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Abstract: This paper investigates the solvability of the second-order boundary value

problems with the one-dimensional p-Laplacian at resonance on a half-line

(e(t)gp(@' (1)) = f(t,2(8), 2'(1)), 0 <t< oo,
2(0) = 3 pia(€),  lim_c(t)oy(a(1) = 0

and
(c(t)pp(2' (1)) + g(t)h(t, z(t),2'(t)) =0, 0<t< o0,
2(0) = [ gls)e(s)ds.  Tim_e(t)o,(x' (1) =0
with multi-point and integral boundary conditions, respectively, where ¢,(s) = |s|P~2s,

p > 1. The arguments are based upon an extension of Mawhin’s continuation theorem
due to Ge. And examples are given to illustrate our results.
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1. INTRODUCTION

In this paper, we consider the second-order boundary value problems with a p-Laplacian on a

half line
(c(t)p(a'(t)) = f(t, 2(t),2'(t)), 0<t< o0, (1.1)
2(0) = Y par@), Jim_c(0oy(e'(0) =0, (12)
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with 0 <& < oo, i ER, i =1,2,-- ,n,

ZM =1 (1.3)

and
(c(®)pp(2' (1)) + gt)h(t, z(t),2'(¢)) =0, 0<t< o0, (1.4)
20 = [ ole)etds, lim ety 0) =0 (15)

with g € L'[0,00), g(t) > 0 on [0, c0) and

/Ooog(s)ds = 1. (1.6)

Throughout this paper, we assume
(A1) ¢ € C[0,00) N C*(0,00) and ¢(t) > 0 on [0,00), ¢4(L) € L0, 00).

(A2) 3 i J§* (255 ds £ 0.

Dlll_e to the conditions (1.3) and (1.6), the differential operator < (c¢,(<%-)) in (1.1) and (1.4)
is not invertible under the boundary conditions (1.2) and (1.5), respectively. In the literature,
boundary value problems of this type are referred to problems at resonance.

The theory of boundary value problems (in short: BVPs) with multi-point and integral bound-
ary conditions arises in a variety of different areas of applied mathematics and physics. For exam-
ple, bridges of small size are often designed with two supported points, which leads to a standard
two-point boundary condition and bridges of large size are sometimes contrived with multi-point
supports, which corresponds to a multi-point boundary condition [1]. Heat conduction, chemical
engineering, underground water flow, thermo-elasticity and plasma physics can be reduced to the
nonlocal problems with integral boundary conditions [2,3]. The study of multi-point BVPs for
linear second-order ordinary differential equations was initiated by II'in and Moiseev [4] in 1987.
Since then many authors have studied more nonlinear multi-point BVPs [7-14]. Recently, BVPs
with integral boundary conditions have received much attention. To identify a few, we refer the
readers to [17-22] and references therein.

Second-order BVPs on infinite intervals arising from the study of radially symmetric solutions
of nonlinear elliptic equation and models of gas pressure in a semi-infinite porous medium, have
received much attention. For an extensive collection of results on BVPs on unbounded domains,
we refer the readers to a monograph by Agarwal and O’Regan [16]. Other recent results and
methods for BVPs on a half-line can be found in [14,15] and the references therein.

From the existed results, we can see a fact: for the resonance case, only BVPs with linear dif-
ferential operator on half-line were considered. The BVPs with multi-point and integral boundary

conditions on a half-line have not investigated till now. Although some authors (see [5,9,10,12,17])
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have studied BVPs with nonlinear differential operator, for example, with a p-Laplacian operator,
the domains are bounded.

Motivated by the above works, we intend to discuss the BVPs (1.1)-(1.2) and (1.4)-(1.5) at
resonance on a half-line. Due to the fact that the classical Mawhin’s continuation theorem can’t be
directly used to discuss the BVP with nonlinear differential operator, in this paper, we investigate
the BVPs (1.1)-(1.2) and (1.4)-(1.5) by applying an extension of Mawhin’s continuation theorem

due to Ge [5]. Furthermore, examples are given to illustrate the results.

