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Abstract

In this paper, lower bounds for the spacing (b− a) of the zeros of the solutions and
the zeros of the derivative of the solutions of third order differential equations of the
form

y′′′ + q(t)y′ + p(t)y = 0 (∗)
are derived under the some assumptions on p and q. The concept of disfocality
is introduced for third order differential equations (*). This helps to improve the
Liapunov-type inequality, when y(t) is a solution of (*) with (i) y(a) = 0 = y′(b) or
y′(a) = 0 = y(b) with y(t) 6= 0, t ∈ (a, b) or (ii) y(a) = 0 = y′(a), y(b) = 0 = y′(b)
with y(t) 6= 0, t ∈ (a, b).

If y(t) is a solution of (*) with y(ti) = 0, 1 ≤ i ≤ n, n ≥ 4, (t1 < t2 < ... < tn) and
y(t) 6= 0, t ∈

⋃i=n−1
i=1 (ti, ti+1), then lower bound for spacing (tn − t1) is obtained. A

new criteria for disconjugacy is obtained for (*) in [a, b]. This papers improves many
known bounds in the literature.
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1 Introduction

In [15], Russian mathematician A. M. Liapunov proved the following remarkable inequality:

If y(t) is a nontrivial solution of

y′′ + p(t)y = 0, (1.1)

with y(a) = 0 = y(b)(a < b) and y(t) 6= 0 for t ∈ (a, b), then

4

b − a
<

∫ b

a

|p(t)|dt, (1.2)

where p ∈ L1
loc. This inequality provides a lower bound of the distance between consecutive

zeros of y(t). If p(t) = p > 0, then (1.2) yields

(b − a) > 2/
√

p.

In [12], the inequality (1.2) is strengthened to

4

b − a
<

∫ b

a

p+(t)dt, (1.3)

where p+(t) = max{p(t), 0}. The inequality (1.3) is the best possible in the sense that if

the constant 4 in (1.3) is replaced by any larger constant, then there exists an example of

(1.1) for which (1.3) no longer holds (see [12, p.345], [13]). However stronger results were

obtained in [2], [13]. In [13] it is shown that

∫ c

a

p+(t)dt >
1

c − a
and

∫ b

c

p+(t)dt >
1

b − c
,

where c ∈ (a, b) such that y′(c) = 0. Hence

∫ b

a

p+(t)dt >
1

c − a
+

1

b − c
=

(b − a)

(c − a)(b − c)
>

4

b − a
.

In [2], the authors obtained (see Cor. 4.1)

4

b − a
<

∣

∣

∣

∣

∫ b

a

p(t)dt

∣

∣

∣

∣
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from which (1.2) can be obtained. The inequality finds applications in the study of boundary

value problems. It may be used to provide a lower bound on the first positive proper value

of the Sturm-Liouville problems

y′′(t) + λq(t)y = 0

y(c) = 0 = y(d) (c < d)

and

y′′(t) + (λ + q(t))y = 0

y(c) = 0 = y(d) (c < d)

by letting p(t) to denote λq(t) and λ + q(t) respectively in (1.2). The disconjugacy of (1.1)

also depends on (1.2). Indeed, equation (1.1) is said to be disconjugate if

∫ b

a

|p(t)|dt ≤ 4/(b − a).

( Equation (1.1) is said to be disconjugate on [a, b] if no non trivial solution of (1.1) has more

than one zero). Thus (1.2) may be regarded as a necessary condition for conjugacy of (1.1).

The inequality (1.2) finds lot of applications in areas like eigen value problems, stability,etc.

A number of proofs are known and generalizations and improvement have also been given

(see [12], [13], [23], [24]). Inequality (1.3) generalized to the condition

∫ b

a

(t − a)(b − t)p+(t)dt > (b − a) (1.4)

by Hartman and Wintner [11]. An alternate proof of the inequality (1.4), due to Nehari [17],

is given in [12, Theorem 5.1 Ch XI]. For the equation

y′′(t) + q(t)y′ + p(t)y = 0, (1.5)

where p, q ∈ C([0,∞), R), Hartman and Wintner [11] established the inequality

∫ b

a

(t − a)(b − t)p+(t)dt + max

{
∫ b

a

(t − a)|q(t)|,
∫ b

a

(b − t)|q(t)|dt

}

> (b − a) (1.6)

which reduces to (1.4) if q(t) = 0. In particular, (1.6) implies the “de la vallee Poussin

inequality” (see [12]). In [10], Galbraith has shown that if a and b are successive zeros of

