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1 Introduction

In this paper, we consider the two-point boundary value problem











Dδu(t) + g(t, u) = 0, t ∈ (0, 1), 1 < δ ≤ 2

u(0) = a, u(1) = b,

(1.1)

where g : [0, 1] × R → R, a, b ∈ R, and Dδ is Caputo fractional derivative of order 1 < δ ≤ 2

defined by (see [1])

Dδu(t) = I2−δu
′′

(t) =
1

Γ(2 − δ)

∫ t

0

(t − s)1−δu
′′

(s)ds,

I2−δ is the Riemann-Liouville fractional integral of order 2 − δ, see [1].

Differential equations of fractional order occur more frequently in different research areas

and engineering, such as physics, chemistry, etc. Recently, many people pay attention to the
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existence of solution to boundary value problem for fractional differential equations, such as

[2]− [7], by means of some fixed point theorems. However, as far as we know, there are no pa-

pers dealing with the existence of solution to boundary value problem for fractional differential

equations, by means of the lower and upper solutions method. The lower and upper solutions

method plays very important role in investigating the existence of solutions to ordinary differ-

ential equation problems of integer orders, for example, [8] − [11].

In this paper, by generalizing the concept of lower and upper solutions to boundary value

problem for fractional differential equation (1.1), we shall present sufficient conditions for the

existence of at least one solution satisfying (1.1)

2 Extremum principle for the Caputo derivative

In order to apply the upper and lower solutions method to fractional differential equation

two-point boundary value problem (1.1), we need the following results about Caputo derivative.

Theorem 2.1 Let a function f ∈ C2(0, 1) ∩ C[0, 1], attain its maximum over the interval

[0, 1] at the point t0, t0 ∈ (0, 1]. Then the Caputo derivative of the function f is non-positive

at the point t0 for any α, Dαf(t0) ≤ 0, 1 < α ≤ 2.

Proof For given function f ∈ C2(0, 1) ∩ C[0, 1], Since f
′′

∈ L1(0, t0), hence,

∀δ > 0, ∃ 0 < ε < t0 such that |
1

Γ(2 − α)

∫ ε

0

(t0 − s)1−αf
′′

(s)ds| ≤ δ. (2.1)

For ε > obtained in (2.1), let us consider the following two cases: Case (i): f
′

(ε) ≥ 0; Case

(ii): f
′

(ε) < 0.

For case (i), we consider an auxiliary function

h(t) = f(t0) − f(t), t ∈ [0, 1].

Because the function f attains its maximum over the interval [0, 1] at the point t0, t0 ∈ (0, 1],

the Caputo derivative is a linear operator and Dαc ≡ 0(c being a constant), hence, function h

possesses the following properties:











h(t) ≥ 0, t ∈ [0, 1]; h(t0) = 0; h
′

(t0) = −f
′

(t0) = 0;

Dαh(t) = −Dαf(t), t ∈ (0, 1].

(2.2)

Obviously, h
′

(ε) = −f
′

(ε) ≤ 0. Since

Dαh(t0) =
1

Γ(2 − α)

∫ t0

0

(t − s)1−αh
′′

(s)ds
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=
1

Γ(2 − α)

∫ ε

0

(t0 − s)1−αh
′′

(s)ds +
1

Γ(2 − α)

∫ t0

ε

(t0 − s)1−αh
′′

(s)ds

= I1 + I2

is valid for ε in (2.1); since h ∈ C2(0, 1), h(t0) = h
′

(t0) = 0, there are

|h(t)| = |h(t) − h(t0)| ≤ |h
′

(t)|(t0 − t) = |h
′

(t) − h
′

(t0)|(t0 − t) ≤ c1(t0 − t)2,

|h
′

(t)| = |h
′

(t) − h
′

(t0)| ≤ c2(t0 − t), t ∈ [ε, t0],

where c1 > 0, c2 > 0 are positive constants, and t ∈ (t, t0). Hence, we have

I2 =
1

Γ(2 − α)