2. PRELIMINARIES
For the convenience of readers, we present here some definitions and lemmas.

Definition 2.1. We say that a mapping f : [0, 00) x R? — R satisfies the Carathéodory conditions,
if the following two conditions are satisfied:

(B1) for each (u,v) € R? the mapping t — f(,u,v) is Lebesgue measurable;

(B2) for a.e. t € [0, 00), the mapping (u,v) — f(t,u,v) is continuous on R?.
In addition, f is called a L!'-Carathéodory function if (B1), (B2) and (B3) hold, f is called a
g-Carathéodory function if (B1), (B2) and (B4) are satisfied.

(B3) for each r > 0, there exists a, € L0, 00) such that for a.e. ¢ € [0,00) and every (u,v)
such that max{||u||e, ||V||cc} < 7, We have |f(t,u,v)| < a,(t);

(B4) for each [ > 0 and g € L'[0, c0), there exists a function 1; : [0,00) — [0, 00) satisfying
J5" 9(s)ti(s)ds < oo such that

max{|ul,|v|} <1 implies |f(t,u,v)| <y(t) for a.e. t € [0, 00).

Definition 2.2P. Let X and Z be two Banach spaces with norms || - ||x and || - ||z, respectively.
A continuous operator M : XN domM — Z is said to be quasi-linear if

(Cl) ImM = M (XN domM) is a closed subset of Z;

(C2) ker M = {z € XN domM : Mz = 0} is linearly homeomorphic to R", n < occ.

Definition 2.31%. Let X be a Banach spaces and X; C X a subspace. The operator P : X — X;
is said to be a projector provided P? = P, P(A\z1 + Aoxs) = M\ Pxy + MPxy for z1,15 € X,
A1, A2 € R. The operator Q : X — X, is said to be a semi-projector provided Q* = @ and
Q(A\z) = AQz for x € X, A e R.

Let X7 = ker M and X5 be the complement space of X; in X, then X = X; ® X5. On the
other hand, suppose Z; is a subspace of Z and Z; is the complement of Z; in Z, then Z = Z1® Z,.
Let P : X — X; be a projector and ) : 7 — Z; be a semi-projector, and {2 C X an open and
bounded set with the origin 6 € €, where 6 is the origin of a linear space. Suppose Ny : Q — Z,
A € [0,1] is a continuous operator. Denote Ny by N. Let Y., = {x € Q: Mx = Nyz}.
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Definition 2.4, N, is said to be M-compact in § if there is a vector subspace Z; of Z with

dimZ;= dimX; and an operator R : Q x [0, 1] — X5 being continuous and compact such that for

A e [0,1],

(I -Q)NA\(Q) cImM C (I -Q)Z (2.1)

QNyz =0, A€ (0,1) < @QNz =0, (2.2)

R(-,0) is the zero operator and R(:, \)[s>, = (I — P)|y:,, (2.3)

M[P + R(-,\)] = (I — Q)N.,. (2.4)

Theorem 2.10). Let X and Z be two Banach spaces with norms || - ||x and || - ||z, respectively,

and 2 C X an open and bounded set. Suppose M : X NdomM — Z is a quasi-linear operator
and Ny : Q — Z, X € [0,1] is M-compact. In addition, if

(D1) Mz # Nyz, for A € (0,1), x € domM N oQ;

(D2) deg{JQN,QNker M,0} # 0, where J : Z; — X is a homeomorphism with J(0) = 6.
Then the abstract equation Mx = Nz has at least one solution in €.
Proposition 2.1/, ®p has the following properties

(E1) ¢, is continuous, monotonically increasing and invertible. Moreover, gb;l = ¢q withq > 1

satisfying % + % =1;

(E2) Vu,v >0,  ¢p(u+v) < ¢p(u) + dp(v), if 1<p<2,
Sp(u+v) <27p(u) + Bp(v),  if p=2.

