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Abstract: This paper investigates the solvability of the second-order boundary value

problems with the one-dimensional p-Laplacian at resonance on a half-line







(c(t)φp(x
′(t)))′ = f(t, x(t), x′(t)), 0 < t < ∞,

x(0) =
n
∑

i=1
µix(ξi), lim

t→+∞
c(t)φp(x

′(t)) = 0

and






(c(t)φp(x
′(t)))′ + g(t)h(t, x(t), x′(t)) = 0, 0 < t < ∞,

x(0) =
∫ ∞
0 g(s)x(s)ds, lim

t→+∞
c(t)φp(x

′(t)) = 0

with multi-point and integral boundary conditions, respectively, where φp(s) = |s|p−2s,

p > 1. The arguments are based upon an extension of Mawhin’s continuation theorem

due to Ge. And examples are given to illustrate our results.

Keywords: Boundary value problem; Multi-point boundary condition; Integral bound-

ary condition; Resonance; Half-line; p-Laplacian
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1. INTRODUCTION

In this paper, we consider the second-order boundary value problems with a p-Laplacian on a

half line

(c(t)φp(x
′(t)))′ = f(t, x(t), x′(t)), 0 < t <∞, (1.1)

x(0) =

n
∑

i=1

µix(ξi), lim
t→+∞

c(t)φp(x
′(t)) = 0, (1.2)
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with 0 ≤ ξi <∞, µi ∈ R, i = 1, 2, · · · , n,

n
∑

i=1

µi = 1 (1.3)

and

(c(t)φp(x
′(t)))′ + g(t)h(t, x(t), x′(t)) = 0, 0 < t <∞, (1.4)

x(0) =

∫ ∞

0

g(s)x(s)ds, lim
t→+∞

c(t)φp(x
′(t)) = 0 (1.5)

with g ∈ L1[0,∞), g(t) > 0 on [0,∞) and

∫ ∞

0

g(s)ds = 1. (1.6)

Throughout this paper, we assume

(A1) c ∈ C[0,∞) ∩ C1(0,∞) and c(t) > 0 on [0,∞), φq(
1
c
) ∈ L1[0,∞).

(A2)
n
∑

i=1

µi

∫ ξi

0
φq(

e−s

c(s)
)ds 6= 0.

Due to the conditions (1.3) and (1.6), the differential operator d
dt

(cφp(
d
dt
·)) in (1.1) and (1.4)

is not invertible under the boundary conditions (1.2) and (1.5), respectively. In the literature,

boundary value problems of this type are referred to problems at resonance.

The theory of boundary value problems (in short: BVPs) with multi-point and integral bound-

ary conditions arises in a variety of different areas of applied mathematics and physics. For exam-

ple, bridges of small size are often designed with two supported points, which leads to a standard

two-point boundary condition and bridges of large size are sometimes contrived with multi-point

supports, which corresponds to a multi-point boundary condition [1]. Heat conduction, chemical

engineering, underground water flow, thermo-elasticity and plasma physics can be reduced to the

nonlocal problems with integral boundary conditions [2,3]. The study of multi-point BVPs for

linear second-order ordinary differential equations was initiated by Il’in and Moiseev [4] in 1987.

Since then many authors have studied more nonlinear multi-point BVPs [7-14]. Recently, BVPs

with integral boundary conditions have received much attention. To identify a few, we refer the

readers to [17-22] and references therein.

Second-order BVPs on infinite intervals arising from the study of radially symmetric solutions

of nonlinear elliptic equation and models of gas pressure in a semi-infinite porous medium, have

received much attention. For an extensive collection of results on BVPs on unbounded domains,

we refer the readers to a monograph by Agarwal and O’Regan [16]. Other recent results and

methods for BVPs on a half-line can be found in [14,15] and the references therein.

From the existed results, we can see a fact: for the resonance case, only BVPs with linear dif-

ferential operator on half-line were considered. The BVPs with multi-point and integral boundary

conditions on a half-line have not investigated till now. Although some authors (see [5,9,10,12,17])
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have studied BVPs with nonlinear differential operator, for example, with a p-Laplacian operator,

the domains are bounded.

Motivated by the above works, we intend to discuss the BVPs (1.1)-(1.2) and (1.4)-(1.5) at

resonance on a half-line. Due to the fact that the classical Mawhin’s continuation theorem can’t be

directly used to discuss the BVP with nonlinear differential operator, in this paper, we investigate

the BVPs (1.1)-(1.2) and (1.4)-(1.5) by applying an extension of Mawhin’s continuation theorem

due to Ge [5]. Furthermore, examples are given to illustrate the results.

2. PRELIMINARIES

For the convenience of readers, we present here some definitions and lemmas.

Definition 2.1. We say that a mapping f : [0,∞)×R
2 → R satisfies the Carathéodory conditions,

if the following two conditions are satisfied:

(B1) for each (u, v) ∈ R
2, the mapping t 7→ f(t, u, v) is Lebesgue measurable;

(B2) for a.e. t ∈ [0,∞), the mapping (u, v) 7→ f(t, u, v) is continuous on R
2.

In addition, f is called a L1-Carathéodory function if (B1), (B2) and (B3) hold, f is called a

g-Carathéodory function if (B1), (B2) and (B4) are satisfied.