∫ t0

ε

(t0 − s)1−αh
′′

(s)ds

=
1 − α

Γ(2 − α)

∫ t0

ε

(t0 − s)−αh
′

(s)ds −
(t0 − ε)1−αh

′

(ε)

Γ(2 − α)

= −
(1 − α)(t0 − ε)−αh(ε)

Γ(2 − α)
−

α(1 − α)

Γ(2 − α)

∫ t0

ε

(t0 − s)−α−1h(s)ds

−
(t0 − ε)1−αh

′

(ε)

Γ(2 − α)
,

which leads to the relation

I2 ≥ 0

that together with (2.1) complete the proof of the theorem.

We consider case (ii) in the remaining part of the proof. Here, we consider the following

auxiliary function

h(t) = f(t0) − f(t) + ϕ(t), t ∈ [0, 1],

where ϕ(t) is infinitely differentiable function on R, defined by

ϕ(t) = A















e
kt2

t2−t2
0 , t < t0,

0, t ≥ t0

here, k is a constant satisfies

0 < k ≤
(t30 − tt20)

2 + t2t20(t
2
0 − t2) + 2tt20(t

3
0 − t3)

2t60
, t ∈ [0, t0),

and A is a positive constant satisfies

2Aεt20k

(ε2 − t20)
2
e

kε2

ε2
−t2

0 ≥ −f
′

(ε), ε is the positive constant obtained in (2.1).
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By calculation(applying the Law of L’Hospital), we easily obtain that

ϕ(t0) = 0, ϕ
′

(t0) = 0, ϕ
′′

(t0) = 0

and that,

ϕ
′′

(t) = −A(e
kt2

t2−t2
0

2tt20k

(t2 − t20)
2
)
′

= −2Ake
kt2

t2−t2
0

t60 + 2t2t40 − 3t4t20 − 2t2t40k

(t − t0)4

= −2Ake
kt2

t2−t2
0

(t30 − tt20)
2 + t2t20(t

2
0 − t2) + 2tt20(t

3
0 − t3) − 2t2t40k

(t − t0)4
,

for t ∈ [0, t0). Since 0 < k ≤
(t30−tt20)

2+t2t20(t
2
0−t2)+2tt20(t30−t3)

2t60
, so, for t ∈ [0, t0), there is

(t30 − tt20)
2 + t2t20(t

2
0 − t2) + 2tt20(t

3
0 − t3) − 2t2t40k

≥ (t30 − tt20)
2 + t2t20(t

2
0 − t2) + 2tt20(t

3
0 − t3) − 2t60k ≥ 0.

Hence, the Riemann-Liouville fractional integral I2−αϕ
′′

(t0) ≤ 0. And that, it follows from

2Aεt20k

(ε2−t2
0
)2

e
kε2

ε2
−t2

0 ≥ −f
′

(ε) that h
′

(ε) ≤ 0.

Since h ∈ C2(0, 1), h(t0) = h
′

(t0) = 0, there are

|h(t)| = |h(t) − h(t0)| ≤ |h
′

(t)|(t0 − t) = |h
′

(t) − h
′

(t0)|(t0 − t) ≤ c1(t0 − t)2,

|h
′

(t)| = |h
′

(t) − h
′

(t0)| ≤ c2(t0 − t), t ∈ [ε, t0],

where c1 > 0, c2 > 0 are positive constants, and t ∈ (t, t0). By the same arguments as case (i),

we can obtain that

Dαh(t0) =
1

Γ(2 − α)

∫ ε

0

(t0 − s)1−αh
′′

(s)ds +
1

Γ(2 − α)

∫ t0

ε

(t0 − s)1−αh
′′

(s)ds

= I1 + I2,

I2 = −
(1 − α)(t0 − ε)−αh(ε)

Γ(2 − α)
−

α(1 − α)

Γ(2 − α)

∫ t0

ε

(t0 − s)−α−1h(s)ds −
(t0 − ε)1−αh

′

(ε)

Γ(2 − α)
,

which leads to the relation

I2 ≥ 0

that together with (2.1) produce Dαh(t0) ≥ 0. Hence, we have

−Dαf(t0) + I2−αϕ
′′

(t0) ≥ 0,
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which implies that

Dαf(t0) ≤ I2−αϕ
′′

(t0) ≤ 0.