3. RELATED LEMMAS

Let AC[0,00) denote the space of absolutely continuous functions on the interval [0,00). In

this paper, we work in the following spaces

X ={z:]0,00) = R| z,cp,(z) € AC|O, oo),tlim x(t) and lim 2/(t) exist

t—o0

and (cg,(2')) € L'[0,00)},

Y = L'0,00) and Z:{z:[0,00)—>R:/Ooog(t)|z(t)|dt<oo}

with norms ||z||x = max{||z||o, ||2/||}, Where ||z|| = sup [z(t)], [[ylli = [, |y(t)|dt and
t€[0,00)
zllz = [y" 9 (t)|dt for x € X, y € Y and z € Z. By the standard arguments, we can prove

that (X, ]| - ||X), (Y, [|-]]1) and (Z,]| - ||z) are all Banach spaces.
Define M; : domM; — Y and N; : X — Y with

domM; = {z € X : x( Z”’ (&), hm c(t)pp(2'(t)) = 0}
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by Mia(t) = (c(t)6,(/(1)))" and NEa(t) = Af(t, 2(t), 2'(1)), ¢ € [0, 00).
Let M, : domM, — Z and Nf : X — Z with

domM; = {x € X : gz € L*[0,00), z(0) = /OOO x(s)g(s)ds, tlirglo c(t)pp(2'(t)) = 0}

be defined by Myx(t) = —Fﬂ)(c(t)gbp(:p'(t)))/ and Niz(t) = Ah(t, z(t),2'(t)), t € [0, 0).
Then the BVPs (1.1)-(1.2) and (1.4)-(1.5) can be written as Myz = N'x and Myx = N2z,
respectively, here denote Ni = N, i = 1,2.

Lemma 3.1. The operators My : domM; — Y and My : domM, — Z are quasi-linear.
Proof. It is clear that X; = ker M; = {z € domM, : z(t) =a € R on [0,00)}.
Let z € domM; and consider the equation (c¢(t)¢,(2'(t))) = y(t). It follows from (1.2) that

c(t) byl (£)) = — / " y(s)ds,

so that .

70 = 0l )>¢q< | 1o, G.)
and

/ g(— ) / y(7)dr)ds + C, (3.2)
where C is a constant. In view of ( nd (1.3), we have

Zm ()| winanyis=o. (3.3)
Thus,
n g’L o0
by < {y €V Yom [ oI [ atryanyis =o.

Conversely, if (3.3) holds for y € Y, we take x € dom M, as given by (3.2), then (c(t)¢,(2'(t))) =
y(t) for t € [0, 00) and (1.2) is satisfied. Hence, we have

My = {ye ¥ Y m [ " ol [ sty =0}, (3.4

So we have dimkerM; = 1 < oo, ImM; C Y is closed. Therefore, M, is a quasi-linear operator.

Similarly, we can calculate that
ker My = {x € domM, : z(t) =a € R on [0,00)}

and prove that

M, ={z € Z / / B4l (i / g(7)2()dr)dsdt = 0}. (3.5)
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Hence, M, is also a quasi-linear operator. O

In order to apply Theorem 2.1, we have to prove that R is completely continuous, and then to
prove that N is M-compact. Because the Arzela-Ascoli theorem fails to the noncompact interval

case, we will use the following criterion.

Lemma 3.2". Let X be the space of all bounded continuous vector-valued functions on [0, 00)
and S C X. Then S is relatively compact if the following conditions hold:

(F1) S is bounded in X ;

(F2) all functions from S are equicontinuous on any compact subinterval of [0, 00);

(F3) all functions from S are equiconvergent at infinity, that is, for any given € > 0, there
exists a T =T(g) > 0 such that ||x(t) — x(c0)||rn < € for allt > T and x € S.

Lemma 3.3. If f is a L*-Carathéodory function, then the operator Ny : U — Y is M;-compact
in U, where U C X is an open and bounded subset with 6 € U.
Proof. We recall the condition (A2) and define the continuous operator @; : Y — Y by

52 1 00
Quy(t) = it %Zuz o 7)ol / y(r)dr)ds), (3.6)

where wy (t) = 7"/, ( Z 1 fol <;5q e’ )ds) It is easy to check that Q?y = Qiy and Q1 (\y) = \Q1y
foryeY, NeR, that | is, )1 is a semi-projector and dimX;=1=dimY;. Moreover, (3.4) and (3.6)
imply that ImM;=ker ;.