(B3) for each r > 0, there exists αr ∈ L1[0,∞) such that for a.e. t ∈ [0,∞) and every (u, v)

such that max{||u||∞, ||v||∞} ≤ r, we have |f(t, u, v)| ≤ αr(t);

(B4) for each l > 0 and g ∈ L1[0,∞), there exists a function ψl : [0,∞) → [0,∞) satisfying
∫ ∞
0
g(s)ψl(s)ds <∞ such that

max{|u|, |v|} ≤ l implies |f(t, u, v)| ≤ ψl(t) for a.e. t ∈ [0,∞).

Definition 2.2[5]. Let X and Z be two Banach spaces with norms || · ||X and || · ||Z , respectively.

A continuous operator M : X∩ domM → Z is said to be quasi-linear if

(C1) ImM = M(X∩ domM) is a closed subset of Z;

(C2) kerM = {x ∈ X∩ domM : Mx = 0} is linearly homeomorphic to R
n, n <∞.

Definition 2.3[6]. Let X be a Banach spaces and X1 ⊂ X a subspace. The operator P : X → X1

is said to be a projector provided P 2 = P , P (λ1x1 + λ2x2) = λ1Px1 + λ2Px2 for x1, x2 ∈ X,

λ1, λ2 ∈ R. The operator Q : X → X1 is said to be a semi-projector provided Q2 = Q and

Q(λx) = λQx for x ∈ X, λ ∈ R.

Let X1 = kerM and X2 be the complement space of X1 in X, then X = X1 ⊕ X2. On the

other hand, suppose Z1 is a subspace of Z and Z2 is the complement of Z1 in Z, then Z = Z1⊕Z2.

Let P : X → X1 be a projector and Q : Z → Z1 be a semi-projector, and Ω ⊂ X an open and

bounded set with the origin θ ∈ Ω, where θ is the origin of a linear space. Suppose Nλ : Ω → Z,

λ ∈ [0, 1] is a continuous operator. Denote N1 by N . Let
∑

λ = {x ∈ Ω : Mx = Nλx}.
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Definition 2.4[5]. Nλ is said to be M-compact in Ω if there is a vector subspace Z1 of Z with

dimZ1= dimX1 and an operator R : Ω× [0, 1] → X2 being continuous and compact such that for

λ ∈ [0, 1],

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Z, (2.1)

QNλx = 0, λ ∈ (0, 1) ⇐⇒ QNx = 0, (2.2)

R(·, 0) is the zero operator and R(·, λ)|∑
λ

= (I − P )|∑
λ
, (2.3)

M [P +R(·, λ)] = (I −Q)Nλ. (2.4)

Theorem 2.1[5]. Let X and Z be two Banach spaces with norms || · ||X and || · ||Z, respectively,

and Ω ⊂ X an open and bounded set. Suppose M : X ∩ domM → Z is a quasi-linear operator

and Nλ : Ω → Z, λ ∈ [0, 1] is M-compact. In addition, if

(D1) Mx 6= Nλx, for λ ∈ (0, 1), x ∈ domM ∩ ∂Ω;

(D2) deg{JQN,Ω ∩ kerM, 0} 6= 0, where J : Z1 → X1 is a homeomorphism with J(θ) = θ.

Then the abstract equation Mx = Nx has at least one solution in Ω.

Proposition 2.1[6]. φp has the following properties

(E1) φp is continuous, monotonically increasing and invertible. Moreover, φ−1
p = φq with q > 1

satisfying 1
p

+ 1
q

= 1;

(E2) ∀u, v ≥ 0, φp(u+ v) ≤ φp(u) + φp(v), if 1 < p < 2,

φp(u+ v) ≤ 2p−2(φp(u) + φp(v)), if p ≥ 2.

3. RELATED LEMMAS

Let AC[0,∞) denote the space of absolutely continuous functions on the interval [0,∞). In

this paper, we work in the following spaces

X = {x : [0,∞) → R | x, cφp(x
′) ∈ AC[0,∞), lim

t→∞
x(t) and lim

t→∞
x′(t) exist

and (cφp(x
′))′ ∈ L1[0,∞)},

Y = L1[0,∞) and Z = {z : [0,∞) → R :

∫ ∞

0

g(t)|z(t)|dt <∞}

with norms ||x||X = max{||x||∞, ||x
′||∞}, where ||x||∞ = sup

t∈[0,∞)

|x(t)|, ||y||1 =
∫ ∞
0

|y(t)|dt and

||z||Z =
∫ ∞
0
g(t)|z(t)|dt for x ∈ X, y ∈ Y and z ∈ Z. By the standard arguments, we can prove

that (X, || · ||X), (Y, || · ||1) and (Z, || · ||Z) are all Banach spaces.

Define M1 : domM1 → Y and N1
λ : X → Y with

domM1 = {x ∈ X : x(0) =

n
∑

i=1

µix(ξi), lim
t→+∞

c(t)φp(x
′(t)) = 0}

EJQTDE, 2009 No. 19, p. 4



by M1x(t) = (c(t)φp(x
′(t)))′ and N1

λx(t) = λf(t, x(t), x′(t)), t ∈ [0,∞).

Let M2 : domM2 → Z and N2
λ : X → Z with

domM2 = {x ∈ X : gx ∈ L1[0,∞), x(0) =

∫ ∞

0

x(s)g(s)ds, lim
t→∞

c(t)φp(x
′(t)) = 0}

be defined by M2x(t) = − 1
g(t)

(c(t)φp(x
′(t)))′ and N2

λx(t) = λh(t, x(t), x′(t)), t ∈ [0,∞).

