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1 Introduction

In this paper, we discuss the following system of higher-order singular nonlinear fractional
differential equations with nonlocal boundary conditions:

Dα
0+u(x) + h1(x) f1(x, u(x), v(x) = 0,

Dβ
0+v(x) + h2(x) f2(x, u(x), v(x)) = 0,

(1.1)

u(i)(0) = 0, v(i)(0) = 0, 0 ≤ i ≤ n− 2,

Dµ
0+u(1) = η1Dµ

0+u(ξ1), Dν
0+v(1) = η2Dν

0+v(ξ2),
(1.2)

where x ∈ (0, 1), Dα
0+, Dβ

0+ are the standard Riemann–Liouville fractional derivatives of order
α, β ∈ (n− 1, n], 1 ≤ µ, ν ≤ n− 3 for n > 3 and n ∈ N+, ξ1, ξ2 ∈ (0, 1), 0 ≤ η1ξ

α−µ−1
1 < 1,

0 ≤ η2ξ
β−ν−1
2 < 1, f j ∈ C([0, 1]×R+ ×R+, R+), hj ∈ C((0, 1), R+) (j = 1, 2), R+ = [0,+∞),

hj(x) is allowed to be singular at x = 0 and/or x = 1.
Fractional differential equations arise in many engineering and scientific disciplines as the

mathematical modelling of systems and processes in the fields of physics, chemistry, aerody-
namics, electrodynamics of complex medium, polymer rheology, Bode’s analysis of feedback
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amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry, biology, control
theory, fitting of experimental data, and so forth. Recently, the existence and multiplicity of
positive solutions for the nonlinear fractional differential equations have been researched, see
[3, 5, 6, 12, 18, 22, 23, 25, 31] and the references therein. Such as, C. F. Li et al. [16] studied the
existence and multiplicity of positive solutions of the following boundary value problem for
nonlinear fractional differential equations:{

Dα
0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, Dβ
0+u(1) = aDβ

0+u(ξ),

where Dα
0+ is the standard Riemann–Liouville fractional derivative of order α ∈ (1, 2], β, a ∈

[0, 1], ξ ∈ (0, 1), aξα−β−1 ≤ 1− β, α− β− 1 ≥ 0.
The existence and uniqueness of some systems for nonlinear fractional differential equa-

tions have been studied by using fixed point theory or coincidence degree theory, see
[1, 10, 21, 24, 25, 34] and references therein. In [7, 17, 29, 30], authors studied the existence and
multiplicity of positive solutions of two types of systems for nonlinear fractional differential
equations with boundary conditions:

Dα
0+u(t) + λ f (t, u(t), v(t)) = 0,

Dβ
0+v(t) + µg(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫ 1

0
v(t) dH(t),

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) =
∫ 1

0
u(t) dK(t),

and 
Dα

0+u(t) + λa1(t) f (u(t), v(t)) = 0,

Dβ
0+v(t) + µa2(t)g(u(t), v(t)) = 0, t ∈ [0, 1],

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n− 2,

Dγ
0+u(1) = φ1(u), Dγ

0+v(1) = φ2(v), 1 ≤ γ ≤ n− 2,

where Dα
0+ and Dβ

0+ are the standard Riemann–Liouville fractional derivatives, α, β ∈
(n− 1, n] for n ≥ 3, λ, µ > 0. The sublinear or superlinear condition is used in [7,17,29,30,33].
Another example, the following extreme limits:

f s
δ =: lim sup

u+v→δ

max
t∈[0,1]

f (t, u, v)
u + v

, gs
δ =: lim sup

u+v→δ

max
t∈[0,1]

g(t, u, v)
u + v

,

f i
δ =: lim inf

u+v→δ
min

t∈[θ,1−θ]

f (t, u, v)
u + v

, gi
δ =: lim inf

u+v→δ
min

t∈[θ,1−θ]

g(t, u, v)
u + v

,

are used in [9, 10], where θ ∈ (0, 1
2 ), δ = 0+ or +∞. For the existence of positive solutions for

systems of Hammerstein integral equations, see [4, 11, 15, 28] and their references.
Motivated by the above mentioned works and continuing the paper [27], in this paper,

we present some limit type conditions and discuss the existence and multiplicity of positive
solutions of the singular system (1.1)–(1.2) by using of fixed point index theory in cone. Our
conditions are applicable for more functions, and the results obtained here are different from
those in [7, 9, 10, 17, 24, 29, 30, 33]. Some examples are also provided to illustrate our main
results.
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2 Preliminaries

Definition 2.1 ([19]). The Riemann–Liouville fractional integral of order α > 0 of a function
u : (0,+∞)→ R is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t− s)α−1u(s) ds,

provided the right side is pointwise defined on (0,+∞). The Riemann–Liouville fractional
derivative of order α > 0 of a continuous function u : (0,+∞)→ R is given by

Dα
0+u(t) =

1
Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided the right side is point-
wise defined on (0,+∞).