It is easy to see that Qi[(I — Q1)Ni(z)] =0, Ve € U. So (I — Q,)Ni(z) € ker Q; = ImM;.
For y € ImM;, we have Q1y = 0. Thus, y =y — Qiy = (I — Q1)y € (I — @1)Y. Therefore, (2.1)
is satisfied. Obviously, (2.2) holds.

Define R, : U x [0,1] — X, by

o0 1 o0 ,
- / 7)ol / A(f (ry(r), (7)) — (Quf)(r))dr)ds, (3.7)

where X is the complement space of X; = ker M; in X. Clearly, R;(-,0) = 6. Now we prove that
Ry : U x [0,1] — X, is compact and continuous.

We first assert that Ry is relatively compact for any A € [0,1]. In fact, since U C X is a
bounded set, there exists 7 > 0 such that U C {x € X : ||z||x < r}. Because the function f is
L*-Carathéodory, there exists o, € L]0, 00) such that for a.e. t € [0,00), | f(t, z(t),2'(t))]| < a,(t)
for x € U. Then for any x € U, A € [0, 1], we have

Ri(e, )(0)] < / 164 = )>|¢q< / TS ()2 (1) — (Quf)(r)ldr)ds
< / N |¢q<£)>|ds¢q[ / " on(s)lds + / T 1Quf)(s)lds]
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1
= @I - dglllawlls +{[QufIR] = Ly < oo.

From (A1), we can see that ¢,(1) is bounded. Hence,

C

Rie O] < 1o lo [ A (s.2(9).0')) = (@)l
< 16u(Dllse - Gullosll + 11Q1 1] = L < oo,

that is, Ry(-,\)U is uniformly bounded. Meanwhile, for any ¢,,t, € [0,7] with T a positive

constant, one gets

to
|R1(ZL‘, )\)(tg) - Rl(ZL', )\)(tl)| = |/ Rll(ZL', )\)(S)d$| S L2|t2 - t1| - O, as |t2 - t1| — 0
t1

and
6 R&(x;owz» — Gy(y (V) (1) }
= I [ M. - <@1f><s>1ds—c(;) | (.20~ @) (5l
(@)
*'[0@2) C(h)J / AL (5, (s),2(5)) = (Qu ) ()]s
< 2| [ o) + QNS+ [l + 1@ 5 = 51 = 0

as |t2 - t1| — 0.

Then |R}(x, \)(t2) — R)(x, \)(t1)] — 0, as |ty — t;| — 0. So, Ry(-, \)U is equicontinuous on [0,T].

In additional, we claim that R;(-, \)U is equiconvergent at infinity. In fact,

| B2, A)(t) = Ra(, A)(+o00)| < / 19a(—5 |¢q/ Alf (7 2(7),2'(7)) — (Quf)(7)|dT)ds
< / Lyods — 0 uniformly as t — +oo.

| Ry (, A)(1) = Ri(, A)(00)] < [y <t>)|¢q(/ooMf(SJf(S),x'(S))—(Qlf)(S)ldS)

C

< ol oul [ (r(s) + @S] — 0

uniformly as ¢ — +o0.