(1.1) with p(t) ≥ 0 is a linear function, then

(b − a)

∫ b

a

p(t)dt ≤ π2.
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This inequality provides an upper bound for two successive zeros of an oscillatory solution

of (1.1). Indeed, if p(t) = p > 0, then (b − a) ≤ π/(p)
1

2 . Fink [8], has obtained both upper

and lower bounds of (b − a)
∫ b

a
p(t)dt, where p(t) ≥ 0 is linear. Indeed, he has shown that

9

8
λ2

0 ≤ (b − a)

∫ b

a

p(t)dt ≤ π2

and these are the best possible bounds, where λ0 is the first positive zero of J 1

3

and Jn

is the Bessele’s function. The constant 9
8
λ2

0 = 9.478132... and π2 = 9.869604..., so that

it gives a delicate test for the spacing of the zeros for linear p. In [9], Fink has investi-

gated the behaviour of the functional (b − a)
∫ b

a
p(t)dt, where p is in a certain class of sub

or supper functions. Eliason [5], [6] has obtained upper and lower bound of the functional

(b−a)
∫ b

a
p(t)dt, where p(t) is concave or convex. In [16], St Mary and Eliason has considered

the same problem for equation (1.5). In [1], Bailey and Waltman applied different techniques

to obtained both uppper and lower bounds for the distance between two successive zeros of

solution of (1.5). They also considered nonlinear equations. In a recent paper [2], Brown

and Hinton used Opial’s inequality to obtain lower bounds for the spacing of the zeros of

a solution of (1.1) and lower bounds of the spacing β − α, where y(t) is a solution of (1.1)

satisfying y(α) = 0 = y′(β) and y′(α) = 0 = y(β)(α < β).

The inequality (1.2) is generalized to second order nonlinear differential equatiton by Eliason

[5], to delay differential equations of second order by [6], [7] and Dahiya and Singh [3] and

to higher order differential equation by Pachpatte [18]. However, very limited work has been

done in this direction for differential equations for third and higher order. In [20],the authors

considered the differential equations of the form

y′′′ + q(t)y′ + p(t)y = 0, (1.7)

where p and q are real-valued continuous functions on [0,∞) such that q is once differentiable

and each p(t) and q′(t) is locally integrable. Let y(t) be a nontrivial solution of (1.7) with

y(a) = 0 = y(b),y(t) 6= 0, t ∈ (a, b). If there exists a d ∈ (a, b) such that y′′(d) = 0, then (see

[20, Theorem 2])

(b − a)

[
∫ b

a

|q(t)|dt + (b − a)|q(d)| + (b − a)

∫ b

a

|q′(t) − p(t)|dt

]

> 4. (1.8)

Otherwise we consider y(a) = 0 = y(b) = y(a′)(a < b < a′) with y(t) 6= 0 for t ∈
(a, b)

⋃

(b, a′). Then (see [20 ; Theorem 3 ])

(a′ − a)

[

∫ a′

a

|q(t)|dt + (a′ − a)|q(d)| + (a′ − a)

∫ a′

a

|q′(t) − p(t)|dt

]

> 4.

In this paper we have obtained the lower bounds of spacing (b − a),where y(t) is a solution

of (1.7) satisfying y(a) = 0 = y′(b) or y′(a) = 0 = y(b). The concept of disfocality for the
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differential equation (1.7) has been introduced, which improves many more bounds in litera-

ture. Furthermore, the condition for disconjugacy of equation (1.7) is obtained. However, in

this work we obtained a better bound than in (1.8) in some cases. The concept of disfocality

for third order equations enables us to obtain this result.

2 Main Results

Liapunov Inequality, Disfocality and Disconjugacy

THEOREM 2.1 Let y(t) be a solution of (1.7)with y(a) = 0 = y′(b), 0 ≤ a < b and

y(t) 6= 0, t ∈ (a, b], where b is such that |y(b)| = max{|y(t)| : t ∈ [a, b]}. If y′′(d) = 0 for

some d ∈ (a, b), then

(b − a)

[
∫ b

a

|q(t)|dt + (b − a)|q(d)| + (b − a)

(
∫ b

a

|q′(t) − p(t)|dt

)]

> 1.

