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Abstract

In this paper, we study the existence of solutions for a two-point boundary

value problem of fractional semilinear evolution equations in a Banach space.

Our results are based on the contraction mapping principle and Krasnoselskii’s

fixed point theorem.
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1 Introduction

In some real world problems, fractional-order models are found to be more adequate
than integer-order models. Fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and
processes. The mathematical modelling of systems and processes in the fields of
physics, chemistry, aerodynamics, electro dynamics of complex medium, polymer
rheology, etc. involves derivatives of fractional order. In consequence, the subject
of fractional differential equations is gaining much importance and attention. For
examples and details, see [1-13] and the references therein.
In this paper, we consider a two-point boundary value problem involving fractional
semilinear evolution equations and prove some existence results in a Banach space.
Precisely, we study the following boundary value problem:

{

cDqx(t) = A(t)x(t) + f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,
αx(0) + βx′(0) = γ1, αx(1) + βx′(1) = γ2,

(1.1)

where cD is the Caputo fractional derivative, A(t) is a bounded linear operator on
X for each t ∈ [0, 1] (the function t → A(t) is continuous in the uniform operator
topology), f : [0, 1]×X → X and α > 0, β ≥ 0, γ1,2 are real numbers. Here, (X, ‖.‖)
is a Banach space and C = C([0, 1], X) denotes the Banach space of all continuous
functions from [0, 1] → X endowed with a topology of uniform convergence with the
norm denoted by ‖.‖C.

EJQTDE, 2009 No. 28, p. 1



2 Preliminaries

Let us recall some basic definitions [8, 11, 13] on fractional calculus.

Definition 2.1. For a function g : [0,∞) → R, the Caputo derivative of fractional
order q is defined as

cDqg(t) =
1

Γ(n − q)

∫ t

0

(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t − s)1−q
ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a func-
tion g(t) is defined by

Dqg(t) =
1

Γ(n − q)

( d

dt

)n
∫ t

0

g(s)

(t − s)q−n+1
ds, n = [q] + 1,

provided the right hand side is pointwise defined on (0,∞).

Now, we state a known result due to Krasnoselskii [14] which is needed to prove
the existence of at least one solution of (1.1).

Theorem 2.1. Let M be a closed convex and nonempty subset of a Banach space
X. Let A, B be the operators such that: (i) Ax + By ∈ M whenever x, y ∈ M ; (ii)
A is compact and continuous; (iii) B is a contraction mapping. Then there exists
z ∈ M such that z = Az + Bz.

As argued in reference [1], the solution of the boundary value problem (1.1) can
be written as

x(t) =
1

Γ(q)

∫ t

0

(t − s)q−1
(

f(s, x(s)) + A(s)x(s)
)

ds

+

∫ 1

0

[(β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)

](

f(s, x(s)) + A(s)x(s)
)

ds

+
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2].
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3 Main results

Theorem 3.1. Let f : [0, 1] × X → X be a jointly continuous function mapping
bounded subsets of [0, 1] × X into relatively compact subsets of X, and

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0, 1], x, y ∈ X.

Then the boundary value problem (1.1) has a unique solution provided

(L + A1) ≤
1

2

[ β + 2α

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)

]−1

,

where A1 = maxt∈[0,1] ‖A(t)‖.

Proof. Define z : C → C by

(zx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1
(

f(s, x(s)) + A(s)x(s)
)

ds

+

∫ 1

0

[(β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)

](

f(s, x(s)) + A(s)x(s)
)

ds

+
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2], t ∈ [0, 1].

Setting supt∈[0,1] ‖f(t, 0)‖ = M and choosing

r ≥ 2
[

M
( β + 2α

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)

)

+
α + β

α2

(

γ1 + γ2

)]

,

we show that zBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(zx)(t)‖ ≤ 1

Γ(q)

∫ t

0

(t − s)q−1
(

‖f(s, x(s))‖ + ‖A(s)‖‖x(s)‖
)

ds

+

∫ 1

0

∣

∣

∣
β − αt

∣

∣

∣

[(1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)

](

‖f(s, x(s))‖ + ‖A(s)‖‖x(s)‖
)

ds

+
α + β

α2

(

|γ1| + |γ2|
)

≤ 1

Γ(q)

∫ t

0

(t − s)q−1
(

‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖+ ‖A(s)‖‖x(s)‖
)

ds

+

∫ 1

0

∣

∣

∣
β − αt

∣

∣

∣

[(1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)

]

×
(

‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖ + ‖A(s)‖‖x(s)‖
)

ds +
α + β

α2

(

|γ1| + |γ2|
)
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≤ ((L + A1)r + M)
[ 1

Γ(q)

∫ t

0

(t − s)q−1ds

+

∫ 1

0

∣

∣

∣
β − αt

∣

∣

∣

((1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)

)

ds
]

+
α + β

α2

(

|γ1| + |γ2|
)

= ((L + A1)r + M)
[ tq

Γ(q + 1)
+ |β − αt|

( 1

αΓ(q + 1)
+

β

α2Γ(q)

)]

+
α + β

α2

(

|γ1| + |γ2|
)

≤ (L + A1)[
2α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
]r + M

[ 2α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)

]

+
α + β

α2

(

|γ1| + |γ2|
)

≤ r.

