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Abstract. We carry out spectral analysis of one class of integral op-
erators associated with fractional order differential equations that arises
in mechanics. We establish a connection between the eigenvalues of these
operators and the zeros of Mittag-Lefller type functions. We give sufficient
conditions for complete nonselfadjointness and completeness the systems of
the eigenvalues.

1.Introducion.

In [1] the spectral analysis of operators of the form

T 1

AlBly(z) :ca/(zft)clr dt+cm/z%‘ (1—6)7 u(t)dt.

0 0

was carried out [1]. Here o, 8,7, ¢a, g,y are real numbers, and «, 3, are
positive. (G.M.Gubreev considered similar operators in the paper [2]).
These operators arise in the study of boundary value problems for differ-
ential equations of fractional order (see [3] and references therein, in which
corresponding Green functions are constructed).

In particular it was shown in [1] , that the operator

x

1 1 1
APu(z) = AlPPly(z) = v xze (1—t)»

p—>/ L 7R

is almost non-self-conjugate (see [4] for p > 1), while for 0 < p < 1, the
kernel of the operator A” is non-negative and the Fredholm spector of the
operator A” coincides with the set of roots of the whole function of Mittag-
LefHler type

o _

= T T
— I(p +kp )
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From the above it follows, that all the eigennumbers of the operator
AP are complex for p > 1, while for 0 < p < 1, the operator A” has real
eigennumbers (in fact, if % < p < 1 the set of real eigennumbers is finite),
i.e. all the zeros of the function E,()\;p~!) are complex for p > 1, while
for 0 < p < 1 the function E,(\;p~!) has real zeros. This proves the
assymption about the existence of a real zeros of the function E,(\;p~!)
for % < p < 1, as stated in the monograph [5 pg. 248].

The given paper is devoted as well to study the boundary value problems
for the differential equations of fractional order and the accompanying them
integrated operators of the form A!**.

In order to state the problems in concern we must mention some con-
cepts from fractional calculus.

2.Background and Preliminary Results.

Let f(x) € L1(0,1). Then, the function

xr
d—« 1 o1
T @) = o =0t e Lio,)

') )

is called the fractional integral of order o > 0 with starting point z = 0 [6].
And the function

1

flz) = I‘(la) /(t — ) f()dt € L1(0,1)

x

d*Ot
d(l —x)~

is called the fractional integral of order @ > 0 with ending point z = 1
[6]. Here I'(«) is Euler’s gamma-function. It is clear that when a = 0, we
identify both the fractional integrals with the function f(x). As we know
[6], the function

g(x) € L1(0,1)

is called the fractional derivative of the function
f(x) € L1(0,1)
of order o > 0 with starting point x = 0, if
— a*
dr—«

f(x)

g().
Then denoting
o) = L f(),

dx®
we shall mean in the future, by
dOt

dx’
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the fractional integral when o < 0 and, the fractional derivative when
a > 0. The fractional derivative

@
d(l —x)o

of the function f(z) € L1(0,1) of order « > 0, with the ending point = =1
is defined in a similar way.

Let {7 }o" be any set of real numbers, satisfying the condition 0 < v; <
1,(j =0,1,..,n). We denote

k k
Uk:Z;uk:UkJrl:Z'yj,(k:O,l,...,n)
§=0 §=0
and we assume that
1 n
—:Z'yjflzon:unfl>0.
=

Following [6], we consider the differential operators,

d—(1=0)

D(Go)f(x) = e} ),

which are, generally, of fractional order

d—0=") g
(01) = %
DYV f(x) = dr—(—71) dgo (z),
d=1=7m) gm-1 g
(o) =
D f(SC) - dx_(l_ﬁ’n) dxyn-1 .“d(E’YO ’
Here we note, that if vg = v; = ... =, = 1 then obviously

DR f(z) = f® (), (k=0,1,2,...,n).