Thus, we complete this proof.

Theorem 2.2 Let a function f ∈ C2(0, 1) ∩ C[0, 1], attain its minimum over the interval

[0, 1] at the point t0, t0 ∈ (0, 1]. Then the Caputo derivative of the function f is nonnegative at

the point t0 for any α, Dαf(t0) ≥ 0, 1 < α ≤ 2.

Proof For given function f ∈ C2(0, 1) ∩ C[0, 1], Since f
′′

∈ L1(0, t0), hence,

∀δ > 0, ∃ 0 < ε < t0 such that |
1

Γ(2 − α)

∫ ε

a

(t0 − s)1−αf
′′

(s)ds| ≤ δ. (2.3)

For ε > obtained in (2.3), let us consider the following two cases: Case (i): f
′

(ε) ≤ 0; Case

(ii): f
′

(ε) > 0.

For case (i), we consider an auxiliary function

h(t) = f(t) − f(t0), t ∈ [0, 1].

Because the function f attains its minimum over the interval [0, 1] at the point t0, t0 ∈ (0, 1],

the Caputo derivative is a linear operator and Dαc ≡ 0(c being a constant), hence, function h

possesses the following properties:











h(t) ≥ 0, t ∈ [0, 1]; h(t0) = 0; h
′

(t0) = f
′

(t0) = 0;

Dαh(t) = Dαf(t), t ∈ (0, 1].

(2.4)

Obviously, h
′

(ε) = f
′

(ε) ≤ 0. Since h ∈ C2(0, 1), h(t0) = h
′

(t0) = 0, there are

|h(t)| = |h(t) − h(t0)| ≤ |h
′

(t)|(t0 − t) = |h
′

(t) − h
′

(t0)|(t0 − t) ≤ c1(t0 − t)2,

|h
′

(t)| = |h
′

(t) − h
′

(t0)| ≤ c2(t0 − t), t ∈ [ε, t0],

where c1 > 0, c2 > 0 are positive constants, and t ∈ (t, t0). And that

Dαh(t0) =
1

Γ(2 − α)

∫ t0

0

(t − s)1−αh
′′

(s)ds

=
1

Γ(2 − α)

∫ ε

0

(t0 − s)1−αh
′′

(s)ds +
1

Γ(2 − α)

∫ t0

ε

(t0 − s)1−αh
′′

(s)ds

= I1 + I2
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is valid for ε in (2.3); On the other hand, we have

I2 =
1

Γ(2 − α)

∫ t0

ε

(t0 − s)1−αh
′′

(s)ds

=
1 − α

Γ(2 − α)

∫ t0

ε

(t0 − s)−αh
′

(s)ds −
(t0 − ε)1−αh

′

(ε)

Γ(2 − α)

= −
(1 − α)(t0 − ε)−αh(ε)

Γ(2 − α)
−

α(1 − α)

Γ(2 − α)

∫ t0

ε

(t0 − s)−α−1h(s)ds

−
(t0 − ε)1−αh

′

(ε)

Γ(2 − α)
,

which leads to the relation

I2 ≥ 0

that together with (2.3) complete the proof of the theorem.

We consider case (ii) in the remaining part of the proof. Here, we consider the following

auxiliary function

h(t) = f(t) − f(t0) + ϕ(t), t ∈ [0, 1],

where ϕ(t) is infinitely differentiable function on R, defined by

ϕ(t) = A















e
kt2

t2−t2
0 , t < t0,

0, t ≥ t0

here, k is a constant satisfies

0 < k ≤
(t30 − tt20)

2 + t2t20(t
2
0 − t2) + 2tt20(t

3
0 − t3)

2t60
, t ∈ [0, t0),

and A is a positive constant satisfies

2Aεt20k

(ε2 − t20)
2
e

kε2

ε2
−t2

0 ≥ f
′

(ε), ε is the positive constant obtained in (2.3).