Lemma 2.2 ([13]). (i) If x ∈ L1[0, 1], ρ > σ > 0, then

Iρ
0+ Iσ

0+x(t) = Iρ+σ
0+ x(t), Dσ

0+ Iρ
0+x(t) = Iρ−σ

0+ x(t), Dσ
0+ Iσ

0+x(t) = x(t).

(ii) If ρ > σ > 0, then Dσ
0+tρ−1 = Γ(ρ)tρ−σ−1/Γ(ρ− σ).

Lemma 2.3. Let ξ1 ∈ (0, 1), η1ξ
α−µ−1
1 6= 1, n− 1 < α ≤ n, 1 ≤ µ ≤ n− 3 (n > 3). Then for any

g ∈ C[0, 1], the unique solution of the following boundary value problem:

Dα
0+u(t) + g(t) = 0, t ∈ (0, 1), (2.1)

u(i)(0) = 0 (0 ≤ i ≤ n− 2), Dµ
0+u(1) = η1Dµ

0+u(ξ1) (2.2)

is given by

u(t) =
∫ 1

0
G1(t, s)g(s) ds, (2.3)

where d1 = 1− η1ξ
α−µ−1
1 ,

G1(t, s) =



tα−1[(1− s)α−µ−1 − η1(ξ1 − s)α−µ−1]− d1(t− s)α−1

d1Γ(α)
, 0 ≤ s ≤ min{t, ξ1},

tα−1(1− s)α−µ−1 − d1(t− s)α−1

d1Γ(α)
, 0 < ξ1 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−µ−1 − tα−1η1(ξ1 − s)α−µ−1

d1Γ(α)
, 0 ≤ t ≤ s ≤ ξ1 < 1,

tα−1(1− s)α−µ−1

d1Γ(α)
, max{t, ξ1} ≤ s ≤ 1

(2.4)

is the Green’s function of the integral equation (2.3).

Proof. The equation (2.1) is equivalent to an integral equation:

u(t) =
−1

Γ(α)

∫ t

0
(t− s)α−1g(s) ds + c1tα−1 + c2tα−2 + · · ·+ cntα−n. (2.5)
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By u(0) = 0, we have cn = 0. Then

u(t) =
−1

Γ(α)

∫ t

0
(t− s)α−1g(s) ds + c1tα−1 + c2tα−2 + · · ·+ cn−1tα−n+1. (2.6)

Differentiating (2.6), we have

u′(t) =
1− α

Γ(α)

∫ t

0
(t− s)α−2g(s) ds + c1(α− 1)tα−2 + · · ·+ cn−1(α− n + 1)tα−n. (2.7)

By (2.7) and u′(0) = 0, we have cn−1 = 0. Similarly, we can get that c2 = c3 = · · · = cn−2 = 0.
Thus

u(t) =
−1

Γ(α)

∫ t

0
(t− s)α−1g(s) ds + c1tα−1. (2.8)

By Dµ
0+u(1) = η1Dµ

0+u(ξ1) and Lemma 2.2,

Dµ
0+u(t) =

1
Γ(α− µ)

[
c1Γ(α)tα−µ−1 −

∫ t

0
(t− s)α−µ−1g(s) ds

]
,

we get

c1 =
1

d1Γ(α)

∫ 1

0
(1− s)α−µ−1g(s) ds− η1

d1Γ(α)

∫ ξ1

0
(ξ1 − s)α−µ−1g(s) ds.

Therefore, the unique solution of the problem (2.1)–(2.2) is

u(t) =
tα−1

d1Γ(α)

[ ∫ 1

0
(1− s)α−µ−1g(s) ds− η1

∫ ξ1

0
(ξ1 − s)α−µ−1g(s) ds

]
−
∫ t

0

(t− s)α−1

Γ(α)
g(s) ds =

∫ 1

0
G1(t, s)g(s) ds.

(2.9)

Similar to the proof of Lemma 2.3 in [20], we can get the following lemma.

Lemma 2.4. Let 0 < η1ξ
α−µ−1
1 < 1. The function G1(t, s) defined by (2.4) satisfies

(i) G1(t, s) ≥ 0 is continuous for any t, s ∈ [0, 1].

(ii) maxt∈[0,1] G1(t, s) = G1(1, s), G1(t, s) ≥ tα−1G1(1, s) for t, s ∈ [0, 1], where

G1(1, s) =


(1− s)α−µ−1 − η1(ξ1 − s)α−µ−1 − d1(1− s)α−1

d1Γ(α)
, 0 ≤ s ≤ ξ1,

(1− s)α−µ−1 − d1(1− s)α−1

d1Γ(α)
, ξ1 ≤ s ≤ 1.