To demonstrate the basic ideas, we start by investigating most simple
cases. Thus, we put, 73 = 74 = ... = v, = 0, and consider a problem which
is an analogue of the well-known problem of Storm-Liouville. This problem
which we call problem (A), as in [7], means the following:

In class

L2(0,1)(orL1(0,1))

find a nontrivial solution of the equation

D)y — A+ q(z)]ly =0 (1)
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x € (0, 1], satisfying the boundary conditions

D(GO)yLE:O cos o + D("l)y‘mzo sina =0 2)
D(Uo)y’I:1 COSB + D(Ul)y‘zzl Slnﬁ = 0,

where \ «, 8;(Ima = Imf = 0), are arbitrary parameters, ¢(z) €
L5(0,1). M.M.Dzhrbashchjan writes [7]: ”questions of completeness of sys-
tem of the eigenfunctions of problem (A), or a more delicate question,
whether these functions form a basis in L2(0, 1), are undoubtly interest-
ing. But their solutions, apparently, are faced with significant analytical
difficulties.”

In [9] (see also [3]), it has been proved that the system of eigenfunctions
of problem (A) is complete in L2(0,1), when ¢(z) = 0.

Later, M.M.Malamud and his disciples [10] - [11] also have established
the completeness of system of the eigenfunctions of similar problems the
case of when ¢(z) is an analytical function.

In this paper we give the complete solution of the problem on complete-
ness of the system of eigenfunctions of problem (1)-(2) providing ¢(x) > 0.
We shall consider various variants of equation (1). Aty =71 = 1, equation
(1) is transformed into the equation

x

1 u (t)
(1 —72) 0/ (x —t)r2

dt — (A + q(z))u(z) =0, (3)

which is called a fractional oscillational equation [5], and the operator D(72)
is called - the operator of fractional differentiation in Caputo sence [5]. At
Yo = v2 = 1, the equation (1)is transformed into the equation

z ’

Lod [ u(®) . .
F(l—%)dxo/(x—t)%dt (A +g(x))u(z) = 0. (4)

The equation (4) as the modelling equation of fractional order 1 < o < 2
has been investigated (see [3] and references therein).

Theorem 1:Let q(x) be the half-limited function. Then the system of
the eigenfunctions of problem (A)

z /

L d [ d®)
F(l_’h)dxo/(x—t)w dt — (q(x) + Nu(t)dt = 0,

u(0) = 0,u(1) = 0 is complete in L2(0,1).
The proof of Theorem 1 is based on Lemma, 1.
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Lemma 1.The operator S, induced by the differential expression

z /

_ 1 d u (t)
I(u) = =) dr / Wdt = q(z)u(),

and boundary conditions

has an inverse operator.

Proof of Lemma 1: Lemma 1 will be proved if we can show, that
problem (A), at ¢(z) > 0 has the unique trivial solution «(0) = 0.To prove
the last statement we do the following. We multiply both sides of the

equation
xr

: ! v () = q(z)u(x
F(l’h)ao/(:ct)'ndt_q( Ju(z)

by (z —¢)", and integrate from 0 to 2. We obtain

1 r d [ o y .
m/xt @O/ T ey dgdt = O/(:ct) q(t)u(t)dt.

Let’s calculate the integral

T t
1 d
he= e [ o= o _/ v
L1 —m) dt
0 0

We have

x t ,
— _gnplon) __m 1 [ _u(©)
eD u‘t—o (1l —my) O/(z 2 (0/ (t—&m dg)dt
— g plor) _ " ! o=l e\
= et L1 —m) O/U (5)(!(90 Ot — &) dt)dE
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F(y)m / ‘
— 71 lor) — d.
D] - S [
0
Thus
Iu 7 D) — clu(z) — u(0)]
=0
Therefore
cu(x) = x7 DY) / x — 1) q(t)u(t)dt,
0

=T'(1 4 ~1). Hence, the general solution of the equation

Lod )
F(l—%)dxo/(t_g)mdf q(z)u =0,

satisfying the condition u(0) = 0, has the form

x

u(z) = cx™ + /(:c — )M q(t)u(t)dt = cx” + Au(z).
0

The last equation leads, to:

u(z) = c(I — A)7'a" = (a2 + Az" + A% 4 L+ A" L),

Since N
Ax™" = /(:L' — )" q(t)t" dt,
0
thus
A2 = Aw“ / T — t Mg / E'Yl de)dt
0

Consequently, the kernel of the operator A2 is equal to
t
Kaltis) = [ =7/ a(r)(r = " a(s)dr.
The kernel of the operator A™ is defined by the known formula
t
K, (t;s) = /K(t; $)Ky—1(7;8)dr.