By calculation(applying the Law of L’Hospital), we easily obtain that

ϕ(t0) = 0, ϕ
′

(t0) = 0, ϕ
′′

(t0) = 0,

and that,

ϕ
′′

(t) = −A(e
kt2

t2−t2
0

2tt20k

(t2 − t20)
2
)
′

= −2Ake
kt2

t2−t2
0

t60 + 2t2t40 − 3t4t20 − 2t2t40h

(t − t0)4

= −2Ake
kt2

t2−t2
0

(t30 − tt20)
2 + t2t20(t

2
0 − t2) + 2tt20(t

3
0 − t3) − 2t2t40k

(t − t0)4
,
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for t ∈ [0, t0). Since 0 < k ≤
(t30−tt20)

2+t2t20(t
2
0−t2)+2tt20(t30−t3)

2t60
, so, for t ∈ [0, t0), there is

(t30 − tt20)
2 + t2t20(t

2
0 − t2) + 2tt20(t

3
0 − t3) − 2t2t40k

≥ (t30 − tt20)
2 + t2t20(t

2
0 − t2) + 2tt20(t

3
0 − t3) − 2t60k ≥ 0.

Hence the Riemann-Liouville fractional integral I2−αϕ
′′

(t0) ≤ 0. Since h ∈ C2(0, 1), h(t0) =

h
′

(t0) = 0, there are

|h(t)| = |h(t) − h(t0)| ≤ |h
′

(t)|(t0 − t) = |h
′

(t) − h
′

(t0)|(t0 − t) ≤ c1(t0 − t)2,

|h
′

(t)| = |h
′

(t) − h
′

(t0)| ≤ c2(t0 − t), t ∈ [ε, t0],

where c1 > 0, c2 > 0 are positive constants, and t ∈ (t, t0). Thus, by the same arguments as

case (i), we can obtain that

Dαg(t0) =
1

Γ(2 − α)

∫ ε

0

(t0 − s)1−αh
′′

(s)ds +
1

Γ(2 − α)

∫ t0

ε

(t0 − s)1−αh
′′

(s)ds

= I1 + I2,

I2 = −
(1 − α)(t0 − ε)−αh(ε)

Γ(2 − α)
−

α(1 − α)

Γ(2 − α)

∫ t0

ε

(t0 − s)−α−1h(s)ds

−
(t0 − ε)1−αh

′

(ε)

Γ(2 − α)
,

which leads to the relation

I2 ≥ 0

that together with (2.3) produce Dαh(t0) ≥ 0. Hence, we have

Dαf(t0) + I2−αϕ
′′

(t0) ≥ 0,

which implies that

Dαf(t0) ≥ −I2−αϕ
′′

(t0) ≥ 0.

Thus, we complete this proof.

3 Existence result

In this section, we shall apply the lower and upper solutions method to consider the exis-

tence of solution to problem (1.1).

Definition 3.1 we call a function α(t) a lower solution for problem (1.1), if α ∈ C2([0, 1], R)

and










Dδα(t) + g(t, α) ≥ 0, t ∈ (0, 1), 1 < δ ≤ 2,

α(0) ≤ a, α(1) ≤ b.

(3.1)
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Similarly, we call a function β(t) an upper solution for problem (1.1), if β ∈ C2([0, 1], R) and











Dδβ(t) + g(t, β) ≤ 0, t ∈ (0, 1), 1 < δ ≤ 2,

β(0) ≥ a, β(1) ≥ b.

(3.2)

The following theorem is our main result.