Thus, Lemma 3.2 implies that R;(-, \)U is relatively compact. Since f is L'-Carathéodory, the

continuity of R, on U follows from the Lebesgue dominated convergence theorem.
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Define a projector Py : X — X; by Pix(t) = 1m x(t). For any z € Z}\ ={z€eU: Mz=
Niz}, we have Af(t,x(t), 2/ (t)) = (c(t)d,(2/(t))) 6 ImM1 ker ). Hence

Rz, N)(t) = too @(%)%( / T Mf(ra(r), (7)) — (Quf)(r)dr)ds
o0 1 o0
_ / bl )l / (e(r) byl (7)) dr)d
= —/t x'(s)ds:x(t)—tginoox(t):[(I—Pl)x](t),

which implies (2.3). For any x € U, we have

M, [P1x+R1 (2, \)]
— [l a(¢ / i) [ A2l (7)) — (Qu))dras
AR I
— (- QUNH@)(®),
which yields (2.4). As a result, N} is M;-compact in U. O

Lemma 3.4. If h is a g-Carathéodory function, then the operator N? : Q — Z is My-compact,
where  C X is an open and bounded subset with 6 € 2.
Proof. As in the proof of Lemma 3.3, we first define the semi-projection Q5 : Z — Z; by

Q22(t) = / /gbq / g(r)z(r)dr)drds), (3.8)

where wy = [ g(s) J5 ¢4l = T) )bq( [ g(r)dr)drds. (3.5) and (3.8) imply that ImMs=ker Q,. It is
easy to check that the conditions (2.1) and (2.2) hold.
Let Ry : Q x [0,1] — X} be defined by

/ ) / M), o(r), 2 (7)) — (Quf)())dr)ds,  (3.9)

where X7 is the complement space of X| = ker M, in X. Clearly, Ra(-,0) = 6.
Now we prove that Ry : Q x [0,1] — X} is compact and continuous. We first assert that R,
is relatively compact for A € [0,1]. In fact, there exists [ > 0 such that Q C {z € X : [|z||]x <

l}. Again since h is a g-Carathéodory function, there exists nonnegative function ¢; satisfying
Iy s)ds < oo such that for a.e. t € [0,00), |h(t, z(t),2'(t))| < ¥i(t) for z € Q. Then for
any x € Q, A € [0,1], we have

RO = | [ il [ Ao b)) — (Qu)(r)irlds|
1 o o
| et o [ alnlds+ [ gl slas)

IA
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1
= Nea(lli - Salllallz + 11Q2f]l2) = L3 < 00

and

]' >~ /
) A 0s.2().9)) = Q)

1
oo - @a([[n]lz + Q2] 2) = Lo < o0,

|Ry(x, \) ()] = [@g(
< [gq(

that is, Ry(-,\)Q is uniformly bounded. Meanwhile, for any t¢,t, € [0,T] with T a positive

constant, as in the proof of Lemma 3.3, we can also show that Ry(-, \)2 is equicontinuous on [0,T]

and equiconvergent at infinity. Thus, Lemma 3.2 yields that Ry(-, A)Q is relatively compact. Since

f is a g-Carathéodory function, the continuity of R; on € follows from the Lebesgue dominated

convergence theorem.

Define P, : X — X by (Pyx)(t) = z(0). Similar to the proof of Lemma 3.3, we can check that

the conditions (2.3) and (2.4) are satisfied. Therefore, N? is M,-compact in ().

4. EXISTENCE RESULT FOR (1.1)-(1.2)

Theorem 4.1. If f is a L*-Carathéodory function and suppose that
(G1) there ezists a constant A > 0 such that

& 1
Z“Z <— )Pq / f(r,z(7),2'(7))d7r)ds # 0

for x € domM;\ ker My with |x(t)] > A on t € [0, 00);
(G2) there exist functions «, 3, € L'[0,00) such that

[f(t 2 y)| < a@)zf~ + B8Oy + (), Y(z,y) ER?, ae. t€0,00),

here denote ay = |||y, i = 1B, » = [[v]1;
(G3) there ezist a constant B > 0 such that either

n &i 00
-3 [ e [ s 0nas <o

or

b- Z“ ¢q($)¢q(/w f(7,0,0)dr)ds > 0

for all b € R with |b| > B.
Then the BVP(1.1)-(1.2) has at least one solution provided

21721 1H¢q( Moo + 2220y H%( Hi<1 for p<2,

O

(4.1)

(4.2)

(4.5)
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||¢q( Moo +af ||¢q( )||1<1 for p=2. (4.6)

Before the proof of the main result, we first prove two lemmas.

