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Abstract. In this paper, we give the exact asymptotic behavior of the unique positive
solution to the following singular boundary value problem

− 1
A (Au′)′ = p(x)g(u), x ∈ (0, 1),

u > 0, in (0, 1),
limx→0+(Au′)(x) = 0, u(1) = 0,

where A is a continuous function on [0, 1), positive and differentiable on (0, 1) such that
1
A is integrable in a neighborhood of 1, g ∈ C1((0, ∞), (0, ∞)) is nonincreasing on (0, ∞)

with limt→0 g′(t)
∫ t

0
1

g(s) ds = −Cg ≤ 0 and p is a nonnegative continuous function in
(0, 1) satisfying

0 < p1 = lim inf
x→1

p(x)
h(1− x)

≤ lim sup
x→1

p(x)
h(1− x)

= p2 < ∞,

where h(t) = ct−λ exp(
∫ η

t
z(s)

s ds), λ ≤ 2, c > 0 and z is continuous on [0, η] for some
η > 1 such that z(0) = 0.
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1 Introduction

In this paper, we give the exact asymptotic behavior near the boundary of the unique positive
solution to the following singular problem{

− 1
A (Au′)′ = p(x)g(u), x ∈ (0, 1),

u > 0, in (0, 1),
(1.1)

subject to the boundary conditions

lim
x→0+

(Au′)(x) = 0, u(1) = 0. (1.2)

The functions A, p and g satisfy the following assumptions.

(H1) A is a continuous function on [0, 1), positive and differentiable on (0, 1) such that 1
A is

integrable in a neighborhood of 1 and limx→1
(x−1)A′(x)

A(x) = α < 1.

(H2) p is a nonnegative continuous function in (0, 1) satisfying

0 < p1 = lim inf
x→1

p(x)
h(1− x)

≤ lim sup
x→1

p(x)
h(1− x)

= p2 < ∞,

where h(t) = t−λL(t), λ ≤ 2 such that
∫ η

0 s1−λL(s) ds < ∞ for some η > 1 and L belongs
to the class of Karamata functions K (see Definition 1.1).

(H3) The function g : (0, ∞)→ (0, ∞) is nonincreasing, continuously differentiable such that

lim
t→0

g′(t)
∫ t

0

1
g(s)

ds = −Cg with Cg ≥ 0.

(H4) λ + (2− λ)Cg − α− 1 > 0.

Observe that Cg ∈ [0, 1]. Indeed, since the function g is nonincreasing, we obtain for t > 0

0 < g(t)
∫ t

0

1
g(s)

ds ≤ t.

This implies that limt→0 g(t)
∫ t

0
1

g(s) ds = 0. Now, since for t > 0

∫ t

0
g′(s)

∫ s

0

1
g(r)

dr = g(t)
∫ t

0

1
g(s)

ds− t,

we get

lim
t→0

g(t)
t

∫ t

0

1
g(s)

ds = 1− Cg.

Hence Cg ∈ [0, 1].
The functions t−1 ln (1 + t) , ln

(
ln(e + 1

t )
)

, t−ν ln
(
1 + 1

t

)
, exp{

(
ln(1 + 1

t )
)ν}, ν ∈ (0, 1)

satisfy the assumption (H3), as well as the function{
t2e

1
t , if 0 < t < 1

2 ,
1
4 e2, if t ≥ 1

2 .
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When A ≡ 1, problems of type (1.1) with various boundary conditions arise in the study
of boundary layer equations for the class of pseudoplastic fluids and have been studied for
both bounded and unbounded intervals of R (see [4, 5, 23, 27] and the references therein).

When A(t) = tn−1 (n ≥ 2), the operator u → 1
A (Au′)′ appears as the radial part of

the Laplace operator ∆ (see [24]). Our setting includes the scalar curvature equation and
the relativistic pendulum equation, which correspond to A(t) = (1 + t2)

−1
2 , resp. A(t) =

(1− t2)
−1
2 . For various existence, uniqueness and asymptotic behavior results of such problem,

we refer the reader to [8–11, 14, 21, 25, 26] and the references therein. However, we emphasize
that in problem (1.1) the function A could be singular at t = 1.