Then the BVPs (1.1)-(1.2) and (1.4)-(1.5) can be written as M1x = N1x and M2x = N2x,

respectively, here denote N i
1 = N i, i = 1, 2.

Lemma 3.1. The operators M1 : domM1 → Y and M2 : domM2 → Z are quasi-linear.

Proof. It is clear that X1 = kerM1 = {x ∈ domM1 : x(t) ≡ a ∈ R on [0,∞)}.

Let x ∈ domM1 and consider the equation (c(t)φp(x
′(t)))′ = y(t). It follows from (1.2) that

c(t)φp(x
′(t)) = −

∫ ∞

t

y(s)ds,

so that

x′(t) = −φq(
1

c(t)
)φq(

∫ ∞

t

y(s)ds), (3.1)

and

x(t) =

∫ ∞

t

φq(
1

c(s)
)φq(

∫ ∞

s

y(τ)dτ)ds+ C, (3.2)

where C is a constant. In view of (1.2) and (1.3), we have

n
∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

y(τ)dτ)ds = 0. (3.3)

Thus,

ImM1 ⊂ {y ∈ Y :
n

∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

y(τ)dτ)ds = 0}.

Conversely, if (3.3) holds for y ∈ Y , we take x ∈ dom M1 as given by (3.2), then (c(t)φp(x
′(t)))′ =

y(t) for t ∈ [0,∞) and (1.2) is satisfied. Hence, we have

ImM1 = {y ∈ Y :
n

∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

y(τ)dτ)ds = 0}. (3.4)

So we have dimkerM1 = 1 <∞, ImM1 ⊂ Y is closed. Therefore, M1 is a quasi-linear operator.

Similarly, we can calculate that

kerM2 = {x ∈ domM2 : x(t) ≡ a ∈ R on [0,∞)}

and prove that

ImM2 = {z ∈ Z :

∫ ∞

0

g(t)

∫ t

0

φq(
1

c(s)
)φq(

∫ ∞

s

g(τ)z(τ)dτ)dsdt = 0}. (3.5)
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Hence, M2 is also a quasi-linear operator.

In order to apply Theorem 2.1, we have to prove that R is completely continuous, and then to

prove that N is M-compact. Because the Arzelà-Ascoli theorem fails to the noncompact interval

case, we will use the following criterion.

Lemma 3.2[14]. Let X be the space of all bounded continuous vector-valued functions on [0,∞)

and S ⊂ X. Then S is relatively compact if the following conditions hold:

(F1) S is bounded in X;

(F2) all functions from S are equicontinuous on any compact subinterval of [0,∞);

(F3) all functions from S are equiconvergent at infinity, that is, for any given ε > 0, there

exists a T = T (ε) > 0 such that ||χ(t) − χ(∞)||Rn < ε for all t > T and χ ∈ S.

Lemma 3.3. If f is a L1-Carathéodory function, then the operator N1
λ : U → Y is M1-compact

in U , where U ⊂ X is an open and bounded subset with θ ∈ U .

Proof. We recall the condition (A2) and define the continuous operator Q1 : Y → Y1 by

Q1y(t) = ω1(t)φp(

n
∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

y(τ)dτ)ds), (3.6)

where ω1(t) = e−t/φp(
n
∑

i=1

µi

∫ ξi

0
φq(

e−s

c(s)
)ds). It is easy to check that Q2

1y = Q1y and Q1(λy) = λQ1y

for y ∈ Y, λ ∈ R, that is, Q1 is a semi-projector and dimX1=1=dimY1. Moreover, (3.4) and (3.6)

imply that ImM1=kerQ1.

It is easy to see that Q1[(I − Q1)N
1
λ(x)] = 0, ∀x ∈ U . So (I − Q1)N

1
λ(x) ∈ kerQ1 = ImM1.

For y ∈ ImM1, we have Q1y = 0. Thus, y = y −Q1y = (I −Q1)y ∈ (I −Q1)Y . Therefore, (2.1)

is satisfied. Obviously, (2.2) holds.

Define R1 : U × [0, 1] → X2 by

R1(x, λ)(t) =

∫ ∞

t

φq(
1

c(s)
)φq(

∫ ∞

s

λ(f(τ, x(τ), x′(τ)) − (Q1f)(τ))dτ)ds, (3.7)

where X2 is the complement space of X1 = kerM1 in X. Clearly, R1(·, 0) = θ. Now we prove that

R1 : U × [0, 1] → X2 is compact and continuous.

We first assert that R1 is relatively compact for any λ ∈ [0, 1]. In fact, since U ⊂ X is a

bounded set, there exists r > 0 such that U ⊂ {x ∈ X : ||x||X ≤ r}. Because the function f is

L1-Carathéodory, there exists αr ∈ L1[0,∞) such that for a.e. t ∈ [0,∞), |f(t, x(t), x′(t))| ≤ αr(t)

for x ∈ U . Then for any x ∈ U , λ ∈ [0, 1], we have

|R1(x, λ)(t)| ≤

∫ ∞

t

|φq(
1

c(s)
)|φq(

∫ ∞

s

λ|f(τ, x(τ), x′(τ)) − (Q1f)(τ)|dτ)ds

≤

∫ ∞

0

|φq(
1

c(s)
)|dsφq[

∫ ∞

0

|αr(s)|ds+

∫ ∞

0

|(Q1f)(s)|ds]
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= ||φq(
1

c
)||1 · φq[||αr||1 + ||Q1f ||1] =: L1 <∞.