Lemma 4.1. U; = {z € domM, : Myz = N}z for some X € (0,1)} is bounded.
Proof. Since Nz € ImM; = ker @, for x € Uy, QN'z = 0. It follows from (G1) that there
exists to € [0,00) such that |z(ty)] < A. Now, |z(t)| = |z(ty) + ft (s)ds| < A+ ||2'||1, that is,

2]l < A+ ||2']]1- (4.7)

AISO,
.’1?/ = —<25 —1 (25 f S, TS SL’I S dS

In the case 1 < p < 2, by (G2) and Proposition 2.1, one gets

7l = s [6g5)ou | Ao a(e). o/ (9)as)
< 104l delanllel B+ Brlla’| 5+ 1)
< 110Dl 27 foglan el + ) + 511
e N B 4 8}

Noticing (4.5), one arrives at

2202 (af™H|2]|oo + 7T ) Ig(2)] oo
1-— 2q_2ﬁ3_1||¢q(%)||oo

=: W1 + Wal|7||, (4.8)

[|2]]o0 <

22@ 2517 pg(1)]] o 22(=2097 |6, (1) 0
where W, = L e Wy = LT .
L 12028 gy (N)flee” 7 2 T 12207287 g ()]l

] = A WA()WA/mkﬂ&ﬂQJK@MQWt

< |I¢q(—)||1 - glan||z|[271 + Bullz'|BSH + 7]

C
1 _ _ _
< gD - 27 2[Pglanllz][25 + ) + BT 2| |oo)
1 _ _ _
< ||¢q(g)||1'2q_2[2q_2(a(f Hlzloo + 2171 + 817 (W1 + Wal2|)]
1 I _
< gD -2 2122l + B el + (2730 + WS
=: W3+W4||$||oo, (4.9)

where Wy = 2072(29" 291 + WiB{ llo, ()1, Wa = 20722020l + WaBl)leg(3)]1.
Thus, from (4.7) and (4.9), we have  ||z]|oc < A+ W3 + Wy||2|| -
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2(q—2) ,9—1 1
In view of (4.5), we can see W, = 2 0 l1oalolh 1, then ||z]|e < 4% —: W and

1242577 g (%) loo 1-W,
[|7']|oe < Wi+ WoW5 =: W.
Similarly, in the case p > 2, it follows that

1 —1 —1 —1
[l loo < g()loo - [t oo + 81 |2 [oo +747):

Again,
q—1 q—1 1
+« Tl|oo /) lloo
e < GO bl
L= 81 |og()loo
AT oDl o Mge(Dllso
where Vi = e Die V2 = Ta e Dl
/ < 1 q—1 q—1 / q—1
[[2']ls < H%(;)Hl'[% 2 |[oe + B |20 + 91
1 _ _ _ _
< |I¢q(;)||1'[(0zi’ YV Y 12 lee + (VT 4 VABETY] =1 Vi + Vi |2 |sos

where Vs = (4{ "+ Vig{ DlIgg(Dlh, Va= (af " + Vsl Hllga (D)1

Thus, ||z]| < A+ V5 + Vi||2||s, then ||z]|o < fj—“//:’ = Vs and |[7[|c < VI +VoV5 =: V5.

Therefore, Uy is bounded. 0

Lemma 4.2. IfU, = {z € ker My : =Xz + (1 — \)JQN'z = 0, € [0,1]}, where J : ImQ; —
ker M, is a homomorphism, then Us is bounded.