On the other hand, the singular nonlinear problem{
− 1

A (Au′)′ = f (x, u), x ∈ (0, 1),

u > 0, in(0, 1),
(1.3)

subject to different boundary conditions has been considered by many authors, where A is a
continuous function on [0, 1), positive and differentiable on (0, 1) satisfying some appropriate
conditions (see for example [1, 2, 13, 16, 17, 19]). In [15, Theorem 5], Mâagli and Masmoudi
investigated equation (1.3) with boundary value conditions u′(0) = u(1) = 0. They supposed
that f is a nonnegative continuous function on (0, 1)× (0, ∞) and nonincreasing with respect
to the second variable. Under some appropriate conditions on the function A, they proved the
existence of a unique positive solution u in C([0, 1])∩ C2((0, 1)) to (1.3) and gave estimates on
such a solution. In particular they extended some results of [1, 2] and [19]. Our aim in this
paper is to establish the exact boundary behavior of the unique solution to problem (1.1)–(1.2).

To state our results, we need some notations.

Definition 1.1. The class K is the set of all Karamata functions L defined on (0, η] by

L(t) := c exp
(∫ η

t

z(s)
s

ds
)

,

for some η > 1 and where c > 0 and z ∈ C([0, η]) such that z(0) = 0.

Note that functions belonging to the class K are in particular slowly varying functions.
The theory of such functions was initiated by Karamata in a fundamental paper [12].

We also point out that the first use of the Karamata theory in the study of the growth rate
of solutions near the boundary is done in the paper of Cîrstea and Rădulescu [7].

Remark 1.2. A function L is in K if and only if L is a positive function in C1((0, η]), for some
η > 1, such that limt→0+

tL′(t)
L(t) = 0.

Typical examples of functions belonging to the class K (see [3, 18, 22]) are:

L(t) =
m

∏
k=1

(
logk

(ω

t

))ξk
,

L(t) = 2 + sin
(

log2

(
e +

1
t

))
,

L(t) = exp

{
m

∏
k=1

(
logk

(ω

t

))νk

}
,
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where logk x = log ◦ log ◦ · · · ◦ log x (k times), ξk ∈ R, νk ∈ (0, 1) and ω is a sufficiently large
positive real number such that L is defined and positive on (0, η].

Throughout this paper, we denote by ψg the unique solution determined by

∫ ψg(t)

0

1
g(s)

ds = t, t ∈ [0, ∞), (1.4)

and we mention that
lim
t→0

tg′(ψg(t)) = −Cg. (1.5)

Our first result is the following.

Theorem 1.3. Assume that hypotheses (H1)–(H4) are fulfilled. Then problem (1.1)–(1.2) has a unique
positive solution u ∈ C([0, 1]) ∩ C2((0, 1)) satisfying

(i) if λ < 2, then(
ξ1

2− λ

)1−Cg

≤ lim inf
x→1

u(x)
ψg((1− x)2−λL(1− x))

≤ lim sup
x→1

u(x)
ψg((1− x)2−λL(1− x))

≤
(

ξ2

2− λ

)1−Cg

;

(ii) if λ = 2, then

ξ
1−Cg
1 ≤ lim inf

x→1

u(x)

ψg

(∫ 1−x
0

L(t)
t dt

) ≤ lim sup
x→1

u(x)

ψg

(∫ 1−x
0

L(t)
t dt

) ≤ ξ
1−Cg
2 ,

where ξ1 = p1
λ+(2−λ)Cg−α−1 and ξ2 = p2

λ+(2−λ)Cg−α−1 .

An immediate consequence of Theorem 1.3 is the following.

Corollary 1.4. Let u be the unique solution of problem (1.1)–(1.2). Then, we have the following exact
boundary behavior.

(a) When Cg = 1, then we have

(i) limx→1
u(x)

ψg((1−x)2−λ L(1−x)) = 1 if λ < 2;

(ii) limx→1
u(x)

ψg(
∫ 1−x

0
L(t)

t dt)
= 1 if λ = 2.

(b) When Cg < 1 and p1 = p2 = p0, then we have

(i) limx→1
u(x)

ψg((1−x)2−λ L(1−x)) =
(

p0

(2−λ)(λ+(2−λ)Cg−α−1)

)1−Cg
if λ < 2;

(ii) limx→1
u(x)

ψg(
∫ 1−x

0
L(t)

t dt)
=
( p0

1−α

)1−Cg if λ = 2.