(2.10)

(iii) There are θ ∈ (0, 1
2 ) and γα ∈ (0, 1) such that mint∈Jθ

G1(t, s) ≥ γαG1(1, s) for s ∈ [0, 1],
where Jθ = [θ, 1− θ], γα = θα−1.
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Let ξ2 ∈ (0, 1), 0 < η2ξ
β−ν−1
2 < 1, d2 = 1− η2ξ

β−ν−1
2 ,

G2(t, s) =



tβ−1[(1− s)β−ν−1 − η2(ξ2 − s)β−ν−1]− d2(t− s)β−1

d2Γ(β)
, 0 ≤ s ≤ min{t, ξ2},

tβ−1(1− s)β−ν−1 − d2(t− s)β−1

d2Γ(β)
, 0 < ξ2 ≤ s ≤ t ≤ 1,

tβ−1(1− s)β−ν−1 − tβ−1η2(ξ2 − s)β−ν−1

d2Γ(β)
, 0 ≤ t ≤ s ≤ ξ2 < 1,

tβ−1(1− s)β−ν−1

d2Γ(β)
, max{t, ξ2} ≤ s ≤ 1.

From Lemma 2.4 we know that G1(t, s) and G2(t, s) have the same properties, and there exists
γ

β
= θβ−1 such that mint∈Jθ

G2(t, s) ≥ γ
β
G2(1, s). Let γ = min{γα, γ

β
},

δj =
∫ 1−θ

θ
Gj(1, y)hj(y) dy, µj =

∫ 1

0
Gj(1, y)hj(y) dy (j = 1, 2).

For convenience we list the following assumptions:

(H1) f j ∈ C([0, 1]×R+ ×R+, R+) (j = 1, 2).

(H2) hj ∈ C((0, 1), R+), hj(x) 6≡ 0 on any subinterval of (0, 1) and 0 <
∫ 1

0 Gj(1, y)hj(y) dy
< +∞ (j = 1, 2).

(H3) There exist a, b ∈ C(R+, R+) such that

(1) a(·) is concave and strictly increasing on R+ with a(0) = 0;

(2) f10 = lim infv→0+
f1(x,u,v)

a(v) > 0, f20 = lim infu→0+
f2(x,u,v)

b(u) > 0 uniformly with respect
to (x, u) ∈ Jθ ×R+ and (x, v) ∈ Jθ ×R+, respectively (specifically, f10 = f20 = +∞);

(3) limu→0+
a(Cb(u))

u = +∞ for any constant C > 0.

(H4) There exists t ∈ (0,+∞) such that

f ∞
1 = lim sup

v→+∞

f1(x, u, v)
vt < +∞, f ∞

2 = lim sup
u→+∞

f2(x, u, v)

u
1
t

= 0

uniformly with respect to (x, u) ∈ [0, 1] × R+ and (x, v) ∈ [0, 1] × R+, respectively
(specifically, f ∞

1 = f ∞
2 = 0).

(H5) There exist p, q ∈ C(R+, R+) such that

(1) p is concave and strictly increasing on R+;

(2) f1∞ = lim infv→+∞
f1(x,u,v)

p(v) > 0, f2∞ = lim infu→+∞
f2(x,u,v)

q(u) > 0 uniformly with
respect to (x, u) ∈ Jθ ×R+ and (x, v) ∈ Jθ ×R+, respectively (specifically, f1∞ =

f2∞ = +∞);

(3) limu→+∞
p(Cq(u))

u = +∞ for any constant C > 0.
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(H6) There exists s ∈ (0,+∞) such that

f 0
1 = lim sup

v→0+

f1(x, u, v)
vs < +∞, f 0

2 = lim sup
u→0+

f2(x, u, v)

u
1
s

= 0

uniformly with respect to (x, u) ∈ [0, 1] × R+ and (x, v) ∈ [0, 1] × R+, respectively
(specifically, f 0

1 = f 0
2 = 0).

(H7) There exists r > 0 such that

f1(x, u, v) ≥ (γδ1)
−1r, f2(x, u, v) ≥ (γδ2)

−1r, ∀ x ∈ Jθ , γr ≤ u + v ≤ r.

(H8) f1(x, u, v) and f2(x, u, v) are increasing with respect to u and v, there exists R > r > 0
such that

4µ1 f1(x, R, R) < R, 4µ2 f2(x, R, R) < R, ∀ x ∈ [0, 1].

Let E = C[0, 1], ‖u‖ = maxt∈[0,1] |u(t)|, the product space E× E be equipped with norm
‖(u, v)‖ = ‖u‖+ ‖v‖ for (u, v) ∈ E× E, and

P =
{

u ∈ E : u(t) ≥ 0, t ∈ [0, 1], min
t∈Jθ

u(t) ≥ γ‖u‖
}

.

Then E× E is a real Banach space and P× P is a positive cone of E× E. By (H1), (H2), we can
define operators

Aj(u, v)(x) =
∫ 1

0
Gj(x, y)hj(y) f j(y, u(y), v(y)) dy (j = 1, 2),

A(u, v) = (A1(u, v), A2(u, v)). Similar to the proof of Lemma 3.1 in [2], it follows from
(H1), (H2) that Aj : P× P → P is a completely continuous operator and A(P× P) ⊂ P× P.
Clearly (u, v) is a positive solution of the system (1.1) if and only if (u, v) ∈ P× P \ {(0, 0)} is
a fixed point of A (refer [9, 27]).

