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Abstract

In this paper, lower bounds for the spacing (b — a) of the zeros of the solutions and
the zeros of the derivative of the solutions of third order differential equations of the
form

y" +a)y +p(t)y =0 ()

are derived under the some assumptions on p and q. The concept of disfocality
is introduced for third order differential equations (*). This helps to improve the
Liapunov-type inequality, when y(t) is a solution of (*) with (i) y(a) = 0 = ¢/(b) or
(@) = 0 = y(b) with y(t) £ 0, ¢ € (a,b) or (i) y(a) = 0 = y'(a), y(b) = 0 = /(b)
with y(t) #0, t € (a,b).

If y(t) is a solution of (*) with y(t;) =0, 1 <i<n, n>4, (t1 <tz <..<t,)and
y(t) # 0, t € U=""(t;,tis1), then lower bound for spacing (t, — t;) is obtained. A
new criteria for disconjugacy is obtained for (*) in [a,b]. This papers improves many
known bounds in the literature.

2000 Mathematics Subject Classification: 34C 10
Key words and phrases: Liapunov-type inequality, disfocality, disconjugacy, third order
differential equations.

*Research supported by National Board of Higher Mathematics, Department of Atomic Energy, India.
fCorresponding author’s Email: spsm@uohyd.ernet.in, panigrahi2008@gmail.com

EJQTDE, 2009 No. 23, p. 1



1 Introduction

In [15], Russian mathematician A. M. Liapunov proved the following remarkable inequality:

If y(t) is a nontrivial solution of

y" +p(t)y =0, (1.1)

with y(a) =0 =y(b)(a < b) and y(t) # 0 for t € (a,b), then

. </ [p(0)]dt, (12)

where p € L] .. This inequality provides a lower bound of the distance between consecutive

zeros of y(t). If p(t) = p > 0, then (1.2) yields
(b—a)>2/\/p.
In [12], the inequality (1.2) is strengthened to

4
b—a

b
< [ petae (1.3)

where py(t) = maz{p(t),0}. The inequality (1.3) is the best possible in the sense that if
the constant 4 in (1.3) is replaced by any larger constant, then there exists an example of
(1.1) for which (1.3) no longer holds (see [12, p.345], [13]). However stronger results were
obtained in [2], [13]. In [13] it is shown that

c b
/p+(t)dt> and /p+(t)dt>

b—c’

c—a
where ¢ € (a, b) such that y'(c) = 0. Hence

b 1 1 (b—a) 4
/ap+(t)dt> c—a+b—c_ (c—a)(b—c) “h—a

In [2], the authors obtained (see Cor. 4.1)

4
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from which (1.2) can be obtained. The inequality finds applications in the study of boundary
value problems. It may be used to provide a lower bound on the first positive proper value
of the Sturm-Liouville problems

and

by letting p(t) to denote Ag(t) and A 4 ¢(t) respectively in (1.2). The disconjugacy of (1.1)
also depends on (1.2). Indeed, equation (1.1) is said to be disconjugate if

[ ol < a/0-a).

( Equation (1.1) is said to be disconjugate on [a, b] if no non trivial solution of (1.1) has more
than one zero). Thus (1.2) may be regarded as a necessary condition for conjugacy of (1.1).
The inequality (1.2) finds lot of applications in areas like eigen value problems, stability,etc.
A number of proofs are known and generalizations and improvement have also been given
(see [12], [13], [23], [24]). Inequality (1.3) generalized to the condition

/ (t —a)(b— )p,(H)dt > (b— a) (1.4)

by Hartman and Wintner [11]. An alternate proof of the inequality (1.4), due to Nehari [17],
is given in [12, Theorem 5.1 Ch XI]. For the equation

y'(t) +a(t)y +p(t)y =0, (1.5)
where p, ¢ € C([0,00), R), Hartman and Wintner [11] established the inequality
b
/ (t—a)(b—t)er(t)dt—l—ma:c{/ (t—a)lq(t)], / b—1t)|q(t \dt} > (b—a) (1.6)
which reduces to (1.4) if ¢(¢t) = 0. In particular, (1.6) implies the “de la vallee Poussin

inequality” (see [12]). In [10], Galbraith has shown that if @ and b are successive zeros of
(1.1) with p(¢) > 0 is a linear function, then