Proof. Let M = maxt∈[a,b]|y(t)| = |y(b)|. Then

M = |y(b)| =

∣

∣

∣

∣

∫ b

a

y′(t)dt

∣

∣

∣

∣

≤
∫ b

a

|y′(t)|dt. (2.1)

Squaring both the sides of (2.1), applying Cauchy-Schwarz inequality and integrating by

parts, we obtain

M2 ≤ (b − a)

∫ b

a

(y′(t))2dt

= −(b − a)

∫ b

a

y′′(t)y(t)dt

≤ (b − a)

∫ b

a

|y′′(t)||y(t)|dt.

Integrating (1.7) from d to t (a ≤ d < t or t < d ≤ b) we get

y′′(t) = −q(t)y(t) + q(d)y(d) +

∫ t

d

(q′(s) − p(s))y(s)ds,

that is,

|y′′(t)| ≤ M [|q(t)| + |q(d)| +
∫ t

d

|q′(s) − p(s)|ds]

= M [|q(t)| + |q(d)| +
∫ b

a

|q′(s) − p(s)|ds].
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Hence

M2 ≤ (b − a)

∫ b

a

M

[

|q(t)|dt + |q(d)| +
∫ b

a

|q′(s) − p(s)|ds

]

|y(t)|dt

< M2(b − a)

[
∫ b

a

|q(t)|dt + (b − a)|q(d)| + (b − a)

∫ b

a

|q′(s) − p(s)|ds

]

,

from which the required inequality follows. Hence the proof of the theorem is complete.

THEOREM 2.2 Let y(t) be a solution of (1.7) with y′(a) = 0 = y(b), 0 ≤ a < b and

y(t) 6= 0, t ∈ [a, b), where a is such that |y(a)| = max{|y(t)| : t ∈ [a, b]}. If y′′(d) = 0 for

some d ∈ (a, b), then

(b − a)

[
∫ b

a

|q(t)|dt + (b − a)|q(d)| + (b − a)

(
∫ b

a

|q′(t) − p(t)|dt

)]

> 1

.

The proof is similar to that of Theorem 2.1 and hence is omitted.

DEFINITION 2.3 Equation (1.7) is said to be right(left) disfocal in [a, b] (a < b) if

the solutions of (1.7) with y′(a) = 0, y(a) 6= 0 (y′(b) = 0, y(b) 6= 0) do not have two

zeros (counting multiplicities) in (a, b] ([a, b)). Equation (1.7) is disconjugate in [a, b] if no

nontrivial solution of (1.7) has more than two zeros(counting multiplicities). By a solution

of (1.7), we understand a non-trivial solution of (1.7).

THEOREM 2.4 If equation (1.7) is disconjugate in [a, b], then it is right disfocal in

[c, b] or left disfocal in [a, c] for every c ∈ (a, b). If equation (1.7) is left disfocal in [a, c] and

right disfocal in [c, b] for every c ∈ (a, b), then it is disconjugate on [a, b].

Proof. Let equation(1.7) be disconjugate in [a, b]. Let y(t) be a solution of (1.7) with

y′(c) = 0 and y(c) 6= 0 where c ∈ (a, b). Then y(t) has atmost two zeros in [c, b] or two zeros

in [a, c] (counting multiplicities). Hence (1.7) is left disfocal in [a, c] or right disfocal in [c, b].

Suppose that (1.7) is left disfocal in [a, c] and right disfocal in [c, b] for every c in (a, b).