Theorem 3.1 Assume that g : [0, 1] × R → R is a continuous differential function re-

spect to all variables, and that g
′

u(t, u) is continuous in t for all u ∈ R. Moreover, assume that

α(t), β(t) are lower solution and upper solution of problem (1.1), such that α(t) ≤ β(t), t ∈ [0, 1]

and g
′

u(t, α) ≤ 0, g
′

u(t, β) ≤ 0 for all t ∈ [0, 1]. Then problem (1.1) has at least one solution

u(t) ∈ C[0, 1] such that α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].

Proof First of all, let us consider the the following modified boundary value problem











Dδu(t) + g∗(t, u(t)) = 0, t ∈ (0, 1), 1 < δ ≤ 2,

u(0) = a, u(1) = b,

(3.3)

where

g∗(t, u) =







































g(t, α(t)) + e
M1sin

u−α

M1
g
′

u(t,α) − α−u
N1(1+u2) + e

sin(cos(
α−u
N1

+3π
2

))

1+α2 − 2+α2

1+α2 , if u < α(t),

g(t, u(t)), if α(t) ≤ u ≤ β(t),

g(t, β(t)) − e
M2sin

β−u

M2
g
′

u(t,β) − β−u
N2(1+u2) −

e
sin(cos(

u−β
N2

+ 3π
2

))

1+β2 + 2+β2

1+β2 , if u > β(t).

(3.4)

where M1, M2 > 0, such that −π < u−α
M1

< − 3π
2 and −π < β−u

M2
< − 3π

2 for all u−α < 0, β−u <

0; N1, N2 < 0, such that −2π < α−u
N1

< − 3π
2 and −2π < u−β

N2
< − 3π

2 for α − u > 0, u − β > 0.

Obviously, from the continuity assumption to g, function g∗ is a continuous differential function

with respect to all variables on (t, x) ∈ [0, 1]× R. In fact, we can obtain that

g∗
′

t (t, u) =



































g
′

t(t, α(t)) + M1e
M1sin

u−α

M1
g
′

u(t,α)
sinu−α

M1
g

′′

ut(t, α), if u < α(t),

g
′

t(t, u(t)), if α(t) ≤ u ≤ β(t),

g
′

t(t, β(t)) − M2e
M2sin

β−u

M2
g
′

u(t,β)
sinβ−u

M2
g

′′

ut(t, β), if u > β(t).
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and

g∗
′

u (t, u) =















































































e
M1sin u−α

M1
g
′

u(t,α)
cosu−α

M1
g

′

u(t, α) − u2−2αu−1
N1(1+u2)2 +

e
sin(cos(

α−u
N1

+ 3π
2

))

N1(1+α2) cos(cos(α−u
N1

+ 3π
2 ))sin(α−u

N1
+ 3π

2 )), if u < α(t),

g
′

u(t, u(t)), if α(t) ≤ u ≤ β(t),

e
M2sin

β−u

M2
g
′

u(t,β)
cosβ−u

M2
g

′

u(t, β) − u2−2βu−1
N2(1+u2)2 +

e
sin(cos(

u−β

N2
+ 3π

2
))

N2(1+β2) cos(cos(u−β
N2

+ 3π
2 ))sin(u−β

N2
+ 3π

2 )), if u > β(t).

We claim that if u(t) ∈ C[0, 1] is any solution of (3.3), then α(t) ≤ u(t) ≤ β(t) for all

t ∈ [0, 1] and hence u is a solution of (1.1) which satisfies α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].

In fact, from the assumptions of theorem, u
′′

(t) = D2−δg∗(t, u(t)) = Iδ−1(g∗
′

t (t, u) +

g∗
′

u (t, u)u
′

(t)) ∈ C[0, 1](because u
′

(t) = c2 + Iδ−1g∗(t, u) ∈ C[0, 1], c2 ∈ R), that is, u
′′

∈

C2[0, 1]. Now, by α(0) ≤ u(0), α(1) ≤ u(1), we suppose by contradiction that there is t0 ∈ (0, 1)

such that

w(t0) = α(t0) − u(t0) = max
t∈[0,1]

(α(t) − u(t)) = max
t∈[0,1]

w(t) > 0.