b
(b— a)/ p(t)dt < w2
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This inequality provides an upper bound for two successive zeros of an oscillatory solution
of (1.1). Indeed, if p(t) = p > 0, then (b — a) < 7/(p)2. Fink [8], has obtained both upper
and lower bounds of (b — a f p(t)dt, where p(t) > 0 is linear. Indeed, he has shown that

b

gAg < (b— a)/a p(t)dt < 7

and these are the best possible bounds, where )y is the first positive zero of J 1 and J,
is the Bessele’s function. The constant 3A3 = 9.478132... and n® = 9.869604..., so that
it gives a delicate test for the spacing of the zeros for linear p. In [9], Fink has investi-
gated the behaviour of the functional (b — a f p(t)dt, where p is in a certain class of sub
or supper functions. Eliason [5], [6] has obtained upper and lower bound of the functional
(b—a) f p(t)dt, where p(t) is concave or convex. In [16], St Mary and Eliason has considered
the same problem for equation (1.5). In [1], Bailey and Waltman applied different techniques
to obtained both uppper and lower bounds for the distance between two successive zeros of
solution of (1.5). They also considered nonlinear equations. In a recent paper [2], Brown
and Hinton used Opial’s inequality to obtain lower bounds for the spacing of the zeros of
a solution of (1.1) and lower bounds of the spacing § — «a, where y(t) is a solution of (1.1)

satisfying y(a) = 0 = y/'(8) and y'(a) = 0 = y(B) (o < ).

The inequality (1.2) is generalized to second order nonlinear differential equatiton by Eliason
[5], to delay differential equations of second order by [6], [7] and Dahiya and Singh [3] and
to higher order differential equation by Pachpatte [18]. However, very limited work has been
done in this direction for differential equations for third and higher order. In [20],the authors
considered the differential equations of the form

y" +q(t)y +p(t)y =0, (1.7)

where p and ¢ are real-valued continuous functions on [0, o) such that ¢ is once differentiable
and each p(t) and ¢'(t) is locally integrable. Let y(¢) be a nontrivial solution of (1.7) with

y(a) =0=1y(b),y(t) # 0, t € (a,b). If there exists a d € (a,b) such that y”(d) = 0, then (see
20, Theorem 2])

(b—a) {/ lg(t)|dt + (b — a)|q(d)| + b—a/\q |dt]>4 (1.8)

Otherwise we consider y(a) = 0 = y(b) = y(d')(a < b < d) with y(t) # 0 for t €
(a,b) J(b,a’). Then (see [20 ; Theorem 3 ])

(@ —a) [ / " la(®)ldt + (d — a)lg(d)| + (d — a) / e —p<t>\dt] >4

In this paper we have obtained the lower bounds of spacing (b — a),where y(¢) is a solution
of (1.7) satisfying y(a) = 0 = 3/(b) or y'(a) = 0 = y(b). The concept of disfocality for the

EJQTDE, 2009 No. 23, p. 4



differential equation (1.7) has been introduced, which improves many more bounds in litera-
ture. Furthermore, the condition for disconjugacy of equation (1.7) is obtained. However, in
this work we obtained a better bound than in (1.8) in some cases. The concept of disfocality

for third order equations enables us to obtain this result.

2 Main Results

Liapunov Inequality, Disfocality and Disconjugacy

THEOREM 2.1 Let y(t) be a solution of (1.7)with y(a) = 0 = y'(b),0 < a < b and
y(t) # 0, t € (a,b], where b is such that |y(b)| = max{|y(t)| : t € [a,b]}. If y"(d) = 0 for
some d € (a,b), then

(b—a) U (D)t + (b— a)lg(d)| + (b— a) (/ g/(t |dt)]

Proof. Let M = maxciqy|y(t)| = |y(b)]. Then

— ly()] = '<t>dt’s [ (2.1)

Squaring both the sides of (2.1), applying Cauchy-Schwarz inequality and integrating by

parts, we obtain
M < (b—a) /j@/(t»?dt
= -0 [ Vo
< 0-a [ WOl

Integrating (1.7) from dtot (a < d <tort <d <b) we get

y'(t) = —(J(t)y(t)+Q(d)y(d)+/dt(Q'(8)—p(S))y(S)ds,

that is,

WO < Mllg(t)] + la(d) + / 1¢(s) - p(s)lds]

— M{lq(®)] + la(d \+/\q (s)ds].
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Hence
b b
M2 < (b—a) / M[|q<t>|dt+|q<d>|+ / |q'<s>—p<s>|ds] y(t)|dt
< Mb—a) [ [ e+ 60— alat@) = 0o [ |qf<s>—p<s>\ds],

from which the required inequality follows. Hence the proof of the theorem is complete.