S
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Since, the kernels of the operators
A A% AT
are positive, the function
u(z) = c(z + Ax? + A% L A L),

at x = 1, cannot be equal to 0, which proves Theorem 2. Now we give the
complete proof of Theorem 1.

Proof of Theorem 1: The proof of Theorem 1, is based on V.B.Lidskii’s
known theorem

(Theorem of V.N. Lidskii: Let in present operator C' be a
dissipative, and trace class. Then, system of eigenfunctions and
adjoint functions of the operator C, is complete in the domain
of the operator C.) [12]. According to V.B.Lidskii’s [12] theorem, it is
enough to establish, that the operator S~! is dissipative and trace class.

Let u(t) be any function from the domain of D(S) C L3(0,1). Then

Re(Su,w) = ﬁRe/(%/mdtJrq(z))ﬂ(z)dz
0 0
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We take advantage of the Matsaev-Polant’s theorem [13, 14]

(Theorem of Matsaev-Polant: Let A be a dissipative operator.
Then, the values of the form (A" f; f), (0 <v < 1), lie in the angle
0 <argA < nv (p. 481)).

Theorem of Matsaev-Polant states, that the value of the form (% Hh
lies in the angle |argz| < %*. So, it follows from the theorem of Matsaev-
Polant that the operator

1 4 d
Tu = T(1—) do E)[ (rfg)w1 dt

u(0) =0,u(1) =0

is not only dissipative, but also sectorial; the values of the form (Su,w)
lies in the angle |argz| < *. Now the dissipativity of the operator S
implies the dissipativity of the operator S~!. Next we establish, that the
operator S—! is trace class. Let A1, Ao, ..., An, .. and p1, l2, ..., fin... be the
eigenvalues of the operators S and T correspondingly, numerated in the
non-decreasing order of modulus. Then [8] we know, that [\, — pn]| <
[lg(2)]|. Now, taking into account that the eigennumbers of the operator T
coincide, with zeros of the function E,()\; p~1)([1],[8]) and the asymptotic
of zeros of the Mittag-Leffler function

o0 k;
V4
By(zip) =Y  =———7.p >0
= U(p+kp~1)

is well studied (see [15] p.142), we obtain, that the operator S~! has a finite
spectral trace, i.e. the operator S~! is trace class.

Since the operator S~! is dissipative and is trace class according to
V.B.Lidskii’s theorem, the operator S~! has the complete system of eigen-
functions in Ly (0;1).

Corollary 1: All eigenvalues of the operator S lie in the angle |argz| <
T in particular all zeros of the function E,(z;p71) also lie in the angle
largz| < TR

In a similar way we can investigate any variants of problem (A). We
show how to do it. We consider the Dirichlet problem for the fractional
oscillational equation, i.e. problem (A;)

T "

1 u (t)
(1 —2) O/ (x —t)r

dt — (g(z) + Nu=0
u(0) = 0,u(1) =0.
Theorem 1’. The system of eigenfunctions of problem (Z) is complete

mn LQ(O; 1).
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The proof of Theorem 1’ as in the case with Theorem 1, is based on
Lemma 1'.
Lemma 1’. The operator, induced by the differential expression

x "

= 1 u (t) oz "
E(u)_F(lvg)O/(zt)”dt (¢(z) +A)

and boundary conditions

has an inverse operator.