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

‖(zx)(t) − (zy)(t)‖

≤ 1

Γ(q)

∫ t

0

(t − s)q−1|
(

‖f(s, x(s)) − f(s, y(s))‖+ ‖A(s)(x(s) − y(s)‖
)

ds

+

∫ 1

0

∣

∣

∣
β − αt

∣

∣

∣

[(1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)

]

×
(

‖f(s, x(s)) − f(s, y(s))‖+ ‖A(s)(x(s) − y(s)‖
)

ds

≤ (L + A1)‖x − y‖C
[ 1

Γ(q)

∫ t

0

(t − s)q−1ds

+

∫ 1

0

|β − αt|
((1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)

)

ds
]

≤ (L + A1)‖x − y‖C
[ tq

Γ(q + 1)
+ |β − αt|

( 1

αΓ(q + 1)
+

β

α2Γ(q)

)]

≤ (L + A1)
[ 1

αΓ(q + 1)
(2α + β) +

β2 + αβ)

α2Γ(q)

]

‖x − y‖C
≤ Λα,β,q,L,A1

‖x − y‖C,

where Λα,β,q,L,A1
= (L+A1)

[

2α+β

αΓ(q+1)
+ β2+αβ

α2Γ(q)

]

, which depends only on the parameters

involved in the problem. As Λα,β,q,L,A1
< 1, therefore z is a contraction. Thus, the

conclusion of the theorem follows by the contraction mapping principle.

Theorem 3.2. Assume that f : [0, 1]×X → X is a jointly continuous function and
maps bounded subsets of [0, 1]×X into relatively compact subsets of X. Furthermore,
assume that

(H1) ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0, 1], x, y ∈ X;

(H2) ‖f(t, x)‖ ≤ µ(t), ∀(t, x) ∈ [0, 1] × X, and µ ∈ L1([0, 1], R+).
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If (L + A1)(
α+β

αΓ(q+1)
+ β2+αβ

α2Γ(q)
) < 1, then the boundary value problem (1.1) has at

least one solution on [0, 1].

Proof. Let us fix

r ≥
‖µ‖L1[ 2α+β

αΓ(q+1)
+ β2+αβ

α2Γ(q)
] + α+β

α2 (|γ1| + |γ2|)
1 − A1[

2α+β

αΓ(q+1)
+ β2+αβ

α2Γ(q)
]

,

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Φ and Ψ on Br as

(Φx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1
(

f(s, x(s)) + A(s)x(s)
)

ds,

(Ψx)(t) =

∫ 1

0

[(β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)

](

f(s, x(s)) + A(s)x(s)
)

ds

+
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2].

For x, y ∈ Br, we find that

‖Φx + Ψy‖ ≤ (‖µ‖L1 + A1r)
[ 2α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)

]

+
α + β

α2

(

|γ1| + |γ2|
)

≤ r.

Thus, Φx + Ψy ∈ Br. It follows from the assumption (H1) that Ψ is a contraction
mapping for

(L + A1)
( α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)

)

< 1.

The continuity of f implies that the operator Φ is continuous. Also, Φ is uniformly
bounded on Br as

‖Φx‖ ≤ (‖µ‖L1 + A1r)

Γ(q + 1)
.

Now we prove the compactness of the operator Φ. Setting Ω = [0, 1]×Br, we define
sup(t,x)∈Ω ‖f(t, x)‖ = f, and consequently we have

‖(Φx)(t1) − (Φx)(t2)‖

=
∥

∥

∥

1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1](f(s, x(s)) + A(s)x(s))ds

+

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds
∥

∥

∥

≤ (f + A1r)

Γ(q + 1)
|2(t2 − t1)

q + t
q
1 − t

q
2|,
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which is independent of x. So Φ is relatively compact on Br. Hence, by the Arzela
Ascoli Theorem, Φ is compact on Br. Thus all the assumptions of Theorem 2.1
are satisfied and the conclusion of Theorem 2.1 implies that the boundary value
problem (1.1) has at least one solution on [0, 1].

Example. Consider the following boundary value problem
{

cD
3

2 x(t) = t
20

x + 1
(t+5)2

|x|
1+|x|

, t ∈ [0, 1],

x(0) + x′(0) = 0, x(1) + x′(1) = 0.
(3.1)

Here, f(t, x(t)) = 1
(t+5)2

|x|
1+|x|

, A(t) = t
20

, α = 1, β = 1, γ1 = 0 = γ2. Clearly

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖ with L = 1
25

and A1 = 1
20

. Further,

2(L + A1)
( β + 2α

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)

)

=
36

25
√

π
< 1.

Thus, all the assumptions of Theorem 3.1 are satisfied. So, the conclusion of Theo-
rem 3.1 applies and the boundary value problem (3.1) has a unique solution on [0, 1].
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