Lemma 2.5 ([8]). Let E be a Banach space, P be a cone in E and Ω ⊂ E be a bounded open set. Assume
that A : Ω ∩ P→ P is a completely continuous operator. If there exists u0 ∈ P \ {0} such that

u 6= Au + λu0, ∀ λ ≥ 0, u ∈ ∂Ω ∩ P,

then the fixed point index i(A, Ω ∩ P, P) = 0.

Lemma 2.6 ([8,14]). Let E be a Banach space, P be a cone in E and Ω ⊂ E be a bounded open set with
0 ∈ Ω. Assume that A : Ω ∩ P→ P is a completely continuous operator.
(1) If u 6≤ Au for all u ∈ ∂Ω ∩ P, then the fixed point index i(A, Ω ∩ P, P) = 1.
(2) If u 6≥ Au for all u ∈ ∂Ω ∩ P, then the fixed point index i(A, Ω ∩ P, P) = 0.

In the following, we adopt the convention that C1, C2, C3, . . . stand for different positive
constants. Let Ωρ = {(u, v) ∈ E× E : ‖(u, v)‖ < ρ} for ρ > 0.
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3 Existence of a positive solution

Theorem 3.1. Assume that the conditions (H1), (H2) are satisfied and that (H3), (H4) or (H7), (H8)

hold. Then the system (1.1)–(1.2) has at least one positive solution.

Proof. Case 1. The conditions (H3) and (H4) hold. By (H3), there are ξ1 > 0, η1 > 0 and a
sufficiently small ρ > 0 such that

f1(x, u, v) ≥ ξ1a(v), ∀ (x, u) ∈ Jθ ×R+, 0 ≤ v ≤ ρ,

f2(x, u, v) ≥ η1b(u), ∀ (x, v) ∈ Jθ ×R+, 0 ≤ u ≤ ρ,
(3.1)

and
a(K1b(u)) ≥ 2K1

ξ1η1δ1δ2γ3 u, ∀ u ∈ [0, ρ], (3.2)

where K1 = max{η1γG2(1, y)h2(y) : y ∈ Jθ}. We claim that

(u, v) 6= A(u, v) + λ(ϕ, ϕ), ∀ λ ≥ 0, (u, v) ∈ ∂Ωρ ∩ (P× P),

where ϕ ∈ P \ {0}. If not, there are λ ≥ 0 and (u, v) ∈ ∂Ωρ ∩ (P × P) such that (u, v) =

A(u, v) + λ(ϕ, ϕ), then u ≥ A1(u, v), v ≥ A2(u, v). By using the monotonicity and concavity
of a(·), Jensen’s inequality and Lemma 2.4, we have by (3.1) and (3.2),

u(x) ≥
∫ 1

0
G1(x, y)h1(y) f1(y, u(y), v(y)) dy

≥ ξ1γα

∫ 1

0
G1(1, y)h1(y)a(v(y)) dy

≥ ξ1γα

∫ 1

0
G1(1, y)h1(y)a

( ∫ 1

0
η1G2(y, z)h2(z)b(u(z)) dz

)
dy

≥ ξ1γ
∫ 1−θ

θ
G1(1, y)h1(y)

∫ 1

0
a
(
η1γG2(1, z)h2(z)b(u(z))

)
dz dy

≥ ξ1γ
∫ 1−θ

θ
G1(1, y)h1(y)

∫ 1

0
a
(
K−1

1 η1γG2(1, z)h2(z)K1b(u(z))
)

dz dy

≥ ξ1η1γ2K−1
1

∫ 1−θ

θ

∫ 1−θ

θ
G1(1, y)h1(y)G2(1, z)h2(z)a

(
K1b(u(z))

)
dz dy

≥ ξ1η1γ2δ1K−1
1

∫ 1−θ

θ
G2(1, z)h2(z)a

(
K1b(u(z))

)
dz

≥ 2
δ2γ

∫ 1−θ

θ
G2(1, z)h2(z)u(z) dz ≥ 2‖u‖, x ∈ Jθ ,

(3.3)

Consequently, ‖u‖ = 0. Next, (3.1) and (3.2) yield that

a(v(x)) ≥ a
( ∫ 1

0
G2(x, y)h2(y) f2(y, u(y), v(y)) dy

)
≥
∫ 1

0
a
(
η1γG2(1, y)h2(y)b(u(y))

)
dy

≥ η1γK−1
1

∫ 1−θ

θ
G2(1, y)h2(y)a

(
K1b(u(y))

)
dy

≥ 2
ξ1δ1δ2γ2

∫ 1−θ

θ
G2(1, y)h2(y)u(y) dy
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≥ 2
δ1δ2γ

∫ 1−θ

θ
G2(1, y)h2(y) dy

∫ 1

0
G1(1, z)h1(z)a(v(z)) dz

≥ 2
δ1γ

∫ 1−θ

θ
G1(1, z)h1(z)a(v(z)) dz ≥ 2a(‖v‖), x ∈ Jθ , (3.4)

this means that a(‖v‖) = 0. It follows from strict monotonicity of a(v) and a(0) = 0 that
‖v‖ = 0. Hence ‖(u, v)‖ = 0, which is a contradiction. Lemma 2.5 implies that

i(A, Ωρ ∩ (P× P), P× P) = 0. (3.5)

On the other hand, by (H4), there exist ζ > 0 and C1 > 0, C2 > 0 such that

f1(x, u, v) ≤ ζvt + C1, ∀ (x, u, v) ∈ [0, 1]×R+ ×R+,

f2(x, u, v) ≤ ε2u
1
t + C2, ∀ (x, u, v) ∈ [0, 1]×R+ ×R+,

(3.6)

where

ε2 = min

{
1

µ2(8ζµ1)
1
t
,

1

8µ2(ζµ1)
1
t

}
.