Then, by Theorem 2.1, there is

Dδw(t0) ≤ 0. (3.5)

Moreover, by the previous assumptions, we know that

−π <
u(t0) − α(t0)

M1
< −

3π

2
; −

π

2
<

α(t0) − u(t0)

N1
+

3π

2
< 0,

hence,

M1sin
u(t0) − α(t0)

M1
g

′

u(t0, α) ≥ 0; sin(cos(
α(t0) − u(t0)

N1
+

3π

2
)) ≥ 0.

Thus, we have

Dδw(t0) = Dδα(t0) − Dδu(t0)

≥ −g(t0, α(t0)) + g(t0, α(t0)) + e
M1sin

u(t0)−α(t0)

M1
g
′

u(t0,α)
−

α(t0) − u(t0)

N1(1 + u2)
+

e
sin(cos(

α(t0)−u(t0)

N1
+ 3π

2 ))

1 + α2
−

2 + α2

1 + α2

≥ 1 −
α(t0) − u(t0)

N1(1 + u2)
+

1

1 + α2
−

2 + α2

1 + α2
> 0,
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which is a contradiction with (3.5). The same argument, with obvious changes works in the

proof of α(t) ≤ u(t) in [0, 1], we can obtain that u(t) ≤ β(t) in [0, 1]. Indeed, by β(0) ≥

u(0), β(1) ≥ u(1), we suppose by contradiction that there is t0 ∈ (0, 1) such that

w(t0) = β(t0) − u(t0) = min
t∈[0,1]

(β(t) − u(t)) = min
t∈[0,1]

w(t) < 0.

Then, by Theorem 2.2, there is

Dδw(t0) ≥ 0.

Moreover, by the previous assumptions, we know that

−π <
β(t0) − u(t0)

M2
< −

3π

2
; −

π

2
<

u(t0) − β(t0)

N2
+

3π

2
< 0,

hence,

M2sin
β(t0) − u(t0)

M2
g

′

u(t0, β) ≥ 0; sin(cos(
u(t0) − β(t0)

N2
+

3π

2
)) ≥ 0.

Thus, we have

Dδw(t0) = Dδβ(t0) − Dδu(t0)

≤ −g(t0, β(t0)) + g(t0, β(t0)) − e
M2sin

β(t0)−u(t0)

M2
g
′

u(t0,β)
−

β(t0) − u(t0)

N2(1 + u2)
−

e
sin(cos(

u(t0)−β(t0)

N2
+ 3π

2 ))

1 + β2
+

2 + β2

1 + β2

≤ −1 −
β(t0) − u(t0)

N2(1 + u2)
−

1

1 + β2
+

2 + β2

1 + β2
< 0,

which produces a contradiction.

Then, the claim is proved and now it is sufficient to prove that problem (3.3) has at least

one solution.

From the standard argument, we can know that the solution of (3.3) has the form

u(t) =

∫ 1

0

G(t, s)g∗(s, u(s))ds + a + (b − a)t. (3.6)

where

G(t, s) =















t(1−s)α−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,

t(1−s)α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.

EJQTDE, 2009 No. 30, p. 10



In fact, we may consider the solution of the linear problem of (3.3)











Dδu(t) + ρ(t) = 0, t ∈ (0, 1),

u(0) = a, u(1) = b,

(3.7)

where ρ(t) ∈ C[0, 1]. Applying the fractional integral Iδ on both sides of equation in (3.7) and

Using the following relationship (Lemma 2.22[1]): IδDδf(t) = f(t) − c1 − c2t, ci ∈ R, i = 1, 2

for f(t) ∈ AC([0, T ] or f(t) ∈ C([0, T ]) and 1 < δ ≤ 2, we obtain

u(t) = c1 + c2t − Iδρ(t),

for some constants ci, i = 1, 2. By boundary value conditions of problem (3.7), we can calculate

out that c1 = a, c2 = b − a + Iδρ(1), Consequently, the solution of problem (3.7) is

u(t) = a + (b − a)t + tIδρ(1) − Iδρ(t)

