ) = F(k, t). Consequently, Theorem 1.1 immediately follows from Theo-
rem 3.1.

As the immediate consequence of Theorem 3.1 we infer the existence of solutions to bound-
ary value problems for finite difference equations with p-Laplacian operator. In this setting,
set p > 1 and consider the real map φp : R → R given by φp(s) := |s|p−2 s, for every s ∈ R.
Denote

Ã := lim inf
t→+∞

∑T
k=1 max|ξ|≤t F(k, ξ)

tp

and

B̃+ := lim sup
t→+∞

∑T
k=1 F(k, t)
|t|p

, B̃− := lim sup
t→−∞

∑T
k=1 F(k, t)
|t|p

and put B̃ = max{B̃+, B̃−}
With the previous notations, taking maps p : Z[0, T] → R and α : Z[1, T + 1] → (0,+∞)

such that p(k) = p for every k ∈ Z[0, T] and α(k) = 1 for every k ∈ Z[1, T + 1] we have the
following corollary.

Corollary 3.3. Assume that Ã < B̃
2Tp . Then, for each λ ∈

( 2
B̃ , 1

ÃTp

)
, the problem{

−∆
(
φp(∆u(k− 1)

)
) = λ f (k, u(k)), k ∈ Z[1, T],

u(0) = u(T + 1) = 0,
(D f

λ)

admits an unbounded sequence of solutions.

A more technical version of Theorem 3.1 can be written as follows.

Theorem 3.4. Assume that there exist real sequences {am} and {bm}, with limm→+∞ am = +∞ and
am ≥ 1 for each m ∈N, such that

(a) ap+
m <

(
p−α−

2p+α+Tp−

)
bp−

m , for each m ∈N;
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(b) C < B
2p+α+Tp− , where

C := lim
m→+∞

∑T
k=1 max|t|≤bm F(k, t)−∑T

k=1 F(k, am)

p−α−bp−
m − 2p+α+Tp−ap+

m

.

Then, for each λ ∈
(

2α+

Bp− , 1
Cp−p+Tp−

)
, problem (P f

λ) admits an unbounded sequence of solutions.

Proof. We will keep the above notations. Putting rm := α−

Tp− p+
bp−

m , we have

ϕ(rm) ≤ inf
w∈Φ−1((−∞,rm))

∑T
k=1 max|t|≤bm F(k, t)−∑T

k=1 F(k, w(k))
rm −Φ(w)

. (3.2)

Let wm ∈ X be defined by wm(k) := am for every k ∈ Z[1, T]. Then ‖wm‖ → +∞ and

Φ(wm) =
T+1

∑
k=1

α(k)
p(k− 1)

|∆wm(k− 1)|p(k−1) ≤ 2α+

p−
ap+

m ,

since am ≥ 1. This and condition (a) gives

rm −Φ(wm) ≥
α−

Tp− p+
bp−

m −
2α+

p−
ap+

m > 0.

We also have wm ∈ Φ−1((−∞, rm)), so inequality (3.2) yields

ϕ(rm) ≤
(

Tp− p+p−
) ∑T

k=1 max|t|≤bm F(k, t)−∑T
k=1 F(k, am)

p−α−bp−
m − 2p+α+Tp−ap+

m

,

for every m ∈N. Further, by hypothesis (b), we obtain

γ ≤ lim
m→+∞

ϕ(rm) ≤ Tp− p+p− · C <
1
λ
< +∞.

From now on, arguing exactly as in the proof of Theorem 3.1 we obtain the assertion.

4 Examples

Now, we will show the example of a function for which we can apply Theorem 3.1.

Example 4.1. Let Â, B̂ be some positive real numbers. Let p+, p− be real numbers, such that

1 < p− < p+ < +∞. Choose a real number a such that
( B̂

Â
· ap+)1/p−

> a. Let {am} be a
sequence defined by recursiona1 := a

am+1 := 1 +
(

B̂
Â
· ap+

m

) 1
p− for m ≥ 2

Then am+1 − 1 > am for every m ∈N. Let {hm} be a sequence such that h1 = B̂ap+ and

hm := B̂
(

ap+
m − ap+

m−1

)
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for m ≥ 2. Let f̂ : R→ R be the continuous nonnegative function given by

f̂ (s) := ∑
m∈N

2hm
(
1− 2

∣∣s− am + 1
2

∣∣) 1[am−1,am](s)

where the symbol 1[α,β] denotes the characteristic function of the interval [α, β]. It is easy to
verify that, for every m ∈N, ∫ am

am−1
f̂ (t) dt = hm.