We claim that (1.7) is disconjugate in [a, b]. If not, then (1.7) admits a solution y(t) which

has at least three zeros (counting multiplicities) in [a, b]. Let these three zeros be simple and

a ≤ t1 < t2 < t3 ≤ b with y(ti) = 0, 1 ≤ i ≤ 3. Then there exist c1 ∈ (t1, t2) and c2 ∈ (t2, t3)

such that y′(c1) = 0 = y′(c2). Hence (1.7) is not right disfocal in [c1, b] and not left disfocal

in [a, c2]. Thus we obtain a contradiction. Suppose y(t) has a double zero at t1 and a simple

zero at t2 or a simple zero at t1and a double zero at t2, where a ≤ t1 < t2 ≤ b. Let c ∈ (t1, t2)
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such that y′(c) = 0. In the former case (1.7) is not left disfocal in [a, c] and in the latter case

(1.7) is not right disfocal in [c, b]. Thus we obtain a contradiction again. Hence the proof of

the theorem is complete.

THEOREM 2.5 If

∫ b

a

|q(t)|dt +
1

2
||q||(b − a) +

1

2
(b − a)

∫ b

a

|p(t) − q′(t)|dt ≤ 1/(b − a) ,

then equation (1.7) is right disfocal in [a, b], where ||q|| = max{|q(t)| : a ≤ t ≤ b}.

Proof. Suppose that equation (1.7) is not right disfocal in [a,b]. Then (1.7) has a

solution y(t) with y′(a) = 0, y(a) 6= 0 and y(t) has two zeros (counting multiplicities) in

(a,b]. If a < t1 ≤ b with y(t1) = 0 = y′(t1) and y(t) 6= 0, t ∈ [a, t1), then there exists a

d ∈ (a, t1) such that y′′(d) = 0. Integrating (1.7) from d to t, where a < t ≤ t1, we have

y′′(t) +

∫ t

d

q(s)y′(s)ds +

∫ t

d

p(s)y(s)ds = 0.

Further integration from a to t (a < t ≤ t1) yields

y′(t) +

∫ t

a

(
∫ u

d

q(s)y′(s)ds

)

du +

∫ t

a

(
∫ u

d

p(s)y(s)ds

)

du = 0.

that is,

y′(t) +

∫ t

a

q(u)y(u)du− q(d)y(d)(t− a) +

∫ t

a

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

dt = 0.

Integrating from a to t1, we obtain

y(a) =

∫ t1

a

(
∫ t

a

q(u)y(u)du

)

dt −
∫ t1

a

q(d)y(d)(t− a)dt

+

∫ t1

a

(
∫ t

a

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

du

)

dt.

Hence

|y(a)| < |y(a)|
[

(t1 − a)

∫ t1

a

|q(u)|du +
1

2
(t1 − a)2||q||

+

∫ t1

a

(
∫ t

a

|
∫ u

d

|p(s) − q′(s)|ds|du

)

dt

]

.

Since |y(a)| 6= 0, then

1 < (b − a)

∫ b

a

|q(u)|du +
1

2
(b − a)2||q|| +

∫ b

a

(
∫ t

a

|
∫ u

d

|p(s) − q′(s)|ds|du

)

dt (2.2)
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Since ,

|
∫ u

d

|p(s) − q′(s)|ds| ≤
∫ b

a

|p(s) − q′(s)|ds. for d, u ∈ [a, b]

then (2.2) yields

∫ b

a

|q(t)|dt +
1

2
(b − a)||q|| + 1

2
(b − a)

∫ b

a

|p(s) − q′(s)|ds > 1/(b − a), (2.3)

a contradiction to the given hypothesis. If there exists a T ∈ (a, t1) such that y′(T ) = 0 and

y(T ) 6= 0, then we work over the interval [T, b] to obtain

∫ b

T

|q(t)|dt +
1

2
||q||(b− T ) +

1

2
(b − T )

∫ b

T

|p(s) − q′(s)|ds > 1/(b − T ).

However, this inequality yields (2.3). If a < t1 < t2 ≤ b with y(t1) = 0 = y(t2) and y(t) 6= 0

for t ∈ [a, t1)
⋃

(t1, t2), then there exists a c ∈ (t1, t2) such that y′(c) = 0. Hence there exists

a d ∈ (a, c) such that y′′(d) = 0. Let |y(a)| ≥ |y(c)|. Integrating (1.7) from d to t, where

a < t < t2, we have

y
′′

(t) +

∫ t

d

q(s)y′(s)ds +

∫ t

d

p(s)y(s)ds = 0 , t ∈ [a, t2] .