THEOREM 2.2 Let y(t) be a solution of (1.7) with y'(a) = 0 = y(b),0 < a < b and
y(t) # 0, t € [a,b), where a is such that |y(a)| = mazx{|y(t)| : t € [a,b]}. If y"(d) = 0 for
some d € (a,b), then

o-alf laOlde + (5~ a)la(d)] + (b a) (/ e ~p(olar)] > 1

The proof is similar to that of Theorem 2.1 and hence is omitted.

DEFINITION 2.3 Equation (1.7) is said to be right(left) disfocal in [a,b] (a < b) if
the solutions of (1.7) with y'(a) = 0, y(a) # 0 (y'(b) = 0, y(b) # 0) do not have two
zeros (counting multiplicities) in (a,b] ([a,b)). Equation (1.7) is disconjugate in [a,b] if no
nontrivial solution of (1.7) has more than two zeros(counting multiplicities). By a solution
of (1.7), we understand a non-trivial solution of (1.7).

THEOREM 2.4 If equation (1.7) is disconjugate in [a,b], then it is right disfocal in
[c, b] or left disfocal in [a,c] for every ¢ € (a,b). If equation (1.7) is left disfocal in [a,c] and
right disfocal in [c,b] for every ¢ € (a,b), then it is disconjugate on [a,b].

Proof. Let equation(1.7) be disconjugate in [a,b]. Let y(t) be a solution of (1.7) with
y'(c) =0 and y(c) # 0 where ¢ € (a,b). Then y(t) has atmost two zeros in [c, b] or two zeros
in [a, ¢] (counting multiplicities). Hence (1.7) is left disfocal in [a, | or right disfocal in [c, b].

Suppose that (1.7) is left disfocal in [a, ¢] and right disfocal in [c, b] for every c in (a,b).
We claim that (1.7) is disconjugate in [a, b]. If not, then (1.7) admits a solution y(t) which
has at least three zeros (counting multiplicities) in [a, b]. Let these three zeros be simple and
a<t; <ty <tz <bwithy(t;) =0,1 <i<3. Then there exist ¢; € (t1,t2) and ¢y € (to,t3)
such that 3/(c¢;) = 0 = ¢/(¢z). Hence (1.7) is not right disfocal in [¢;,b] and not left disfocal
in [a, co]. Thus we obtain a contradiction. Suppose y(t) has a double zero at ¢; and a simple
zero at ty or a simple zero at tjand a double zero at to, where a < t; <ty < b. Let ¢ € (t1,1s)
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such that y/(c) = 0. In the former case (1.7) is not left disfocal in [a, ¢| and in the latter case
(1.7) is not right disfocal in [e, b]. Thus we obtain a contradiction again. Hence the proof of

the theorem is complete.
THEOREM 2.5 If
b 1 1 b
[ latwlat + 3liall - + 56 =) [ oo - d©ldt < 1/~ a)
then equation (1.7) is right disfocal in [a,b], where ||q|| = maz{|q(t)| : a < t < b}.
Proof. Suppose that equation (1.7) is not right disfocal in [a,b]. Then (1.7) has a
solution y(t) with y'(a) = 0,y(a) # 0 and y(¢) has two zeros (counting multiplicities) in

(a,b]. If a < t; < b with y(t1) = 0 = ¢/(t1) and y(t) # 0, t € [a,t1), then there exists a
d € (a,t;) such that y”(d) = 0. Integrating (1.7) from d to ¢, where a < t < ¢, we have

y”(t)+/d q(s)y’(s)der/d p(s)y(s)ds = 0.