__Proof of Lemma 1’. Lemma 1’ will be proved if we show that problem
(A1), for g(z) > 0, has the unique trivial solution u(z) = 0. To prove the
uniqueness of the trivial solution, we multiply both sides of the equation

z "

1 u (t)
F(l—’}/g)o/(,f—f)

—dt = (g(x)u())

by (z —¢)" and then integrate from 0 to 2. Then we get

x

R R S R DR
(1 —2) O/( ) O/((t—§)72 d€)dt O/( )2 q(t)u(t)dt.

Using the Dirichlet permutation formulas, we transform the integral
LT [ e
u
_ x—t”z/idfdt.
) 0/( =g

Clearly,

x

L [ [
T / oy (0/ RS

x x

1 " A e N Y e Sele 0]
- / u (s){!(w )7 (0~ €) i)
DO =) [
= 0/ (€)( — €)de

=/ (0)T(1 + )z + o' ()T (1 +v2) — T(1 + 72)u(0).
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Thus, the general solution of the equation

x

1 u (t)
(1 —2) / (z—1)

0

dt — q(w)ula) =0,
satisfying the condition u(0) = 0, has the form
u(x) = cx + /(:c — )" q(t)u(t)dt = cx + Au.
0

Consequently
u(z) = eI — A) 'z = c(z + Az + A%z + ...).

Since ¢(x) > 1 it is clear that y(1) # 0, and from here follows the proof
of Lemma 1. Now we give the proof of Theorem 1. We take advantage
of V.B.Lidskii’s theorem [12] again. We will prove, that the operator S is
dissipative. Let u(z) be any function from the domain of the operator S
D(S) C Ly(0,1). The function

[ v(x),z €]0,¢]
vl ={ el
where ¢ > 0, and the function v(z), is such, that

v’(z)|Z:0 =0

and is summable with square in [0;¢].
It is possible to show, that
lim(gus;ﬂg) = (§u,ﬂ)

e—0

For this purpose it is enough to take in account [15] (p. 573 2) the formula

doz _ f/(o) —« 1 f —a gl
dz—af(l') = mlﬂ + m /(.’L‘ — t) f (t)dt
0

Here
fl(z) € L(0,1),(0 < a < 1).

After that, repeating the proof of Theorem 1 word by word, we obtain, that
the values of the form (Su, ) lie in the angle |argz| < 32. the existence

of the kernel in operator S~ can be established in a way similar to that of
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the existence of the kernel in operator S~!. For this purpose it is enough
to remember, that number ); is the eigenvalue of the operator T only in
the case, when ); is a zero of the function E,(),2). Thus the operator
(5’1) , when it is trace class and dissipative, has a complete system of
eigenfunctions. N

Corollary 17. All eigenvalues of the operator S lie in the angle |argz| <
T2, In particular, all zeros of the function E,(z;2) also lie in the angle
largz| < T2

By means of operators A[f"ﬁ Vit is possible to obtain statements simi-
lar to Lemmas 1 and 1’, in a different way. We formulate and prove the
following statement. For simplicity we put ||¢(z)|| < b

I+71)°
Theorem 4: The operator S is invertible and compact, and

1
(1 =71) = llg@)II
Proof of Theorem 4 can be obtained from the following known theorem.

Theorem [16] (p. 249):Let T and A be any operators from X into
Y. We assume that T~ exists and belongs to B(Y, X). We also assume,

1571z, <

1Al < alful] + bl|Tu|]

u € D(T),

where the constants a and b satisfy the inequality a||T~1||+b < 1. Then the
operator S = T+ A will be closed and may be invertible, and S—* € B(Y, X)
and

]
S—l < ||
|| ||— 1_a||T_1||_ba
- - T |(al|T~ 1] +b)
S 17T 1 < ||
] = S=ar-v

Furthermore, if the operator T~ is compact,then S™! is compact too.
Proof of Theorem 2. Operator .S, in our case, has the form

I R )
Su = I'(1—m1) dx g‘ (z—t)71 dt + q(z)u(x)

It is possible to represent the operator S in the form Su = Tu + Au
where T is not a disturbed operator,