Proof. Define J : Im@Q; — ker M; by J(bw;(t)) = b. Then for all b € Us,
n & 1 00
W= (=6, [ oS [ fr 0,
i=1 s
If A=1, then b= 0. In the case A € [0,1), if |b| > B, then by (4.3), we have
) n &i 1 00
0 <N = (1= N, (s [ (=)0 [ I b 0)drs) <o
i=1 0 s

which is a contradiction. Thus, ||z||x = |b] < B, Vx € Us, that is, Us is bounded. O

Proof of Theorem 4.1. Let U D U; U U, be a bounded and open set, then from Lemmas 4.1
and 4.2, we can obtain

(i) Myz # Niz for all (z,\) € [domM; NAU] x (0,1);

(i) Let H(x,\) = =Xz + (1 — \)JQ:N'z, J is defined as in Lemma 4.2, we can see that
H(z,\) #0, Vo € domM NOU. As a result, the homotopy invariance of Brouwer degree implies

deg{JQ1N" |Gryer1s,» U Nker My,0} = deg{H(-,0),U Nker My, 0}
= deg{H(-,1),U Nker M;,0}
= deg{—1I,U Nker My;,0} # 0.
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Theorem 2.1 yields that M;z = N'z has at least one solution. The proof is completed. O
Remark 4.1.  When the second part of condition (G3) holds, we choose Uy = {z € ker M; :
Az 4+ (1 = N)JQiN'z = 0,) € [0,1]} and take homotopy H(z,\) = Az + (1 — \)JQ;N'z. By a

similar argument, we can also complete the proof.
Example 4.1. Consider

(e s(a'(1))) = f(t, (1), 2'(t),  t€(0,00),
z(0) = 2ex(3) + (1 — 2e)z(3), hm e, (2'(t)) = 0.

t——+

(4.10)

Corresponding to the BVP (1.1)-(1.2), we have p = 3, ¢ = 3, ¢(t) = €™, 1 = 2e, po = 1 — 2e,

Elzi,&:?}and
1 1
fltu,v) = 1—+t6_t_1u2 +e " 2sint - 0?4 e

It is easy to verify that (Al)—(A2) hold. Let a(t) = e "1, B(t) = 772, 4(t) = 245,
= o, [16(Dllo = \/, [g(H)]]1 = % Also, we can check that (G1)-(G3) and (4.6) are all
satlsﬁed. Thus, the BVP (4.10) has at least one solution, by using Theorem 4.1.

then o =

5. EXISTENCE RESULT FOR (1.4)-(1.5)

Theorem 5.1. If h is a g-Carathéodory function and suppose that
(H1) there exists a constant A" > 0 such that

/0 o) / s %(%W / " g x(r), () dr)drds # 0 (5.1)

for x € domMs\ ker My with |x(t)] > A" ont € [0,00);
(H2) there exist nonnegative functions 6,(,n € Z such that

|h(t,u, )] < S@E)|ulP™t + )Pt +n(t), Y(u,v) €R? ae. t€0,00), (5.2)

here denote 6, = ||8[z, ¢t = I[Cl|z, m = [Inl|z;
(H3) there exists a constant B' > 0 such that either

/ / ¢q(i / (M h(r, d, 0)dr)drds < 0 (5.3)
N 0 [ o0 [ oo [ st opyinas o 5

for all d € R with |d| > B'.
Then the BVP(1.4)-(1.5) has at least one solution on [0, 00) provided

22@ o 1||c25q( )

29— 2 00
max{ ||¢q( )| —24-2¢] H(bq( ) los

Y<1  for p<2 (5.5)
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o1 1||¢>q( )
oDl

1
max{¢f ™ 104(5) s — b<1 o for p22.

(5.6)

Proof. Let Q) = {z € domM, : Moz = Nix for some A € (0,1)}. As in the proof of Lemma 4.1,

for x € Oy, Nix € ImM, = ker Q, then QaN2x = 0, i.e.,

o) [ antio [ atrntrato, o/ oyaryards o

It follows from (H1) that there exists ¢y € [0, 00) such that |z(ty)| < A’. Thus, we can obtain

[|2floe < A"+ 2] 1.

Also,
2'(t) = cbq(())cbq(/ Ag(s)h(s, z(s), 2'(s))ds).