Further integration from a to t (a < t < t;) yields

v+ [ ([ atweas)as [ ([ soois)an=o

v+ | ' guylu)du — g(dy(d)(t — a) + / t ([ o) = dopmspas) e =o.

that is,

Integrating from a to t;, we obtain

y(a) = /:1 (/atQ(U) ) / o dy(d)(t — a)dt
/ (/ (/ p(s) = q/(S))y(S)dS)du)dt,

+

Hence

—a/ )ldu -+ 3(t2 — )]l

I
(L1 w6 - dastan)ai]
Since [y(a)| # 0, then
<-a) (ot 30-arlal+ [ (1 [ b6 -dpla)a @2
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Since ,
u b
| / p(s) — d'(s)|ds| < / p(s) = ¢'(s)|ds. for d,ue [,
d a
then (2.2) yields

[ lawia 50l + 50 -a) [ o) - d@lds > 1/0-0, @3)

a contradiction to the given hypothesis. If there exists a T € (a, t;) such that y'(7") = 0 and
y(T') # 0, then we work over the interval [T, b] to obtain

b b
1 1
[ el Sl =1)+ 56-1) [ 1) - g (s)ids > 1/0- 7).
However, this inequality yields (2.3). If a < t; <ty < b with y(t;) =0 = y(t2) and y(t) # 0
for ¢ € [a,t1) U(t1, t2), then there exists a ¢ € (f1, 1) such that y'(c) = 0. Hence there exists

a d € (a,c) such that y”(d) = 0. Let |y(a)| > |y(c)|. Integrating (1.7) from d to ¢, where
a <t <ty we have

v+ | as)y/(s)ds + / (y(s)ds =0, telat].

Further integration from a to t (a < t < ty) yields

v+ [ ([ awisas)aos [ ([ sermeias) du=o.

that is,

v+ [ " o(w)y(u)du — g(d)y(d)(t — a) + / t ([ ) = denutsias) au=o

Integrating from a to ty, we obtain

Hence

(@)l < Iy |(t2 ~ ) [ latwldu-+ 5 = ol

(1] e = dlasian) a
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Since |y(a)| # 0, then

<= [ latldut 506 -aPlal+ [ [ o) - d@siaua 2

that is,
b 1 1 b /
[ latwldu+ 56= il + 56 ) [ Ip(s) = g (s)ds > 1/ - o)
Let |y(a)| < |y(c)|. Integrating (1.7) from d to t we obtain

o+ [ (s (s)ds + / D(sy(s)ds =0, 1€ (ats].

that is,

y"(t) + q(t)y(t) — q(d)y(d) + /d (p(s) — q'(s))y(s)ds = 0. .

Then integrating from c to t we have

t ¢ u
v+ [ sttt aap@e-a+ [ ([ o6 - deues)di=o. te .
c c d
(2.5)
If ¢t € (¢, ts], then further integration of the above identity from ¢ to t5 yields

vy = [ ([ atwwtran)ai— [ ataiae - i
(] ([ o=t au)ar
Hence

W@ < w0t =) [“latolas+ el + [ 1 [ o)~ dolastan at]

As y(c) # 0, then

<) [ lalds + 50— alldll + 50 -0 [ Io(s) ~ g (s)ds

whether v > d or u < d. If t € (a, ¢], then integrating (2.5) from a to ¢ yields

v+ [ ([ atw ) / d(dy(d)(t - c)t
+/ (/( ds)du)dtzo.
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Hence

(©) = v(@) < @) [(e= ) [ lawldu+ Jlilc—a

///\p y \ds|du\dt]

that is,
y(a) ’ 1 2 1 2 ’ /
‘1 - 28l < b=a) [ lalar+ 50— aPlall + 50— [ o)~ 70l
whether u > d or u < d. Since y(a)y(c) < 0, then
y(a) ’ 1 2 1 2 ' !
1<1- /0 < (b— a)/a la(®)ldt + 5 (b = a)llgl| + (b= a) / p(t) — q'(t)]dt.

Hence in either case (2.3) holds. If there exists a T' € (a,t;) such that ¢/(7) = 0 and
y(T') # 0, then we work over the interval [T, b] to obtain

b 1 1 b /
[ tatola+ 50 =Tllall+ 567 [ 1ot = @l > 176 -1

which yields (2.3). As (2.3) contradicts the given hypothesis, then the theorem is proved.
THEOREM 2.6 If
b 1 1 b
[ latola+ Slillo = o)+ 50 -a) [ bt - d@de < 1/0- ).
then equation (1.7) is left disfocal in [a,b].
The proof is similar to that of Theorem (2.5) and hence is omitted.