Further integration from a to t (a < t ≤ t2) yields

y′(t) +

∫ t

a

(
∫ u

d

q(s)y′(s)ds

)

du +

∫ t

a

(
∫ u

d

p(s)y(s)ds

)

du = 0,

that is,

y′(t) +

∫ t

a

q(u)y(u)du− q(d)y(d)(t− a) +

∫ t

a

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

du = 0.

Integrating from a to t2, we obtain

y(a) =

∫ t2

a

(
∫ t

a

q(u)y(u)du

)

dt −
∫ t2

a

q(d)y(d)(t− a)dt

+

∫ t2

a

(
∫ t

a

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

du

)

dt = 0.

Hence

|y(a)| < |y(a)|
[

(t2 − a)

∫ t2

a

|q(u)|du +
1

2
(t2 − a)2||q||

+

∫ t2

a

(
∫ t

a

|
∫ u

d

|p(s) − q′(s)|ds|du

)

dt.
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Since |y(a)| 6= 0, then

1 < (b − a)

∫ b

a

|q(u)|du +
1

2
(b − a)2||q|| +

∫ b

a

∫ t

a

|
∫ u

d

|p(s) − q′(s)|ds|du dt. (2.4)

that is,

∫ b

a

|q(u)|du +
1

2
(b − a)||q|| + 1

2
(b − a)

∫ b

a

|p(s) − q′(s)|ds > 1/(b − a).

Let |y(a)| < |y(c)|. Integrating (1.7) from d to t we obtain

y′′(t) +

∫ t

d

q(s)y′(s)ds +

∫ t

d

p(s)y(s)ds = 0 , t ∈ (a, t2] ,

that is,

y′′(t) + q(t)y(t) − q(d)y(d) +

∫ t

d

(p(s) − q′(s))y(s)ds = 0. .

Then integrating from c to t we have

y′(t)+

∫ t

c

q(u)y(u)du−q(d)y(d)(t−c)+

∫ t

c

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

du = 0 , t ∈ (a, t2] .

(2.5)

If t ∈ (c, t2], then further integration of the above identity from c to t2 yields

y(c) =

∫ t2

c

(
∫ t

c

q(u)y(u)du

)

dt −
∫ t2

c

q(d)y(d)(t− c)dt

+

∫ t2

c

(
∫ t

c

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

du

)

dt.

Hence

|y(c)| < |y(c)|
[

(t2 − c)

∫ t2

c

|q(s)|ds +
1

2
(t2 − c)2||q||+

∫ t2

c

∫ t

c

|
∫ u

d

|p(s) − q′(s)|ds|du dt

]

.

As y(c) 6= 0, then

1 < (b − a)

∫ b

a

|q(s)|ds +
1

2
(b − a)2||q|| + 1

2
(b − a)2

∫ b

a

|p(s) − q′(s)|ds ,

whether u > d or u < d. If t ∈ (a, c], then integrating (2.5) from a to c yields

y(c) − y(a) +

∫ c

a

(
∫ t

c

q(u)y(u)du

)

dt −
∫ c

a

q(d)y(d)(t− c)dt

+

∫ c

a

(
∫ t

c

(
∫ u

d

(p(s) − q′(s))y(s)ds

)

du

)

dt = 0 .
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Hence

|y(c) − y(a)| < |y(c)|
[

(c − a)

∫ b

c

|q(u)|du +
1

2
||q||(c − a)2

+

∫ c

a

|
∫ t

c

|
∫ u

d

|p(s) − q′(s)|ds|du|dt

]

.

that is,

∣

∣

∣

∣

1 − y(a)

y(c)

∣

∣

∣

∣

< (b − a)

∫ b

a

|q(t)|dt +
1

2
(b − a)2||q|| + 1

2
(b − a)2

∫ b

a

|p(t) − q′(t)|dt ,

whether u > d or u < d. Since y(a)y(c) < 0, then

1 < 1 − y(a)

y(c)
< (b − a)

∫ b

a

|q(t)|dt +
1

2
(b − a)2||q|| + 1

2
(b − a)2

∫ b

a

|p(t) − q′(t)|dt.