14 ()
Tu = r(l—w)dm{(w—t)ﬂ dt
u(0) =0,u(1) =0
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and Au is the corresponding disturbance

[ qe)ulz)
A“{ u(0) = 0,u(1) = 0

As it was already noted the operator

T 1

Apu(t):ﬁ /(ac— /x%* (1—t)s tut)dt]
0

0

is the inverse of the operator T" when % =1+ [3],i-e. T7'u= APu and

it is obvious that
2 2

T(p 1) TA+m)

HmMSM(mMH—ﬁf%ﬂ

|APu]| <

Now

< ) 2 2
T 1-Jlg@)[T(L+m)  TA+m) - 2lg@)|

In the proof of Lemma 1, it is certainly essential that ¢(z) is positive. In
the proof of the Theorem 2, ¢(x) is not required to be positive. In exactly
the same way we can obtain similar results for the problem (Z), assosiated
with problem (A4). To state problem (A) we define

k
Gr=) Y2 —1,
=0

1S~

k
fir =0+ 1= Z’Y%j
§=0
(k = 0’ 17 2)’
— —(1—72)
@) p(p) = 9
Dl f(x) - d(l B Z')7(1772) f(ZC),
~ —(1-m) dr2
(01) - _ d
Dl f(.%') - d(l . x)—(l—Vl) d(l . $)72 f(.%'),
5 d—(1=0) dn A2
DY) f(z) = f().

d(1 —x)=1=7) d(1 — z)" d(1 — )72
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And now, problem (A) may be put as follows. In class L2(0,1) (or L1(0,1))
we find nontrivial solution of the equation

D@2z — (X4 q(x)}z =0,z € [0,1),

satisfying the boundary conditions

Dg%)z cosa + Dga)z sina =0
=0 =0

Dg&vo)z cos 3+ D{"Nl)z sinf = 0.
=0 =

the associated problem gives essentially, new results, in the case when
the order of the fractional differential equation is less than one. To this
case we shall devote separate paper. To show, how to transfer the obtained
results on a case of the differential equations of order higher than two, we
consider the following problem.

In class Ly(0, 1) we find non-trivial solution of the equation

DUy — {A+q(x)y = 0,}(7)
satisfying the conditions
Dy|amg = 0; DVylamp = 0; D) ylomy = 0:(8)
We put
Yo =12 =13 =1

o3=—=Ytn+rtr-1=2+m

1
p
In this case problem (7) — (8) will be rewritten as follows

1 d? y'(t) /
s ooz | Ty (AT al@)ty =0(7)
Il —my)dx 0/ (x —1)

y(0) = 0; Dyl = 0;y(1) = 0(8)

We know from [3], that the operator, inverse to the operator induced by
differential expression

1 e[yt
Prl—m)de? ) (z—t)m
0
and satisfying to boundary conditions (8') is equal to the operator A? for
1 < p < 2 (in paper [1], the eigennumbers and the eigenvalues of the ex-
pression for A” at every A”.)Boundary-value problems for the equations of
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order higher than 2 are investigated not enough. (there is M.M.Malamud’s
remarkable paper [10] in this topic). Therefore the author would like to
dwell on this problem in more details.

Theorem 3.Let g(x) = 0, then the number \; is the eigenvalue of
problem (7') — (8'), iff \ is a zero of the function E,(X\; p~ '), and functions
)

1_q 1
xzr B (\jxr;

DI

are eigenfunctions of this problem.
Proof: The general solution of the equation (7’) satisfying the condi-
tions
y(0) = 0,Dy|,g = 0; D7) y|,g = 43

obviously satisfies the equation

I'2+m) ()

bl»—'

v5 A
y(a; \) = =2zt 4 / x —t y(t; N)dt; (9)
0

We write out the solution of the equation (9) according to the known for-
mula [[15] p.123];

x

y(@;A) = yigxl‘”l—l—)\/(x—t);lEp()\(x t)r: l)(yigtzm)dt
L2+m) p (T + )