THEOREM 2.7 If equation (1.7) is not right disfocal in [c,b] and not left disfocal in
[a,c], where ¢ € (a,b), then

b b
[ laeds+ 3lallo =)+ 56 -a) [ o) - d@lds > b= 20

Proof. Since (1.7) is not right disfocal in [c,b] and not left disfocal in [a,c|, where ¢ € (a,b),
then from Theorems 2.5 and 2.6 we obtain

[ lawia+ 500l + 50-0 [ ) =gl > yo-a. @D
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and

[ @i+ 3= alall+ 5 =a) [ g0l > 1e-a. (28

Hence
b c
[ ol o=l + e-a [ -

+ b—c/\p —q'(t)|dt
(b—a)
(c—a)(b—c)

The function f(c) = (¢ — a)(b — ¢) attains maximum at ¢ = (a + b)/2 and f((a +0)/2) =
(b—a)?/4. Hence the required inequality follows. Thus the proof of the theorem is complete.

>

COROLLARY 2.8 Ify(t) is a solution of (1.7) with y(a) =0 =y'(a), y(b) =0=19'(b)
and y(t) #0, t € (a,b), then

[ @i+ 56 =allall+ 50 -0) [ o)~ gl > 40— a)

Proof. There exists a ¢ € (a,b) such that y'(c¢) = 0. Hence equation (1.7) is not right
disfocal on [c,b] and not left disfocal on [a,c]. Then the result follows from Theorem 2.7.

REMARK 2.9 Corollary 2.8 is an improvement of the inequality

/ lg(®)[dt + (b — a)lg]] + (b — a) / p(t) — ¢(B)ldt > 4/(b— a),

if y(t) is a solution of (1.7) with y(a) = 0 = y'(a) and y(b) = 0 = y'(b)(a < b) and
y(t) #0fort € (a,b) . However, if y(t) is a solution of (1.7) with y(a) =0, y(b) =0=1y'(b)
and y(t) # 0, t € (a,b) ory(a) =0 =1y'(a), y(b) =0 and y(t) ;éO, t € (a,b). Then
( see [20; Theorem 1] ) can be applied but Theorem 2.7 cannot be applied because (1.7) is
left disfocal in [a,c] in the former case and right disfocal in latter case, where ¢ € (a,b) with

y'(c) = 0.

REMARK 2.10 Suppose that y(t) is a solution of (1.7) with y(a) = 0 = y(b) =
y(@) (a < b < d) and y(t) # 0 fort € (a,b)|J(b,a’). Then there exist a ¢; € (a,b)
and ¢y € (b,a’) such that y'(c1) = 0 = y'(¢ca). Theorem 2 (see [20],) can be applied to this
situation but Theorem 2.7 cannot be applied because (1.7) is left disfocal on |a,c1] and right
disfocal on [cq,b]. However, the following result holds :
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COROLLARY 2.11 Ify(t) is a solution of (1.7) with y(t;) =0, 1<i<4 (t; <ty <
3
ts <ts) and y(t) #0, t € Y (titit1), then

[ ol gies =l + e =) [ o) - g0l > 4/ ),

if to < (t1 +t4)/2 < t3; otherwise,

ta

/WMMﬁ+w—nmm +<u—m/’ww—ﬂMﬂ

t1 t1

- %@iufWuim}

If t1 =ty is a double zero or t3 =ty is a double zero, then

[ a0+ =l + =) i) = gl > s
[ a0+ G = llall+ - ) o)~ gl > s

Proof.There exists a ¢ € [t, t3] such that y'(c) = 0. Hence equation (1.7) is not left disfocal
in [t1, c] and not right disfocal in [c,t4]. From Theorems 2.5 and 2.6 it follows that

[ ol 5e=tlll+ 5= [ 190 = g0l > 1/~ 1),
and
[ ool e allall+ -0 [ vt - d0ldt > 100

Hence

[t g0 llall+ e =) [ w0~ wla

t1

- 5tt=0) [ IO~ Ol > (- /e )t - o).