Let
W = {(u, v) ∈ P× P : (u, v) = λA(u, v), 0 ≤ λ ≤ 1}.

We prove that W is bounded. Indeed, for any (u, v) ∈ W, there exists λ ∈ [0, 1] such that
u = λA1(u, v), v = λA2(u, v). Then (3.6) implies that

u(x) ≤ A1(u, v)(x) ≤ ζ
∫ 1

0
G1(1, y)h1(y)vt(y) dy + C3,

v(x) ≤ A2(u, v)(x) ≤ ε2

∫ 1

0
G2(1, y)h2(y)u

1
t (y) dy + C4.

Consequently,

u(x) ≤ ζ
∫ 1

0
G1(1, y)h1(y) dy

(
ε2

∫ 1

0
G2(1, z)h2(z)u

1
t (z) dz + C4

)t

+ C3

≤ ζµ1

(
ε2

∫ 1

0
G2(1, z)h2(z)‖u‖

1
t dz + C4

)t

+ C3

≤ ζµ1

[(
‖(u, v)‖

8ζµ1

) 1
t

+ C4

]t

+ C3,

(3.7)

v(x) ≤ ε2

∫ 1

0
G2(1, y)h2(y) dy

(
ζ
∫ 1

0
G1(1, z)h1(z)vt(z) dz + C3

) 1
t

+ C4

≤ ε2µ2

(
ζ
∫ 1

0
G1(1, z)h1(z)‖v‖t dz + C3

) 1
t

+ C4

≤ 1

8(ζµ1)
1
t

(
ζµ1‖(u, v)‖t + C3

) 1
t + C4.

(3.8)

Since

lim
w→+∞

ζµ1

[(
w

8ζµ1

) 1
t
+ C4

]t

w
=

1
8

, lim
w→+∞

(
ζµ1wt + C3

) 1
t

8(ζµ1)
1
t w

=
1
8

,



Positive solutions of higher-order singular fractional differential equations 9

there exists r1 > r, when ‖(u, v)‖ > r1, (3.7) and (3.8) yield that

u(x) ≤ 1
4
‖(u, v)‖+ C3, v(x) ≤ 1

4
‖(u, v)‖+ C4.

Hence ‖(u, v)‖ ≤ 2(C3 + C4) and W is bounded.
Select G > sup W. We obtain from the homotopic invariant property of fixed point index

that
i(A, ΩG ∩ (P× P), P× P) = i(θ, ΩG ∩ (P× P), P× P) = 1. (3.9)

(3.5) and (3.9) yield that

i(A, (ΩG \Ωρ) ∩ (P× P), P× P)

= i(A, ΩG ∩ (P× P), P× P)− i(A, Ωρ ∩ (P× P), P× P) = 1.

So A has at least one fixed point on (ΩG \Ωρ)∩ (P× P). This means that the system (1.1)–(1.2)
has at least one positive solution.

Case 2. The conditions (H7) and (H8) hold. First, we prove that

i(A, Ωr ∩ (P× P), P× P) = 0. (3.10)

We claim that
(u, v) 6≥ A(u, v), ∀ (u, v) ∈ ∂Ωr ∩ (P× P).

If not, there is (u, v) ∈ ∂Ωr ∩ (P× P) such that (u, v) ≥ A(u, v). Since γr ≤ u(x)+ v(x) ≤ r
for (u, v) ∈ ∂Ωr ∩ (P× P), x ∈ [θ, 1− θ], we know from (H7) that

u(x) ≥
∫ 1

0
G1(x, y)h1(y) f1(y, u(y), v(y)) dy

≥ δ−1
1 r

∫ 1−θ

θ
G1(1, y)h1(y) dy = r, x ∈ Jθ ,

(3.11)

v(x) ≥
∫ 1

0
G2(x, y)h2(y) f2(y, u(y), v(y)) dy

≥ δ−1
2 r

∫ 1−θ

θ
G2(1, y)h2(y) dy = r, x ∈ Jθ .

(3.12)

Hence ‖(u, v)‖ ≥ 2r, which is a contradiction. As a result (3.10) is true.
It remains to prove

i(A, ΩR ∩ (P× P), P× P) = 1. (3.13)

(H8) implies that

f1(x, u, v) ≤ f1(x, R, R) ≤ R
4µ1

, f2(x, u, v) ≤ f2(x, R, R) ≤ R
4µ2

(3.14)

for any x ∈ [0, 1], (u, v) ∈ ΩR. We claim that

(u, v) 6≤ A(u, v), ∀ (u, v) ∈ ∂ΩR ∩ (P× P).