= a + (b − a)t +
1

Γ(δ)

∫ 1

0

t(1 − s)δ−1ρ(s)ds −
1

Γ(δ)

∫ t

0

(t − s)δ−1ρ(s)ds

= a + (b − a)t +

∫ t

0

t(1 − s)δ−1 − (t − s)δ−1

Γ(δ)
ρ(s)ds +

1

Γ(δ)

∫ 1

t

t(1 − s)δ−1ρ(s)ds

=

∫ 1

0

G(t, s)ρ(s)ds + a + (b − a)t.

Hence, the solution u of problem (3.7) is u(t) =
∫ 1

0
G(t, s)ρ(s)ds + a + (b− a)t, t ∈ [0, 1], which

means that the solution of (3.3) has the form of (3.6).

Now, consider the operator T : C[0, 1] → C[0, 1] by

Tu(t) =

∫ 1

0

G(t, s)g∗(s, u(s))ds + a + (b − a)t. (3.8)

From the definition of function g∗(t, u) that T : C[0, 1] → C[0, 1] is well defined, continuous,

and T (Ω) is a bounded (here, Ω is a bounded subset of C[0, 1]). It is well know that u ∈ C[0, 1]

is a solution to (3.3) if and only if u is a fixed point of operator T . Moreover, we can prove

that T (Ω) is relatively compact. Indeed, we can obtain that

|
d

dt
Tu(t)|

= |b − a +
1

Γ(δ)

∫ 1

0

(1 − s)δ−1g∗(s, u(s))ds −
1

Γ(δ − 1)

∫ t

0

(t − s)δ−2g∗(s, u(s))ds|

≤ |b − a| +
M

Γ(1 + δ)
+

M

Γ(δ)
,
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where M = maxt∈[0,1],u∈Ω |g∗(t, u)| + 1. Hence, this is sufficient to ensure the the relatively

compact of T (Ω) via the Ascoli-Arzela theorem.

We let

Ω = {u ∈ C[0, 1]; ‖u‖ < R},

where

R > {3|a|, 3|b− a|,
3L

Γ(δ)

∫ 1

0

(s + 1)(1 − s)δ−1ds},

here,

L = max
t∈[0,1],α(t)≤u(t)≤β(t)

|g(t, u(t))| + eL1 + max{
‖α‖ + 1

|N1|
,
‖β‖ + 1

|N2|
} + e + 2.

L1 = max{ max
t∈[0,1]

M1|g
′

u(t, α)|, max
t∈[0,1]

M2|g
′

u(t, β)|}.

Then, for u ∈ Ω, we have

|Tu(t)| ≤ |a| + |b − a| +
L

Γ(δ)

∫ 1

0

(s + 1)(1 − s)δ−1ds

≤
R

3
+

R

3
+

R

3
= R,

which implies that T (Ω) ⊆ Ω. Therefore, we see that, the existence of a fixed point for the

operator T follows from the Schauder fixed theorem.

Finally, we give an example.

Example. We consider the following boundary value problem











D
3
2 u − u3 + 1 = 0, t ∈ (0, 1),

u(0) = u(1) = 0.

(3.9)

Let g(t, u) = 1 − u3. Obviously, we can check that α(t) ≡ 0 is a lower solution for problem

(3.9), and β(t) = 3 is an upper solution for problem (3.9). And that, g
′

t(t, u) = g
′′

ut(t, u) = 0,

g
′

u(t, u) = −3u2, g
′

u(t, α) = 0, g
′

u(t, β) = −27, hence, function g satisfies the assumption condi-

tion of theorem 3.1. Then, the theorem 3.1 assures that problem (3.9) has at least one solution

u∗ ∈ C[0, 1] with 0 ≤ u∗(t) ≤ 3, t ∈ [0, 1].
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