From (A1), we can see that φq(
1
c
) is bounded. Hence,

|R′
1(x, λ)(t)| ≤ |φq(

1

c(t)
)|φq(

∫ ∞

t

λ|f(s, x(s), x′(s)) − (Q1f)(s)|ds

≤ ||φq(
1

c
)||∞ · φq[||αr||1 + ||Q1f ||1] =: L2 <∞,

that is, R1(·, λ)U is uniformly bounded. Meanwhile, for any t1, t2 ∈ [0, T ] with T a positive

constant, one gets

|R1(x, λ)(t2) −R1(x, λ)(t1)| = |

∫ t2

t1

R′
1(x, λ)(s)ds| ≤ L2|t2 − t1| → 0, as |t2 − t1| → 0

and

|φp(R
′
1(x, λ)(t2)) − φp(R

′
1(x, λ)(t1))|

= |
1

c(t2)

∫ ∞

t2

λ[f(s, x(s), x′(s)) − (Q1f)(s)]ds−
1

c(t1)

∫ ∞

t1

λ[f(s, x(s), x′(s)) − (Q1f)(s)]ds|

≤ |
1

c(t2)
| · |

∫ t1

t2

λ[f(s, x(s), x′(s)) − (Q1f)(s)]ds|

+|[
1

c(t2)
−

1

c(t1)
]

∫ ∞

t1

λ[f(s, x(s), x′(s)) − (Q1f)(s)]ds|

≤ ||
1

c
||∞ · |

∫ t2

t1

[αr(s) + |(Q1f)(s)|]ds|+ [||αr||1 + ||Q1f ||1]|
1

c(t2)
−

1

c(t1)
| → 0,

as |t2 − t1| → 0.

Then |R′
1(x, λ)(t2) − R′

1(x, λ)(t1)| → 0, as |t2 − t1| → 0. So, R1(·, λ)U is equicontinuous on [0,T].

In additional, we claim that R1(·, λ)U is equiconvergent at infinity. In fact,

|R1(x, λ)(t) − R1(x, λ)(+∞)| ≤

∫ ∞

t

|φq(
1

c(s)
)|φq(

∫ ∞

s

λ|f(τ, x(τ), x′(τ)) − (Q1f)(τ)|dτ)ds

≤

∫ ∞

t

L2ds→ 0 uniformly as t→ +∞.

|R′
1(x, λ)(t) −R′

1(x, λ)(+∞)| ≤ |φq(
1

c(t)
)|φq(

∫ ∞

t

λ|f(s, x(s), x′(s)) − (Q1f)(s)|ds)

≤ ||φq(
1

c
)||∞ · φq[

∫ ∞

t

(αr(s) + |(Q1f)(s)|)ds] → 0

uniformly as t→ +∞.

Thus, Lemma 3.2 implies that R1(·, λ)U is relatively compact. Since f is L1-Carathéodory, the

continuity of R1 on U follows from the Lebesgue dominated convergence theorem.
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Define a projector P1 : X → X1 by P1x(t) = lim
t→+∞

x(t). For any x ∈
∑1

λ = {x ∈ U : M1x =

N1
λx}, we have λf(t, x(t), x′(t)) = (c(t)φp(x

′(t)))′ ∈ ImM1 = kerQ1. Hence

R1(x, λ)(t) =

∫ ∞

t

φq(
1

c(s)
)φq(

∫ ∞

s

λ(f(τ, x(τ), x′(τ)) − (Q1f)(τ))dτ)ds

=

∫ ∞

t

φq(
1

c(s)
)φq(

∫ ∞

s

(c(τ)φp(x
′(τ)))′dτ)ds

= −

∫ ∞

t

x′(s)ds = x(t) − lim
t→+∞

x(t) = [(I − P1)x](t),

which implies (2.3). For any x ∈ U , we have

M1[P1x+R1(x, λ)](t)

= M1[ lim
t→+∞

x(t) +

∫ ∞

t

φq(
1

c(s)
)φq(

∫ ∞

s

λ(f(τ, x(τ), x′(τ)) − (Q1f)(τ))dτ)ds]

= λ(f(t, x(t), x′(t)) −Q1f(t, x(t), x′(t)))

= [((I −Q1)N
1
λ)(x)](t),

which yields (2.4). As a result, N1
λ is M1-compact in U .

Lemma 3.4. If h is a g-Carathéodory function, then the operator N2
λ : Ω → Z is M2-compact,

where Ω ⊂ X is an open and bounded subset with θ ∈ Ω.

Proof. As in the proof of Lemma 3.3, we first define the semi-projection Q2 : Z → Z1 by

Q2z(t) = φp(
1

ω2

∫ ∞

0

g(s)

∫ s

0

φq(
1

c(τ)
)φq(

∫ ∞

τ

g(r)z(r)dr)dτds), (3.8)

where ω2 =
∫ ∞
0
g(s)

∫ s

0
φq(

1
c(τ)

)φq(
∫ ∞

τ
g(r)dr)dτds. (3.5) and (3.8) imply that ImM2=kerQ2. It is

easy to check that the conditions (2.1) and (2.2) hold.