If not, there is (u, v) ∈ ∂ΩR ∩ (P× P) such that (u, v) ≤ A(u, v), then we have by (3.14),

u(x) ≤
∫ 1

0
G1(1, y)h1(y) f1(y, u(y), v(y)) dy ≤ R

4
,

v(x) ≤
∫ 1

0
G2(1, y)h2(y) f2(y, u(y), v(y)) dy ≤ R

4
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for x ∈ [0, 1]. Hence R = ‖(u, v)‖ = ‖u‖ + ‖v‖ ≤ R
2 , which is a contradiction. As a result

(3.13) is true. We have by (3.10) and (3.13),

i(A, (ΩR \Ωr) ∩ (P× P), P× P)

= i(A, ΩR ∩ (P× P), P× P)− i(A, Ωr ∩ (P× P), P× P) = 1.

So A has a fixed point on (ΩR \Ωr) ∩ (P× P). This means that the system (1.1)–(1.2) has at
least one positive solution.

Theorem 3.2. Assume that the conditions (H1), (H2), (H5) and (H6) are satisfied. Then the system
(1.1)–(1.2) has at least one positive solution.

Proof. By (H5), there are ξ2 > 0, η2 > 0, C5 > 0, C6 > 0 and C7 > 0 such that

f1(x, u, v) ≥ ξ2 p(v)− C5, f2(x, u, v) ≥ η2q(u)− C6, (x, u, v) ∈ Jθ ×R+ ×R+,

and

p(K2q(u)) ≥ 2K2

ξ2η2δ1δ2γ3 u− C7, u ∈ R+, (3.15)

where K2 = max{η2γG2(1, y)h2(y) : y ∈ Jθ}. Then we have

A1(u, v)(x) ≥ ξ2

∫ 1

0
G1(x, y)h1(y)p(v(y)) dy− C8, x ∈ Jθ ,

A2(u, v)(x) ≥ η2

∫ 1

0
G2(x, y)h2(y)q(u(y)) dy− C9, x ∈ Jθ .

(3.16)

We affirm that the set

W = {(u, v) ∈ P× P : (u, v) = A(u, v) + λ(ϕ, ϕ), λ ≥ 0}

is bounded, where ϕ ∈ P \ {0}. Indeed, (u, v) ∈ W implies that u ≥ A1(u, v), v ≥ A2(u, v) for
some λ ≥ 0. We have by (3.16),

u(x) ≥ ξ2

∫ 1

0
G1(x, y)h1(y)p(v(y)) dy− C8, x ∈ Jθ , (3.17)

v(x) ≥ η2

∫ 1

0
G2(x, y)h2(y)q(u(y)) dy− C9, x ∈ Jθ . (3.18)

By the monotonicity and concavity of p(·) as well as Jensen’s inequality, (3.18) implies that

p(v(x) + C9) ≥ p
( ∫ 1

0
η2G2(x, y)h2(y)q(u(y)) dy

)
≥
∫ 1

0
p
(
η2γG2(1, y)h2(y)q(u(y))

)
dy

≥ η2γK−1
2

∫ 1−θ

θ
G2(1, y)h2(y)p

(
K2q(u(y))

)
dy, x ∈ Jθ .

(3.19)
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Since p(v(x)) ≥ p(v(x) + C9)− p(C9), we have by (3.15), (3.17) and (3.19),

u(x) ≥ ξ2γ
∫ 1

0
G1(1, y)h1(y)

[
p(v(y) + C9)− p(C9)

]
dy− C8

≥ ξ2γ
∫ 1−θ

θ
G1(1, y)h1(y)p(v(y) + C9) dy− C10

≥ ξ2η2γ2K−1
2

∫ 1−θ

θ
G1(1, y)h1(y)

∫ 1−θ

θ
G2(1, z)h2(z)p

(
K2q(u(z))

)
dz dy− C10

≥ ξ2η2γ2δ1K−1
2

∫ 1−θ

θ
G2(1, z)h2(z)p

(
K2q(u(z))

)
dz− C10

≥ 2(δ2γ)−1
∫ 1−θ

θ
G2(1, z)h2(z)u(z) dz− C11 ≥ 2‖u‖ − C11, x ∈ Jθ .

(3.20)

Hence ‖u‖ ≤ C11.
Since p(v(x)) ≥ γp(‖v‖) for x ∈ Jθ , v ∈ P, it follows from (3.19), (3.15) and (3.17) that

p(v(x)) ≥ p(v(x) + C9)− p(C9)

≥ η2γK−1
2

∫ 1−θ

θ
G2(1, y)h2(y)p

(
K2q(u(y))

)
dy− p(C9)

≥ 2
ξ2δ1δ2γ2

∫ 1−θ

θ
G2(1, y)h2(y)u(y) dy− C12

≥ 2
δ1δ2γ

∫ 1−θ

θ
G2(1, y)h2(y) dy

∫ 1

0
G1(1, z)h1(z)p(v(z)) dz− C13

≥ 2δ−1
1

∫ 1−θ

θ
G1(1, z)h1(z)p(‖v‖) dz− C13

= 2p(‖v‖)− C13, x ∈ Jθ .