Example 1.5. Let g be the function defined by

g(t) =

{
t2e

1
t , if 0 < t < 1

2 ,
1
4 e2, if t ≥ 1

2 ,
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and p be a nonnegative continuous function in (0, 1) satisfying

lim
x→1

p(x)
h(1− x)

= p0 ∈ (0, ∞),

where h(t) = t−λL(t), λ ≤ 2 and L ∈ K such that
∫ η

0 s1−λL(s) ds < ∞. Then, we have Cg = 1
and ψg(ξ) =

−1
log(ξ) for ξ ∈ (0, e−2). Let u be the unique solution of (1.1)–(1.2). Then, we have

the following exact behavior.

(i) limx→1 u(x) log
(

1
(1−x)2−λ L(1−x)

)
= 1 if λ < 2;

(ii) limx→1 u(x) log
(

1∫ 1−x
0

L(t)
t dt

)
= 1 if λ = 2.

In order to establish our second result, we consider the special case where g(t) = t−γ with
γ ≥ 0 and λ = (α+ 1)+ (α− 1)γ. Note that in this case Cg = γ

γ+1 and λ+ (2− λ)Cg− α− 1 =

0. We assume the following hypotheses.

(H5) A is a continuous function on [0, 1), positive and differentiable on (0, 1) such that A(x) =

(1− x)α B(x) with α < 1 and (1−x)ζ B′(x)
B(x) is bounded in a neighborhood of 1 for some

ζ ∈ (0, 1).

(H6) p is a nonnegative continuous function in (0, 1) satisfying

0 < p1 = lim inf
x→1

p(x)
(1− x)γ−1−α(1+γ)L(1− x)

≤ lim sup
x→1

p(x)
(1− x)γ−1−α(1+γ)L(1− x)

= p2 < ∞,

where γ ≥ 0 and L ∈ K with
∫ η

0
L(s)

s ds = ∞.

Our second result is the following.

Theorem 1.6. Assume that hypotheses (H5) and (H6) are fulfilled. Then the problem
− 1

A (Au′)′ = p(x)u−γ, x ∈ (0, 1),

u > 0, in (0, 1),

limx→0+(Au′)(x) = 0, u(1) = 0,

(1.6)

has a unique positive solution u ∈ C([0, 1]) ∩ C2((0, 1)) satisfying

(b1)
1

γ+1 ≤ lim inf
x→1

u(x)

(1− x)1−α
(∫ η

1−x
L(t)

t dt
) 1

γ+1
≤ lim sup

x→1

u(x)

(1− x)1−α
(∫ η

1−x
L(t)

t dt
) 1

γ+1
≤ (b2)

1
γ+1 ,

where b1 = (γ+1)p1
1−α and b2 = (γ+1)p2

1−α .
In particular if p1 = p2 = p0, then

lim
x→1

u(x)

(1− x)1−α
(∫ η

1−x
L(t)

t dt
) 1

γ+1
=

(
(γ + 1)p0

1− α

) 1
γ+1

.

The content of this paper is organized as follows. In Section 2, we present some funda-
mental properties of Karamata regular variation theory. In Section 3, exploiting the results
of the previous section, we prove Theorems 1.3 and 1.6 by constructing a convenient pair of
subsolution and supersolution.
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2 On the Karamata class K

In this section, we collect some properties of Karamata functions.

Proposition 2.1 ([18, 22]).

(i) Let L1, L2 ∈ K and q ∈ R. Then the functions

L1 + L2, L1L2 and Lq
1 belong to the class K.

(ii) Let L be a function in K and ε > 0.

Then we have
lim

t→0+
tεL(t) = 0.

Lemma 2.2 ([18,22]). Let µ ∈ R and L be a function in K defined on (0, η]. Then the following hold.

(i) If µ < −1, then
∫ η

0 sµL(s) ds diverges and
∫ η

t sµL(s) ds ∼
t→0+

− tµ+1L(t)
µ+1 .

(ii) If µ > −1, then
∫ η

0 sµL(s) ds converges and
∫ t

0 sµL(s) ds ∼
t→0+

tµ+1L(t)
µ+1 .

The proof of the next lemma can be found in [6].

Lemma 2.3. Let L be a function in K defined on (0, η]. Then we have

lim
t→0+

L(t)∫ η
t

L(s)
s ds

= 0.

If further
∫ η

0
L(s)

s ds converges, then we have

lim
t→0+

L(t)∫ t
0

L(s)
s ds

= 0.