In the case 1 < p < 2, by (H2), Proposition 2.1 and (5.5), one gets

22972 (672w + 0 ) 1g(2) oo
1= 2972C7 [y (1)

222 nf 7 1 (£l Wy = 2O 11¢a(lles
1-20-2¢] " H|gg (1)l 0 1-2072¢7 Y |pg (D)oo

= Wi+ Wal[]]o,

[|2]]oe <

where W{ =

2l = / |¢q<()> q</°°Ag<s>h<s,x(s)w’(s))ds\dt
< N0l - ouldillalls™ + Gl + ]

1 9 /og—2 sd— - _2 g _
< [og(D)h - 2772207207 + Wodt ) lalloe + (2770 + WG]

= Wi+ Willz|l,
where W3 = 2972(24"n{ ™" + Wi¢] ™ log ()11, Wi = 2972(27267 " + Wil )l (3)]11.
Thus, from (5.7) and (5.9), we have ||z||o < A+V‘[/,V,3 =: W!. Then, ||2||c < W]+ WiW! =

Similarly, for p > 2, it follows that

(mi~ +(5q 1Hw||oo)||<bq( oo
REAGI

1 bg (1]l VI — 6?*1\\%(%)\\%
1-¢- quq( Moo "2 7 1= Mlepg(Dlloo ™

= Vi + Va2l oo,

[|2]]oe <

where V] =

1 _ . _
12/l < Hl@g(ll - 07 Hlalloo + ¢l lloo + mf 7],
1 _ _ . .
< - [0+ VG D alloe + (f ™+ VIETD] = V5 + Villalloe,
where Vi = (n{™" + VI¢I™Dlog (D)1, Vi = (O + V3¢ )leg(9)l1.

Thus, ||2]]e < %‘Z?/ =: V7 and ||2'||oc < V] + V3VZ =: V5. As a result,  is bounded.

(5.7)

(5.8)

(5.9)

LW
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Define Qy = {x € ker My : —px + (1 — p)JQoN?x = 0, € [0, 1]}, where J : ImQy — ker M,
is a homomorphism defined by J(d) = d. As in Lemma 4.2, we can prove that {2y is bounded.
Let Q D Q;U€Q, be a bounded and open set. Then My # N2z, ¥(z, \) € (domM,NoY) x (0, 1).

Define a homotopy operator
T(z,p) = —px + (1 — p) JQs Nz
We can see that T'(x, u) # 0, Vo € domMsy N IS, Therefore,

deg{JQ2N? |grier a1,+ 2N ker My, 0} = deg{T(-,0), Q2 Nker M, 0}
= deg{T(-,1),2Nker M,,0}
= deg{—1I,Q2Nker M,,0} # 0.

Theorem 2.1 implies that Msxz = N2z has at least one solution. The proof is completed. O

Remark 5.1. When the second part of condition (H3) holds, we may choose y = {z € ker M, :
px + (1 — ) JQuN%x = 0, € [0, 1]} and take homotopy T(x, i) = puz 4 (1 — p) JQaN2x.

Remark 5.2. Under the multi-point boundary conditions, we can obtain the existence of solu-
tions on a half-line by assume the nonlinear function f is L!-Carathéodory. When the boundary
conditions involved in the integral condition, however, this assumption on the nonlinear term is
invalid if the domain is unbounded. In this paper, we overcome this difficulty by introducing
the definition of g-Carathéodory function and multiplying the g-Carathéodory function h by the
function g € L'[0, c0) in the equation (1.4).

Example 5.1. Consider

3e'(e'ps(2'(1))) + h(t, x(t),2'(t)) =0, te€ (()07 00), (5.10)

z(0) = [;7 e ta(t)dt, tligrnoo 3etps(2'(t))

Corresponding to the BVP (1.4)-(1.5), we have p = 3, ¢(t) = 3¢, g(t) = e * and h(t,u,v) =
te™2'u? + e"v?. It is easy to verify that (A1) holds. Let 6(t) = te™, ((t) = ™", then & = §,
G =3 l0e(3)lee = %, (D)1 = % Also, we can check that (H1)-(H3) and (5.6) are all
satisfied. Thus, thanks to Theorem 5.1, the BVP (5.10) has at least one solution.
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