Hence p(‖v‖) ≤ C13. By (1) and (3) of the condition (H5), we know that limv→+∞ p(v) = +∞,
thus there exists C14 > 0 such that ‖v‖ ≤ C14. This shows W is bounded. Then there exists a
sufficiently large Q > 0 such that

(u, v) 6= A(u, v) + λ(ϕ, ϕ), ∀ (u, v) ∈ ∂ΩQ ∩ (P× P), λ ≥ 0.

Lemma 2.5 yields that

i(A, ΩQ ∩ (P× P), P× P) = 0. (3.21)

On the other hand, by (H6), there is a σ > 0 and sufficiently small ρ > 0 such that

f1(x, u, v) ≤ σvs, ∀ (x, u) ∈ [0, 1]×R+, v ∈ [0, ρ],

f2(x, u, v) ≤ ε1u
1
s , ∀ (x, v) ∈ [0, 1]×R+, u ∈ [0, ρ].

(3.22)

where

ε1 = min
{(

2σµ1µs
2
)− 1

s , µ−1
2

}
.

We claim that

(u, v) 6≤ A(u, v), ∀ (u, v) ∈ ∂Ωρ ∩ (P× P). (3.23)
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If not, there exists a (u, v) ∈ ∂Ωρ ∩ (P × P) such that (u, v) ≤ A(u, v), that is, u ≤
A1(u, v), v ≤ A2(u, v). Then (3.22) implies that

u(x) ≤
∫ 1

0
G1(x, y)h1(y) f1(y, u(y), v(y)) dy

≤ σ
∫ 1

0
G1(1, y)h1(y)vs(y) dy

≤ σ
∫ 1

0
G1(1, y)h1(y)

( ∫ 1

0
G2(y, z)h2(z) f2(z, u(z), v(z)) dz

)s

dy

≤ σ
∫ 1

0
G1(1, y)h1(y) dy

( ∫ 1

0
G2(1, z)h2(z) f2(z, u(z), v(z)) dz

)s

= σµ1

( ∫ 1

0
G2(1, z)h2(z) f2(z, u(z), v(z)) dz

)s

≤ σµ1εs
1

( ∫ 1

0
G2(1, z)h2(z)u

1
s (z) dz

)s

≤ σµ1εs
1µs

2‖u‖ ≤
1
2
‖u‖, x ∈ [0, 1],

(3.24)

and

v(x) ≤
∫ 1

0
G2(x, y)h2(y) f2(y, u(y), v(y))dy

≤ ε1

∫ 1

0
G2(1, y)h2(y)u

1
s (y)dy

≤ ε1µ2‖u‖
1
s ≤ ‖u‖ 1

s , x ∈ [0, 1].

(3.25)

(3.24) and (3.25) imply that ‖(u, v)‖ = 0, which contradicts ‖(u, v)‖ = ρ and the inequality
(3.23) holds. Lemma 2.6 yields that

i(A, Ωρ ∩ (P× P), P× P) = 1. (3.26)

We have by (3.21) and (3.26),

i
(

A, (ΩQ \Ωρ) ∩ (P× P), P× P)

= i(A, ΩQ ∩ (P× P), P× P)− i(A, Ωρ ∩ (P× P), P× P) = −1.

Hence A has a fixed point on (ΩQ \Ωρ) ∩ (P× P). This means that the system (1.1)–(1.2) has
at least one positive solution.

4 Existence of multiple positive solutions

Theorem 4.1. Assume that the conditions (H1), (H2), (H3), (H5) and (H8) hold. Then the system
(1.1)–(1.2) has at least two positive solutions.

Proof. We may take Q > R > ρ such that both (3.5), (3.13) and (3.21) hold. Then we have

i(A, (ΩQ \ΩR) ∩ (P× P), P× P)

= i(A, ΩQ ∩ (P× P), P× P)− i(A, ΩR ∩ (P× P), P× P) = −1,

i(A, (ΩR \Ωρ) ∩ (P× P), P× P)

= i(A, ΩR ∩ (P× P), P× P)− i(A, Ωρ ∩ (P× P), P× P) = 1.
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Hence A has a fixed point on (ΩQ \ΩR)∩ (P× P) and (ΩR \Ωρ)∩ (P× P), respectively. This
means the system (1.1)–(1.2) has at least two positive solutions.

Theorem 4.2. Assume that the conditions (H1), (H2), (H4), (H6) and (H7) hold. Then the system
(1.1)–(1.2) has at least two positive solutions.

Proof. We may take G > r > ρ such that both (3.9), (3.10) and (3.26) hold. Then we have

i(A, (ΩG \Ωr) ∩ (P× P), P× P)

= i(A, ΩG ∩ (P× P), P× P)− i(A, Ωr ∩ (P× P), P× P) = 1,

i(A, (Ωr \Ωρ) ∩ (P× P), P× P)

= i(A, Ωr ∩ (P× P), P× P)− i(A, Ωρ ∩ (P× P), P× P) = −1.