Hence in either case (2.3) holds. If there exists a T ∈ (a, t1) such that y′(T ) = 0 and

y(T ) 6= 0, then we work over the interval [T, b] to obtain

∫ b

T

|q(t)|dt +
1

2
(b − T )||q|| + 1

2
(b − T )

∫ b

T

|p(t) − q′(t)|dt > 1/(b − T )

which yields (2.3). As (2.3) contradicts the given hypothesis, then the theorem is proved.

THEOREM 2.6 If

∫ b

a

|q(t)|dt +
1

2
||q||(b− a) +

1

2
(b − a)

∫ b

a

|p(t) − q′(t)|dt ≤ 1/(b − a) ,

then equation (1.7) is left disfocal in [a, b].

The proof is similar to that of Theorem (2.5) and hence is omitted.

THEOREM 2.7 If equation (1.7) is not right disfocal in [c,b] and not left disfocal in

[a,c], where c ∈ (a, b), then

∫ b

a

|q(s)|ds +
1

2
||q||(b − a) +

1

2
(b − a)

∫ b

a

|p(s) − q′(s)|ds > 4/(b − a), (2.6)

Proof. Since (1.7) is not right disfocal in [c,b] and not left disfocal in [a,c], where c ∈ (a, b),

then from Theorems 2.5 and 2.6 we obtain

∫ b

c

|q(t)|dt +
1

2
(b − c)||q|| + 1

2
(b − c)

∫ b

c

|p(t) − q′(t)|dt > 1/(b − c), (2.7)
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and
∫ c

a

|q(t)|dt +
1

2
(c − a)||q|| + 1

2
(c − a)

∫ c

a

|p(t) − q′(t)|dt > 1/(c − a). (2.8)

Hence
∫ b

a

|q(t)|dt +
1

2
(b − a)||q|| +

1

2
(c − a)

∫ c

a

|p(t) − q′(t)|dt

+
1

2
(b − c)

∫ b

c

|p(t) − q′(t)|dt

>
(b − a)

(c − a)(b − c)

The function f(c) = (c − a)(b − c) attains maximum at c = (a + b)/2 and f((a + b)/2) =

(b−a)2/4. Hence the required inequality follows. Thus the proof of the theorem is complete.

COROLLARY 2.8 If y(t) is a solution of (1.7) with y(a) = 0 = y′(a), y(b) = 0 = y′(b)

and y(t) 6= 0, t ∈ (a, b), then

∫ b

a

|q(t)|dt +
1

2
(b − a)||q|| + 1

2
(b − a)

∫ b

a

|p(t) − q′(t)|dt > 4/(b − a) .

Proof. There exists a c ∈ (a, b) such that y′(c) = 0. Hence equation (1.7) is not right

disfocal on [c,b] and not left disfocal on [a,c]. Then the result follows from Theorem 2.7.

REMARK 2.9 Corollary 2.8 is an improvement of the inequality

∫ b

a

|q(t)|dt + (b − a)||q|| + (b − a)

∫ b

a

|p(t) − q′(t)|dt > 4/(b − a),

if y(t) is a solution of (1.7) with y(a) = 0 = y′(a) and y(b) = 0 = y′(b)(a < b) and

y(t) 6= 0for t ∈ (a, b) . However, if y(t) is a solution of (1.7) with y(a) = 0, y(b) = 0 = y′(b)

and y(t) 6= 0, t ∈ (a, b) or y(a) = 0 = y′(a), y(b) = 0 and y(t) 6= 0, t ∈ (a, b). Then

( see [20; Theorem 1] ) can be applied but Theorem 2.7 cannot be applied because (1.7) is

left disfocal in [a,c] in the former case and right disfocal in latter case, where c ∈ (a, b) with

y′(c) = 0.

REMARK 2.10 Suppose that y(t) is a solution of (1.7) with y(a) = 0 = y(b) =

y(a′) (a < b < a′) and y(t) 6= 0 for t ∈ (a, b)
⋃

(b, a′). Then there exist a c1 ∈ (a, b)

and c2 ∈ (b, a′) such that y′(c1) = 0 = y′(c2). Theorem 2 (see [20],) can be applied to this

situation but Theorem 2.7 cannot be applied because (1.7) is left disfocal on [a, c1] and right

disfocal on [c2, b]. However, the following result holds :
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COROLLARY 2.11 If y(t) is a solution of (1.7) with y(ti) = 0, 1 ≤ i ≤ 4 (t1 < t2 <

t3 < t4) and y(t) 6= 0, t ∈
3
⋃

i=1
(ti, ti+1), then

∫ t4

t1

|q(t)|dt +
1

2
(t4 − t1)||q||+

1

2
(t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt > 4/(t4 − t1),

if t2 < (t1 + t4)/2 < t3; otherwise,

∫ t4

t1

|q(t)|dt + (t4 − t1)||q|| + (t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt

> 2

[

1

(t3 − t1)
+

1

(t4 − t2)

]

.