Let R2 : Ω × [0, 1] → X ′
2 be defined by

R2(x, λ)(t) =

∫ t

0

φq(
1

c(s)
)φq(

∫ ∞

s

λg(τ)(h(τ, x(τ), x′(τ)) − (Q2f)(τ))dτ)ds, (3.9)

where X ′
2 is the complement space of X ′

1 = kerM2 in X. Clearly, R2(·, 0) = θ.

Now we prove that R2 : Ω × [0, 1] → X ′
2 is compact and continuous. We first assert that R2

is relatively compact for λ ∈ [0, 1]. In fact, there exists l > 0 such that Ω ⊂ {x ∈ X : ||x||X ≤

l}. Again, since h is a g-Carathéodory function, there exists nonnegative function ψl satisfying
∫ ∞
0
g(s)ψl(s)ds < ∞ such that for a.e. t ∈ [0,∞), |h(t, x(t), x′(t))| ≤ ψl(t) for x ∈ Ω. Then for

any x ∈ Ω, λ ∈ [0, 1], we have

|R2(x, λ)(t)| = |

∫ t

0

φq(
1

c(s)
)φq[

∫ ∞

s

λg(τ)(h(τ, x(τ), x′(τ)) − (Q2f)(τ))dτ ]ds|

≤

∫ ∞

0

φq(
1

c(s)
)ds · φq(

∫ ∞

0

g(s)|ψl(s)|ds+

∫ ∞

0

g(s)|(Q2f)(s)|ds)
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= ||φq(
1

c
)||1 · φq(||ψl||Z + ||Q2f ||Z) =: L3 <∞

and

|R′
2(x, λ)(t)| = |φq(

1

c(t)
)φq[

∫ ∞

t

λg(s)(h(s, x(s), x′(s)) − (Q2f)(s))]ds|

≤ ||φq(
1

c
)||∞ · φq(||ψl||Z + ||Q2f ||Z) =: L4 <∞,

that is, R2(·, λ)Ω is uniformly bounded. Meanwhile, for any t1, t2 ∈ [0, T ] with T a positive

constant, as in the proof of Lemma 3.3, we can also show that R2(·, λ)Ω is equicontinuous on [0,T]

and equiconvergent at infinity. Thus, Lemma 3.2 yields that R2(·, λ)Ω is relatively compact. Since

f is a g-Carathéodory function, the continuity of R1 on Ω follows from the Lebesgue dominated

convergence theorem.

Define P2 : X → X ′
1 by (P2x)(t) = x(0). Similar to the proof of Lemma 3.3, we can check that

the conditions (2.3) and (2.4) are satisfied. Therefore, N2
λ is M2-compact in Ω.

4. EXISTENCE RESULT FOR (1.1)-(1.2)

Theorem 4.1. If f is a L1-Carathéodory function and suppose that

(G1) there exists a constant A > 0 such that

n
∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

f(τ, x(τ), x′(τ))dτ)ds 6= 0 (4.1)

for x ∈ domM1\ kerM1 with |x(t)| > A on t ∈ [0,∞);

(G2) there exist functions α, β, γ ∈ L1[0,∞) such that

|f(t, x, y)| ≤ α(t)|x|p−1 + β(t)|y|p−1 + γ(t), ∀(x, y) ∈ R
2, a.e. t ∈ [0,∞), (4.2)

here denote α1 = ||α||1, β1 = ||β||1, γ1 = ||γ||1;

(G3) there exist a constant B > 0 such that either

b ·

n
∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

f(τ, b, 0)dτ)ds < 0 (4.3)

or

b ·
n

∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

f(τ, b, 0)dτ)ds > 0 (4.4)

for all b ∈ R with |b| > B.

Then the BVP(1.1)-(1.2) has at least one solution provided

2q−2βq−1
1 ||φq(

1

c
)||∞ + 22(q−2)αq−1

1 ||φq(
1

c
)||1 < 1 for p < 2, (4.5)
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βq−1
1 ||φq(

1

c
)||∞ + αq−1

1 ||φq(
1

c
)||1 < 1 for p ≥ 2. (4.6)

Before the proof of the main result, we first prove two lemmas.

Lemma 4.1. U1 = {x ∈ domM1 : M1x = N1
λx for some λ ∈ (0, 1)} is bounded.

Proof. Since N1
λx ∈ ImM1 = kerQ1 for x ∈ U1, Q1N

1x = 0. It follows from (G1) that there

exists t0 ∈ [0,∞) such that |x(t0)| ≤ A. Now, |x(t)| = |x(t0) +
∫ t

t0
x′(s)ds| ≤ A+ ||x′||1, that is,

||x||∞ ≤ A+ ||x′||1. (4.7)

Also,

x′(t) = −φq(
1

c(t)
)φq(

∫ ∞

t

λf(s, x(s), x′(s))ds).

In the case 1 < p < 2, by (G2) and Proposition 2.1, one gets

||x′||∞ = sup
t∈[0,∞)

|φq(
1

c(t)
)φq(

∫ ∞

t

λf(s, x(s), x′(s))ds)|

≤ ||φq(
1

c
)||∞ · φq[α1||x||

p−1
∞ + β1||x

′||p−1
∞ + γ1]

≤ ||φq(
1

c
)||∞ · 2q−2[φq(α1||x||

p−1
∞ + γ1) + βq−1

1 ||x′||∞]

≤ ||φq(
1

c
)||∞ · 2q−2[2q−2(αq−1

1 ||x||∞ + γq−1
1 ) + βq−1

1 ||x′||∞].