Hence A has a fixed point on (ΩG \Ωr) ∩ (P× P) and (Ωr \Ωρ) ∩ (P× P), respectively. This
means the system (1.1)–(1.2) has at least two positive solutions.

5 The nonexistence of positive solutions

Theorem 5.1. Assume that the conditions (H1) and (H2) hold, and

f1(x, u, v) > (γ2δ1)
−1v, f2(x, u, v) > (γ2δ2)

−1u, ∀ x ∈ [0, 1], u > 0, v > 0.

Then the system (1.1)–(1.2) has no positive solution.

Proof. Assume that (u, v) is a positive solution of the system (1.1)–(1.2), then (u, v) ∈ P× P,
u(x) > 0, v(x) > 0 for x ∈ (0, 1), and for x ∈ Jθ ,

u(x) =
∫ 1

0
G1(x, y)h1(y) f1(y, u(y), v(y)) dy

≥ γα

∫ 1

0
G1(1, y)h1(y) f1(y, u(y), v(y)) dy

> γ(γ2δ1)
−1
∫ 1

0
G1(1, y)h1(y)v(y) dy

≥ γ2(γ2δ1)
−1
∫ 1−θ

θ
G1(1, y)h1(y) dy‖v‖ = ‖v‖.

Hence ‖u‖ > ‖v‖. Similarly, ‖v‖ > ‖u‖, which is a contradiction.

Similarly, we can obtain the following result.

Theorem 5.2. Assume that (H1), (H2) hold, and f1(x, u, v) < µ−1
1 v, f2(x, u, v) < µ−1

2 u for any
x ∈ [0, 1], u > 0, v > 0, then the system (1.1)–(1.2) has no positive solution.

Remark 5.3. If hj ∈ C([0, 1], R+) (j = 1, 2) and 1 ≤ µ, ν ≤ n − 2 (n ≥ 3) in the system
(1.1)–(1.2), all our results are still true.
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6 Examples

In the following examples 6.1–6.4, we select α = β ∈ (n− 1, n], µ = ν ∈ [1, n− 3] for n > 3
and η1 = η2, ξ1 = ξ2, d1 = 1− η1ξ

α−µ−1
1 in the system (1.1)–(1.2).

Example 6.1. Let h1(x) = h2(x) = d1Γ(α)/(1− x)α−µ−1, x ∈ (0, 1), f1(x, u, v) = ex(1+ e−(u+v)),
f2(x, u, v) = 1− e−(u+v), x ∈ [0, 1], u, v ∈ R+, a(v) = v

1
2 , b(u) = u

1
2 , t = 1/2. Clearly,

0 <
∫ 1

0
Gj(1, y)hj(y) dy ≤ 1,

but
∫ 1

0 hj(y) dy = +∞ (j = 1, 2). The results of [7, 9, 10, 17, 24, 29, 30] are not suitable for the
problem. It is easy to verify that the conditions (H1)–(H4) hold, hence Theorem 3.1 implies
that the system (1.1)–(1.2) has at least one positive solution. Here f1(x, u, v) and f2(x, u, v) are
sublinear on u and v at 0 and +∞.

Example 6.2. Let hj(x) be as in the Example 6.1, f1(x, u, v) = ex(1 + e−(u+v)), f2(x, u, v) =

u
3
2 , a(v) = v

1
3 , b(u) = u2, t = 1/2. It is easy to verify that the conditions (H1)–(H4) hold,

Theorem 3.1 implies that the system (1.1)–(1.2) has at least one positive solution. Here
f1(x, u, v) is sublinear on u and v at 0 and +∞, whereas f2(x, u, v) is superlinear on u at 0
and +∞.

Example 6.3. Let hj(x) be as in the Example 6.1, f1(x, u, v) = (1 + e−u)v3, f2(x, u, v) = u3,
p(v) = v

1
2 , q(u) = u3, s = 3. It is easy to verify that the conditions (H1), (H2), (H5) and (H6)

hold. Theorem 3.2 yields that the system (1.1)–(1.2) has at least one positive solution. Here
f1(x, u, v) is superlinear on v at 0 and +∞, f2(x, u, v) is superlinear on u at 0 and +∞.

Example 6.4. Let hj(x) be as in the Example 6.1, f1(x, u, v) = (1 + e−u)v
2
3 , f2(x, u, v) =

(1+ e−v)u5, p(v) = v
1
3 , q(u) = u4, s = 1/3. It is easy to see that the conditions (H1), (H2), (H5)

and (H6) hold. Theorem 3.2 yields that the system (1.1)–(1.2) has at least one positive solution.
Here f1(x, u, v) is sublinear on v at 0 and +∞, whereas f2(x, u, v) is superlinear on u at 0 and
+∞.

Remark 6.5. From the Examples 6.1–6.4 we know that the conditions (H3)–(H6) are applicable
for more general function and it is not included among the known differential system. Hence
our results are different from those in [7, 9, 10, 17, 24, 29, 30, 33].
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