If t1 = t2 is a double zero or t3 = t4 is a double zero, then

∫ t4

t1

|q(t)|dt +
1

2
(t4 − t1)||q||+

1

2
(t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt >
1

(t4 − t1)
+

1

(t3 − t1)

or
∫ t4

t1

|q(t)|dt +
1

2
(t4 − t1)||q||+

1

2
(t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt >
1

(t4 − t1)
+

1

(t4 − t2)
.

Proof.There exists a c ∈ [t2, t3] such that y′(c) = 0. Hence equation (1.7) is not left disfocal

in [t1, c] and not right disfocal in [c, t4]. From Theorems 2.5 and 2.6 it follows that

∫ c

t1

|q(t)|dt +
1

2
(c − t1)||q|| +

1

2
(c − t1)

∫ c

t1

|p(t) − q′(t)|dt > 1/(c − t1),

and
∫ t4

c

|q(t)|dt +
1

2
(t4 − c)||q|| + 1

2
(t4 − c)

∫ t4

c

|p(t) − q′(t)|dt > 1/(t4 − c).

Hence
∫ t4

t1

|q(t)|dt +
1

2
(t4 − t1)||q||+

1

2
(c − t1)

∫ c

t1

|p(t) − q′(t)|dt

+
1

2
(t4 − c)

∫ t4

c

|p(t) − q′(t)|dt > (t4 − t1)/(c − t1)(t4 − c) .

The function f(c) = (c− t1)(t4 − c) attains maximum at c = (t1 + t4)/2 and f((t1 + t4)/2) =

(t4 − t1)
2/4. Hence

∫ t4

t1

|q(t)|dt +
1

2
(t4 − t1)||q||+

1

2
(t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt > 4/(t4 − t1) .
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Since t2 < c < t3 and c = (t1 + t4)/2, then t2 < (t1 + t4)/2 < t3. If we consider three

consecutive zeros t1, t2 and t3, then from (see[19 ; Theorem 2]) we obtain

∫ t3

t1

|q(t)|dt + (t3 − t1)||q||+ (t3 − t1)

∫ t3

t1

|p(t) − q′(t)|dt > 4/(t3 − t1).

Hence
∫ t4

t1

|q(t)|dt + (t4 − t1)||q||+ (t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt > 4/(t3 − t1).

Similarly, if we consider three consecutive zeros t2, t3 and t4, then from (see [19 ; Theorem

2] )it follows that

∫ t4

t2

|q(t)|dt + (t4 − t2)||q||+ (t4 − t2)

∫ t4

t2

|p(t) − q′(t)|dt > 4/(t4 − t2).

Hence
∫ t4

t1

|q(t)|dt + (t4 − t1)||q||+ (t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt > 4/(t4 − t2).

Thus
∫ t4

t1

|q(t)|dt + (t4 − t1)||q|| + (t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt

> 2

[

1

(t3 − t1)
+

1

(t4 − t2)

]

.

Let t1 = t2 be a double zero. There exists a c ∈ (t1, t3) such that y′(c) = 0. Since equation

(1.7) is not right disfocal on [c, t4], then from Theorem 2.5 it follows that

∫ t4

c

|q(t)|dt +
1

2
(t4 − c)|q(d)|+ 1

2
(t4 − c)

∫ t4

c

|p(t) − q′(t)|dt > 1/(t4 − c).

Hence
∫ t4

c

|q(t)|dt +
1

2
(t4 − c)||q||+ 1

2
(t4 − c)

∫ t4

c

|p(t) − q′(t)|dt > 1/(t4 − t1) .