Noticing (4.5), one arrives at

||x′||∞ ≤
22(q−2)(αq−1

1 ||x||∞ + γq−1
1 )||φq(

1
c
)||∞

1 − 2q−2βq−1
1 ||φq(

1
c
)||∞

=: W1 +W2||x||∞, (4.8)

where W1 =
22(q−2)γ

q−1
1 ||φq(

1
c
)||∞

1−2q−2β
q−1
1 ||φq(

1
c
)||∞

, W2 =
22(q−2)α

q−1
1 ||φq( 1

c
)||∞

1−2q−2β
q−1
1 ||φq( 1

c
)||∞

.

||x′||1 =

∫ ∞

0

|φq(
1

c(t)
)φq(

∫ ∞

t

λf(s, x(s), x′(s))ds)|dt

≤ ||φq(
1

c
)||1 · φq[α1||x||

p−1
∞ + β1||x

′||p−1
∞ + γ1]

≤ ||φq(
1

c
)||1 · 2

q−2[φq(α1||x||
p−1
∞ + γ1) + βq−1

1 ||x′||∞]

≤ ||φq(
1

c
)||1 · 2

q−2[2q−2(αq−1
1 ||x||∞ + γq−1

1 ) + βq−1
1 (W1 +W2||x||∞)]

≤ ||φq(
1

c
)||1 · 2

q−2[(2q−2αq−1
1 +W2β

q−1
1 )||x||∞ + (2q−2γq−1

1 +W1β
q−1
1 )]

=: W3 +W4||x||∞, (4.9)

where W3 = 2q−2(2q−2γq−1
1 +W1β

q−1
1 )||φq(

1
c
)||1, W4 = 2q−2(2q−2αq−1

1 +W2β
q−1
1 )||φq(

1
c
)||1.

Thus, from (4.7) and (4.9), we have ||x||∞ ≤ A+W3 +W4||x||∞.

EJQTDE, 2009 No. 19, p. 10



In view of (4.5), we can see W4 =
22(q−2)α

q−1
1 ||φq( 1

c
)||1

1−2q−2β
q−1
1 ||φq(

1
c
)||∞

< 1, then ||x||∞ ≤ A+W3

1−W4
=: W5 and

||x′||∞ ≤W1 +W2W5 =: W6.

Similarly, in the case p ≥ 2, it follows that

||x′||∞ ≤ ||φq(
1

c
)||∞ · [αq−1

1 ||x||∞ + βq−1
1 ||x′||∞ + γq−1

1 ].

Again,

||x′||∞ ≤
(γq−1

1 + αq−1
1 ||x||∞)||φq(

1
c
)||∞

1 − βq−1
1 ||φq(

1
c
)||∞

=: V1 + V2||x||∞,

where V1 =
γ

q−1
1 ||φq( 1

c
)||∞

1−β
q−1
1 ||φq(

1
c
)||∞

, V2 =
α

q−1
1 ||φq(

1
c
)||∞

1−β
q−1
1 ||φq(

1
c
)||∞

.

||x′||1 ≤ ||φq(
1

c
)||1 · [α

q−1
1 ||x||∞ + βq−1

1 ||x′||∞ + γq−1
1 ].

≤ ||φq(
1

c
)||1 · [(α

q−1
1 + V2β

q−1
1 )||x||∞ + (γq−1

1 + V1β
q−1
1 )] =: V3 + V4||x||∞,

where V3 = (γq−1
1 + V1β

q−1
1 )||φq(

1
c
)||1, V4 = (αq−1

1 + V2β
q−1
1 )||φq(

1
c
)||1.

Thus, ||x||∞ ≤ A + V3 + V4||x||∞, then ||x||∞ ≤ A+V3

1−V4
:= V5 and ||x′||∞ ≤ V1 + V2V5 =: V6.

Therefore, U1 is bounded.

Lemma 4.2. If U2 = {x ∈ kerM1 : −λx + (1 − λ)JQ1N
1x = 0, λ ∈ [0, 1]}, where J : ImQ1 →

kerM1 is a homomorphism, then U2 is bounded.

Proof. Define J : ImQ1 → kerM1 by J(bω1(t)) = b. Then for all b ∈ U2,

λb = (1 − λ)φp(
n

∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

f(τ, b, 0)dτ)ds).

If λ = 1, then b = 0. In the case λ ∈ [0, 1), if |b| > B, then by (4.3), we have

0 ≤ λb2 = (1 − λ)bφp(

n
∑

i=1

µi

∫ ξi

0

φq(
1

c(s)
)φq(

∫ ∞

s

f(τ, b, 0)dτ)ds) < 0,

which is a contradiction. Thus, ||x||X = |b| ≤ B, ∀x ∈ U2, that is, U2 is bounded.

Proof of Theorem 4.1. Let U ⊃ U 1 ∪ U2 be a bounded and open set, then from Lemmas 4.1

and 4.2, we can obtain

(i) M1x 6= N1
λx for all (x, λ) ∈ [domM1 ∩ ∂U ] × (0, 1);

(ii) Let H(x, λ) = −λx + (1 − λ)JQ1N
1x, J is defined as in Lemma 4.2, we can see that

H(x, λ) 6= 0, ∀x ∈ domM ∩ ∂U . As a result, the homotopy invariance of Brouwer degree implies

deg{JQ1N
1 |U∩ker M1

, U ∩ kerM1, 0} = deg{H(·, 0), U ∩ kerM1, 0}

= deg{H(·, 1), U ∩ kerM1, 0}

= deg{−I, U ∩ kerM1, 0} 6= 0.
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Theorem 2.1 yields that M1x = N1x has at least one solution. The proof is completed.