0

and calcculate the integral

x

— [0 B0 -0

- tH"Yldt
I'l+m) ) )

=

according to M.M.Dzhrbashchjan’s formula [6 p.121]

!
/xaflEp()\x%;Oz)(l — ) T E,(\ (1 - z)7; B)da

0
AE, (17 X+ B) = NE,(IP X5 0+ 8) st
pr— l
PEDY:
(>0,6>0)

1
/x—t E,(Max — t)7; =)t» 'dt
P
0
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1 2 2
= B (x7; =)av !
T
From here we get
0
Y2 1_ 120 2_
y(z;/\):mw 1+/\9ng(>\$”;;)$” '
1 1 1 2
0.1-1 1 1
= YsT” + e E,(Axr;—
2 [F(pfl) P( p)]

1
= ygx%_lEp()\ z%; -).
p

Thus, we have proved, that the general solution of equation (7'), satisfying
y(0) = 0; Dy|p—g = 0; Dy|,—g = 3,

has the form )
y(x;\) = y3ar T E,(Ae s =),
P

From here it follows that the number \ is an eigennumber of problem
(7") — (8)when and only , when
0 1
Y(LA) = ya Ep(X; ;) =0,

ie. eigennumbers of problem (7’) — (8') coincide with zero of the function
(/\:r P —) and eigenfunctions have the form

E,(\x7; -),

I

which proves Theorem 3. It is interesting how all this has a precise junction
with the case of % < p < 1, which we investigated above.

Theorem 4.The operator D7 induced by the differential expression

1 & [ ) .
T(1 =) dgﬂo/(xt)vd”q( Jv

and the boundary conditions (8') is dissipative.
Proof:

40 = | Fre 4 / i@ | + )
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b

INOE)! (x—t)
- 1“(11—7) /%/ (xy_/(gvly/(z)dﬁ(q(w)y,?)
0 0

d
—— (f=7) + G@wp),
where z = ¢/. Since z € Ap7[0,1] (the set of all functions z(z), having
absolutely continuous on [0,1] fractional integral of order 1 — v with the
starting point 0 and the ending point x, which vanishs at = 0), therefore
according to Tamarkin’s theorem ([15] p.574) there is a unique function

u € L(0,1) such, that z(x) = 4. Hence

= T

o d—(=7
and the values of the last form, according to Matsaev-Polant’s theorem,
mentioned above lays in the corresponding sector. From this follows the
proof of our theorem. Now having a dissipativity, we can prove complete-

ness of the system of the eigenfunctions of problem (7’) — (8') , reverse as
1
above, if there is an operator, inverse to the operator D»u, and equal to

1 d> 0
D%u = I'(1—~) dz? }j{ (z—1)7 dt, 0< v < 1

u(0) = 0; D@u|__ = 0;u(l) =0

The operator A’ at % = 2 + v is the inverse to the operator D [3].
And in general, the operator inverse to the operator, generated by the
differential expression

1 dn—l u’(t)
u F(l _ fy) dxn—1 / (SC o t)»y ’ (70 » Y1 V2 yeeey Y
0
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and natural boundary conditions

u(0) = 0; DVu|  =0,.., D=yl =0,u(l)=0
=0 =0

is equal to A” at % =n —1++. This can be checked directly as in [3] (it is

necessary to show, that APDoy = u; and D APy = u.) And now, just as
was done in [3], one can investigate, by means of operators of kind Aﬁ"ﬁ , the
questions of simplicity of the corresponding eigenvalues and marking out
the domains where these eigenvalues do not exist(or, equally, the questions
of simplicity of zeros of the corresponding functions of Mittag-Leffler’s type
and domains in the complex plane where these zeros do not exist).

Finally, the next publication will be devoted to questions of existence
of basis, the constructed systems of the eigenfunctions and the proof of
the oscillating property of the operator Ap[p’p] of cases 0 < p < 1/2. Tt is
absolutely new class of the oscillating operators different from the operators
of M.G.Krein [17].
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