As equation (1.7) is not left disfocal on [t1, c], then from Theorem 2.6 it follows that

∫ c

t1

|q(t)|dt +
1

2
(c − t1)||q|| +

1

2
(c − t1)

∫ c

t1

|p(t) − q′(t)|dt > 1/(c − t1).

Hence
∫ c

t1

|q(t)|dt +
1

2
(c − t1)||q||+

1

2
(c − t1)

∫ c

t1

|p(t) − q′(t)|dt > 1/(t3 − t1).
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Thus
∫ t4

t1

|q(t)|dt +
1

2
(t4 − t1)||q|| +

1

2
(t4 − t1)

∫ t4

t1

|p(t) − q′(t)|dt

>

[

1

(t4 − t1)
+

1

(t3 − t1)

]

.

Similarly, if t3 = t4 is a double zero, then we have the other inequality.

REMARK 2.12 Corollary 2.11 cannot be obtained from Theorems 1 and 2 in [19].

REMARK 2.13 If, in general, y(t) is a solution of (1.7) with y(ti) = 0, 1 ≤ i ≤ n,

n ≥ 4, (t1 < t2 < .... < tn) and y(t) 6= 0, t ∈
n
⋃

i=1
(ti, ti+1), then

∫ tn

t1

|q(t)|dt +
1

2
(tn − t1)||q|| +

1

2
(tn − t1)

∫ tn

t1

|p(t) − q′(t)|dt > 4/(tn − t1),

if ti−1 < (tn + t1)/2 < ti, 3 ≤ i ≤ n − 1; otherwise,

∫ tn

t1

|q(t)|dt + (tn − t1)||q|| + (tn − t1)

∫ tn

t1

|p(t) − q′(t)|dt

> 2

[

1

(ti − t1)
+

1

(tn − ti−1)

]

, 3 ≤ i ≤ n − 1.

This can be proved as in Corollary 2.11 by taking c ∈ (ti−1, ti) such that y′(c) = 0.

THEOREM 2.14 If, for every c ∈ (a, b)
∫ c

a

|q(t)|dt +
1

2
(c − a)||q|| + 1

2
(c − a)

∫ c

a

|p(t) − q′(t)|dt < 1/(c − a)

and
∫ b

c

|q(t)|dt +
1

2
(b − c)||q||+ 1

2
(b − c)

∫ b

c

|p(t) − q′(t)|dt < 1/(b − c),

then (1.7) is disconjugate in [a, b].

Proof. If possible, let y(t) be a solution of (1.7) having three zeros (counting multi-

plicities) in [a, b]. Let a ≤ t1 < t2 < t3 ≤ b, y(ti) = 0, 1 ≤ i ≤ 3 and y(t) 6= 0 for

t ∈ [a, b], t 6= ti, 1 ≤ i ≤ 3. Then there exists a c1 ∈ (t1, t2) such that y′(c1) = 0. Hence

(1.7) is not right disfocal on [c1, t3]. Thus

∫ t3

c1

|q(t)|dt +
1

2
(t3 − c1)||q|| +

1

2
(t3 − c1)

∫ t3

c1

|p(t) − q′(t)|dt > 1/(t3 − c1).
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Consequently,

∫ b

c1

|q(t)|dt +
1

2
(b − c1)||q|| +

1

2
(b − c1)

∫ b

c1

|p(t) − q′(t)|dt > 1/(b − c1)

a contradiction. A similar contradiction is obtained if we take c2 ∈ (t2, t3) such that y′(c2) =

0. Suppose y(t1) = 0 = y′(t1) and y(t2) = 0, where a ≤ t1 < t2 ≤ b. Then there exists a

c3 ∈ (t1, t2) such that y′(c3) = 0. Since (1.7) is not disfocal on [t1, c3], then

∫ c3

t1

|q(t)|dt +
1

2
(c3 − t1)||q|| +

1

2
(c3 − t1)

∫ c3

t1

|p(t) − q′(t)|dt > 1/(c3 − t1).

Hence
∫ c3

a

|q(t)|dt +
1

2
(c3 − a)||q||+ 1

2
(c3 − a)

∫ c3

a

|p(t) − q′(t)|dt > 1/(c3 − a),

a contradiction. A similar contradiction is obtained if y(t1) = 0, y(t2) = 0 = y′(t2). This

completes the proof of the Theorem.
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