Remark 4.1. When the second part of condition (G3) holds, we choose Ũ2 = {x ∈ kerM1 :

λx + (1 − λ)JQ1N
1x = 0, λ ∈ [0, 1]} and take homotopy H̃(x, λ) = λx + (1 − λ)JQ1N

1x. By a

similar argument, we can also complete the proof.

Example 4.1. Consider






(et+1φ3(x
′(t)))′ = f(t, x(t), x′(t)), t ∈ (0,∞),

x(0) = 2ex(1
4
) + (1 − 2e)x(3), lim

t→+∞
et+1φp(x

′(t)) = 0.
(4.10)

Corresponding to the BVP (1.1)-(1.2), we have p = 3, q = 3
2
, c(t) = et+1, µ1 = 2e, µ2 = 1 − 2e,

ξ1 = 1
4
, ξ2 = 3 and

f(t, u, v) =
1

1 + t
e−t−1u2 + e−t−2 sin t · v2 +

1

t2 + 1
.

It is easy to verify that (A1)-(A2) hold. Let α(t) = e−t−1, β(t) = e−t−2, γ(t) = 1
t2+1

, then α1 = 1
e
,

β1 = 1
e2 , ||φq(

1
c
)||∞ = 1√

e
, ||φq(

1
c
)||1 = 2√

e
. Also, we can check that (G1)-(G3) and (4.6) are all

satisfied. Thus, the BVP (4.10) has at least one solution, by using Theorem 4.1.

5. EXISTENCE RESULT FOR (1.4)-(1.5)

Theorem 5.1. If h is a g-Carathéodory function and suppose that

(H1) there exists a constant A′ > 0 such that

∫ ∞

0

g(s)

∫ s

0

φq(
1

c(τ)
)φq(

∫ ∞

τ

g(r)h(r, x(r), x′(r))dr)dτds 6= 0 (5.1)

for x ∈ domM2\ kerM2 with |x(t)| > A′ on t ∈ [0,∞);

(H2) there exist nonnegative functions δ, ζ, η ∈ Z such that

|h(t, u, v)| ≤ δ(t)|u|p−1 + ζ(t)|v|p−1 + η(t), ∀(u, v) ∈ R
2, a.e. t ∈ [0,∞), (5.2)

here denote δ1 = ||δ||Z, ζ1 = ||ζ ||Z, η1 = ||η||Z;

(H3) there exists a constant B′ > 0 such that either

d ·

∫ ∞

0

g(s)

∫ s

0

φq(
1

c(τ)
)φq(

∫ ∞

τ

g(r)h(r, d, 0)dr)dτds < 0 (5.3)

or

d ·

∫ ∞

0

g(s)

∫ s

0

φq(
1

c(τ)
)φq(

∫ ∞

τ

g(r)h(r, d, 0)dr)dτds > 0 (5.4)

for all d ∈ R with |d| > B′.

Then the BVP(1.4)-(1.5) has at least one solution on [0,∞) provided

max{2q−2ζq−1
1 ||φq(

1

c
)||∞,

22(q−2)δq−1
1 ||φq(

1
c
)||1

1 − 2q−2ζq−1
1 ||φq(

1
c
)||∞

} < 1 for p < 2, (5.5)
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max{ζq−1
1 ||φq(

1

c
)||∞,

δq−1
1 ||φq(

1
c
)||1

1 − ζq−1
1 ||φq(

1
c
)||∞

} < 1 for p ≥ 2. (5.6)

Proof. Let Ω1 = {x ∈ domM2 : M2x = N2
λx for some λ ∈ (0, 1)}. As in the proof of Lemma 4.1,

for x ∈ Ω1, N
2
λx ∈ ImM2 = kerQ2, then Q2N

2x = 0, i.e.,
∫ ∞

0

g(s)

∫ s

0

φq(
1

c(τ)
)φq(

∫ ∞

τ

g(r)h(r, x(r), x′(r))dr)dτds = 0.

It follows from (H1) that there exists t0 ∈ [0,∞) such that |x(t0)| ≤ A′. Thus, we can obtain

||x||∞ ≤ A′ + ||x′||1. (5.7)

Also,

x′(t) = φq(
1

c(t)
)φq(

∫ ∞

t

λg(s)h(s, x(s), x′(s))ds).