The function f(c) = (c—t1)(ts — ¢) attains maximum at ¢ = (t; +14)/2 and f((t1+1¢4)/2) =
(ty —t1)?/4. Hence

/wmmm+§@—umm+;u—m/”mw—wmw>ww—u»

t1 t1
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Since to < ¢ < t3 and ¢ = (t; + t4)/2, then to < (t; +14)/2 < t3. If we consider three
consecutive zeros t1, ty and t3, then from (see[19 ; Theorem 2]) we obtain

t3

[ atolae+ = )l + s =) [ 1pte) — 0l > 4/ 1)

t1 t1

Hence

tq

/Wamw+m—nmm+u«%o/|mw—ﬂMﬁ>Mw—u>

t1 t1

Similarly, if we consider three consecutive zeros ty, t3 and t4, then from (see [19 ; Theorem
2] )it follows that

tq

/Wamw+m—wmm+u«%ﬁ/|mw—ﬂMﬁ>Mm—w>

to to
Hence
tg ta
/\«Mﬁ+@—umm+@r%n/\mw—wmw>ww—w»
t1 t1
Thus

tq

/Wamw+w—umm+u«4o/|mw—ﬂmw

t1 t1

g 2{(’53i’51) N (t4it2)} '

Let t; = t5 be a double zero. There exists a ¢ € (t1,t3) such that y'(¢) = 0. Since equation
(1.7) is not right disfocal on [c, t4], then from Theorem 2.5 it follows that

ta 1 1 ta
[ @i+ e = la@]+ -0 [ lpo) -~ d(0lde > 1(ta ).
Hence
ta 1 1 ta .
aOldt+ (1~ Ml + 50— ) [ Ip(e) — @t > 1/ — 1)
As equation (1.7) is not left disfocal on [¢1, ¢], then from Theorem 2.6 it follows that
(& 1 1 c ,
la@)ldt + 5 (c = t)llall + 5 (e —t1) | [p(t) — ' @)]dt > 1/(c — ).
t1 t1
Hence
c 1 1 Cc ,
aOldt + (e~ )l + e~ 1) [ Ip() — ¢ (0)lde > 1/t — 1),
t1 t1
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Thus

ta

[ @i+ 5= elall+ 50 [ o0 - 0l

t1 t1

g {(Mi’fl) i (tsitl)}'

Similarly, if t3 = ¢4 is a double zero, then we have the other inequality.

REMARK 2.12 Corollary 2.11 cannot be obtained from Theorems 1 and 2 in [19].

REMARK 2.13 If, in general, y(t) is a solution of (1.7) with y(t;) =0, 1<i<n,
n>4, (b <ty<..<ty)andy(t)#0,t € Y (titis1), then

tn

/"MMﬁ+§@—umw+§mr¢n/|mw—wmw>wmr¢m

t1 t1
iftiog < (tn+11)/2 <t;,3 <1<n-—1; otherwise,

tn

/"MMﬂ+w—umm+uw4g/|mw—ﬂmw

t1 t1

1 1
g 2[(% — 1) " (tn —tic1)

This can be proved as in Corollary 2.11 by taking ¢ € (t;_1,t;) such that y'(c) = 0.

} 3<i<n-—1.

THEOREM 2.14 [f, for every c € (a,b)

[ e+ e = alall+ = a) [ Ip(o) - gkt < 1/~ )

and
[ latola 50 allall+ 50 -0 [ 19t =@t < 1/ =)

then (1.7) is disconjugate in |a, b].

Proof. If possible, let y(t) be a solution of (1.7) having three zeros (counting multi-
plicities) in [a,b]. Let a < t; < ty < t3 < b, y(t;) = 0,1 < i < 3 and y(t) # 0 for

€ [a,b], t #t;, 1 <1i < 3. Then there exists a ¢; € (t1,t3) such that 3'(c;) = 0. Hence
(1.7) is not right disfocal on [cq, t3]. Thus

t3

[ @i+ St = el + 5= e) [ Ipte) = g @it > 1/t - 1)

Cc1 C1
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Consequently,

| atolar-+ 50— elal + 50— [ o0~ wlar > 1/ =)

a contradiction. A similar contradiction is obtained if we take ¢y € (o, t3) such that y/(cy) =
0. Suppose y(t1) = 0 = ¢/(¢1) and y(t2) = 0, where a < t; < t5 < b. Then there exists a
c3 € (t1,t2) such that y'(c3) = 0. Since (1.7) is not disfocal on [t1, c3], then

c3

[ o+ e = )lall + S =) [ oo — 0l > 1/ - 1)

t1 t1

Hence
[ ool + e = allll + 5= [ o0 = d0lat > (e~ )

a contradiction. A similar contradiction is obtained if y(t1) = 0, y(t2) = 0 = y/(t2). This
completes the proof of the Theorem.
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