Set F(t) :=
∫ t

0 f̂ (s) ds for every t ∈ R. Then F(am) = ∑m
k=1 hk = B̂ap+

m . It is easy to check that

lim inf
t→+∞

F(t)
tp− = lim

m→+∞

F(am+1 − 1)
(am+1 − 1)p−

and

lim sup
t→+∞

F(t)
tp+ = lim

m→+∞

F(am)

ap+
m

.

Therefore

lim inf
t→+∞

F(t)
tp− = lim

m→+∞

F(am+1 − 1)
(am+1 − 1)p− = lim

m→+∞

F(am)
B̂
Â
· ap+

m

= Â

and

lim sup
t→+∞

F(t)
tp+ = lim

m→+∞

F(am)

ap+
m

= B̂.

Now, if we put f (k, s) = f̂ (s) for every k ∈ Z[1, T] and assume that Â < p−α−

2p+α+Tp− · B̂, then

Theorem 3.1 applies.

And now, we will show the example of a function for which we can apply Theorem 1.1.

Example 4.2. Let p+, p− be real numbers, such that 1 < p− ≤ p+ < +∞. Let {bm} be a
sequence defined by recursion{

b1 := 1

bm+1 := 1 + (m2bp+
m )

1
p− for m ≥ 2

and let {hm} be a sequence such that h1 = 1 and

hm := mbp+
m − (m− 1)bp+

m−1

for m ≥ 2. Let g : R→ R be the continuous nonnegative function given by

g(s) := ∑
m∈N

2hm
(
1− 2

∣∣s− bm + 1
2

∣∣) 1[bm−1,bm](s).

It is easy to verify that, for every m ∈N,∫ bm

bm−1
f (t) dt = hm.

Set G(t) :=
∫ t

0 g(s) ds for every t ∈ R. Then G(bm) = ∑m
k=1 hk = mbp+

m . We have

lim inf
t→+∞

G(t)
tp− ≤ lim

m→+∞

G(bm+1 − 1)
(bm+1 − 1)p− = lim

m→+∞

G(bm)

m2bp+
m

= lim
m→+∞

1
m

= 0

and

lim sup
t→+∞

G(t)
tp+ ≥ lim

m→+∞

G(bm)

bp+
m

= lim
m→+∞

m = +∞.
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[11] M. Galewski, S. Głąb, R. Wieteska, Positive solutions for anisotropic discrete boundary-
value problems. Electron. J. Differ. Equ. 2013, No. 32, 9 pp. MR3020248

[12] M. Galewski, R. Wieteska, A note on the multiplicity of solutions to anisotropic discrete
BVP’s, Appl. Math. Lett. 26(2013), 524–529. MR3019987

[13] M. Galewski, R. Wieteska, On the system of anisotropic discrete BVPs, J. Difference Equ.
Appl. 19(2013), No. 7, 1065–1081 MR3173471

[14] A. Guiro, I. Nyanquini, S. Ouaro, On the solvability of discrete nonlinear Neumann
problems involving the p(x)-Laplacian, Adv. Difference Equ. 2011, No. 32, 14 pp.
MR2835986

[15] P. Harjulehto, P. Hästö, U. V. Le, M. Nuortio, Overview of differential equations with
non-standard growth, Nonlinear Anal. 72(2010), 4551–4574. MR2639204

[16] B. Kone. S. Ouaro, Weak solutions for anisotropic discrete boundary value problems,
J. Difference Equ. Appl. 17(2011), No. 10, 1537–1547. MR2836879

http://www.ams.org/mathscinet-getitem?mr=1155840 
http://www.ams.org/mathscinet-getitem?mr=2070806
http://www.ams.org/mathscinet-getitem?mr=3016333
http://www.ams.org/mathscinet-getitem?mr=2993837
http://www.ams.org/mathscinet-getitem?mr=2541143
http://www.ams.org/mathscinet-getitem?mr=2487254
http://www.ams.org/mathscinet-getitem?mr=2524278
http://www.ams.org/mathscinet-getitem?mr=2246061
http://www.ams.org/mathscinet-getitem?mr=1711587
http://www.ams.org/mathscinet-getitem?mr=1954585 
http://www.ams.org/mathscinet-getitem?mr=3020248
http://www.ams.org/mathscinet-getitem?mr=3019987
http://www.ams.org/mathscinet-getitem?mr=3173471
http://www.ams.org/mathscinet-getitem?mr=2835986
http://www.ams.org/mathscinet-getitem?mr=2639204
http://www.ams.org/mathscinet-getitem?mr=2836879


10 R. Stegliński
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