In the case 1 < p < 2, by (H2), Proposition 2.1 and (5.5), one gets

||x′||∞ ≤
22(q−2)(δq−1

1 ||x||∞ + ηq−1
1 )||φq(

1
c
)||∞

1 − 2q−2ζq−1
1 ||φq(

1
c
)||∞

=: W ′
1 +W ′

2||x||∞, (5.8)

where W ′
1 =

22(q−2)η
q−1
1 ||φq(

1
c
)||∞

1−2q−2ζ
q−1
1 ||φq( 1

c
)||∞

, W ′
2 =

22(q−2)δ
q−1
1 ||φq(

1
c
)||∞

1−2q−2ζ
q−1
1 ||φq( 1

c
)||∞

.

||x′||1 =

∫ ∞

0

|φq(
1

c(t)
)φq(

∫ ∞

t

λg(s)h(s, x(s), x′(s))ds|dt

≤ ||φq(
1

c
)||1 · φq[δ1||x||

p−1
∞ + ζ1||x

′||p−1
∞ + η1]

≤ ||φq(
1

c
)||1 · 2

q−2[(2q−2δq−1
1 +W ′

2ζ
q−1
1 )||x||∞ + (2q−2ηq−1

1 +W ′
1ζ

q−1
1 )]

=: W ′
3 +W ′

4||x||∞, (5.9)

where W ′
3 = 2q−2(2q−2ηq−1

1 +W ′
1ζ

q−1
1 )||φq(

1
c
)||1, W

′
4 = 2q−2(2q−2δq−1

1 +W ′
2ζ

q−1
1 )||φq(

1
c
)||1.

Thus, from (5.7) and (5.9), we have ||x||∞ ≤
A′+W ′

3

1−W ′

4
=: W ′

5. Then, ||x′||∞ ≤W ′
1 +W ′

2W
′
5 =: W ′

6.

Similarly, for p ≥ 2, it follows that

||x′||∞ ≤
(ηq−1

1 + δq−1
1 ||x||∞)||φq(

1
c
)||∞

1 − ζq−1
1 ||φq(

1
c
)||∞

=: V ′
1 + V ′

2 ||x||∞,

where V ′
1 =

η
q−1
1 ||φq(

1
c
)||∞

1−ζ
q−1
1 ||φq(

1
c
)||∞

, V ′
2 =

δ
q−1
1 ||φq(

1
c
)||∞

1−ζ
q−1
1 ||φq(

1
c
)||∞

.

||x′||1 ≤ ||φq(
1

c
)||1 · [δ

q−1
1 ||x||∞ + ζq−1

1 ||x′||∞ + ηq−1
1 ].

≤ ||φq(
1

c
)||1 · [(δ

q−1
1 + V ′

2ζ
q−1
1 )||x||∞ + (ηq−1

1 + V ′
1ζ

q−1
1 )] =: V ′

3 + V ′
4 ||x||∞,

where V ′
3 = (ηq−1

1 + V ′
1ζ

q−1
1 )||φq(

1
c
)||1, V

′
4 = (δq−1

1 + V ′
2ζ

q−1
1 )||φq(

1
c
)||1.

Thus, ||x||∞ ≤
A′+V ′

3

1−V ′

4
=: V ′

5 and ||x′||∞ ≤ V ′
1 + V ′

2V
′
5 =: V ′

6 . As a result, Ω1 is bounded.
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Define Ω2 = {x ∈ kerM2 : −µx + (1 − µ)JQ2N
2x = 0, µ ∈ [0, 1]}, where J : ImQ2 → kerM2

is a homomorphism defined by J(d) = d. As in Lemma 4.2, we can prove that Ω2 is bounded.

Let Ω ⊃ Ω1∪Ω2 be a bounded and open set. ThenM2x 6= N2
λx, ∀(x, λ) ∈ (domM2∩∂Ω)×(0, 1).

Define a homotopy operator

T (x, µ) = −µx+ (1 − µ)JQ2N
2x.

We can see that T (x, µ) 6= 0, ∀x ∈ domM2 ∩ ∂Ω. Therefore,

deg{JQ2N
2 |Ω∩ker M2

,Ω ∩ kerM2, 0} = deg{T (·, 0),Ω ∩ kerM2, 0}

= deg{T (·, 1),Ω ∩ kerM2, 0}

= deg{−I,Ω ∩ kerM2, 0} 6= 0.

Theorem 2.1 implies that M2x = N2x has at least one solution. The proof is completed.

Remark 5.1. When the second part of condition (H3) holds, we may choose Ω̃2 = {x ∈ kerM2 :

µx+ (1 − µ)JQ2N
2x = 0, µ ∈ [0, 1]} and take homotopy T̃ (x, µ) = µx+ (1 − µ)JQ2N

2x.

Remark 5.2. Under the multi-point boundary conditions, we can obtain the existence of solu-

tions on a half-line by assume the nonlinear function f is L1-Carathéodory. When the boundary

conditions involved in the integral condition, however, this assumption on the nonlinear term is

invalid if the domain is unbounded. In this paper, we overcome this difficulty by introducing

the definition of g-Carathéodory function and multiplying the g-Carathéodory function h by the

function g ∈ L1[0,∞) in the equation (1.4).

Example 5.1. Consider






3et(etφ3(x
′(t)))′ + h(t, x(t), x′(t)) = 0, t ∈ (0,∞),

x(0) =
∫ ∞
0
e−tx(t)dt, lim

t→+∞
3etφ3(x

′(t)) = 0.
(5.10)

Corresponding to the BVP (1.4)-(1.5), we have p = 3, c(t) = 3et, g(t) = e−t and h(t, u, v) =

te−2tu2 + e−tv2. It is easy to verify that (A1) holds. Let δ(t) = te−2t, ζ(t) = e−t, then δ1 = 1
9
,

ζ1 = 1
2
, ||φq(

1
c
)||∞ = 1√

3
, ||φq(

1
c
)||1 = 2√

3
. Also, we can check that (H1)-(H3) and (5.6) are all

satisfied. Thus, thanks to Theorem 5.1, the BVP (5.10) has at least one solution.
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