Remark 2.4. Let L be a function in K defined on (0, η], then using Remark 1.2 and Lemma 2.3,
we deduce that

t→
∫ η

t

L(s)
s

ds ∈ K.

Definition 2.5. A positive measurable function f is called normalized regularly varying at
zero with index ρ ∈ R and we write f ∈ NRVZρ if f (s) = sρL(s) for s ∈ (0, η) with L ∈ K.

Using the definition of Karamata class and the previous lemmas, we obtain the following.

Lemma 2.6 ([25]).

(i) If f ∈ NRVZρ, then limt→0
f (ξt)
f (t) = ξρ, uniformly for ξ ∈ [c1, c2] ⊂ (0, ∞).

(ii) A positive measurable function f belongs to NRVZρ if and only if limt→0
t f ′(t)
f (t) = ρ.

(iii) Let L ∈ K and λ ≤ 2 such that
∫ η

0 s1−λL(s) ds < ∞. Then the function θ(t) :=
∫ t

0 s1−λL(s) ds
belongs to NRVZ2−λ.

(iv) The function ψg ∈ NRVZ(1−Cg).

(v) The function ψg ◦ θ ∈ NRVZ(2−λ)(1−Cg).

(vi) Let f ∈ NRVZρ and m1, m2 be two positive functions on (0, ∞) such that

lim
t→0+

m1(t) = lim
t→0+

m2(t) = 0 and lim
t→0+

m1(t)
m2(t)

= 1, then lim
t→0+

f (m1(t))
f (m2(t))

= 1.
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3 Proofs of Theorems 1.3 and 1.6

In the sequel, we denote by

v0(x) =
∫ 1

x

t
A(t)

dt, for x ∈ (0, 1),

and we let LAu := 1
A (Au′)′ = u′′ + A′

A u′. Note that since the function A satisfies (H1), the
function v0(x) is well defined and we have LAv0 = − 1

A .
The following result will play a crucial role in the proof of our main result.

Lemma 3.1. Assume (H1), then there exists L0 ∈ K such that

v0(x) ∼
x→1

(1− x)1−α

(1− α)L0(1− x)
. (3.1)

Proof. It is clear that

v0(x) ∼
x→1

∫ 1

x

1
A(t)

dt. (3.2)

On the other hand, by (H1), we have limx→1
(1−x)A′(x)

A(x) = limt→0
tA′(1−t)
A(1−t) = −α > −1.

So by Lemma 2.6, we deduce that the function f (t) := A(1− t) belongs to NRVZα. There-
fore, there exists L0 ∈ K such that

f (t) := A(1− t) = tαL0(t), for t ∈ (0, δ).

Hence by using this fact, Proposition 2.1 (i) and Lemma 2.2 (ii), we deduce that∫ 1

x

1
A(t)

dt =
∫ 1−x

0

1
A(1− t)

dt =
∫ 1−x

0
t−α 1

L0(t)
dt ∼

x→1

(1− x)1−α

(1− α)L0(1− x)
. (3.3)

Combining (3.2) and (3.3), we obtain the required result. This completes the proof.

Proof of Theorem 1.3. Let ε ∈ (0, p1
2 ) and put ξi =

pi
λ+(2−λ)Cg−α−1 for i = 1, 2, τ1 = ξ1 − ε ξ1

p1
and

τ2 = ξ2 + ε ξ2
p2

. Clearly, we have ξ1
2 < τ1 < τ2 < 3

2 ξ2.

Let θ(t) =
∫ t

0 s1−λL(s) ds and define

vi(x) = ψg

(
τi

∫ 1−x

0
s1−λL(s) ds

)
= ψg(τiθ(1− x)), for x ∈ (0, 1) and i ∈ {1, 2}.

By a simple calculus, we obtain for i ∈ {1, 2},

LAvi(x) + p(x)g(vi(x)) = v′′i (x) +
A′(x)
A(x)

v′i(x) + p(x)g(vi(x))

= g(vi(x))(1− x)−λL(1− x)

×
[
τi

(
τi(1− x)2−λL(1− x)g′(vi(x)) + (2− λ)Cg

)
+ τi

(
(x− 1)A′(x)

A(x)
− α +

(1− x)L′(1− x)
L(1− x)

)
− τi

(
λ + (2− λ)Cg − α− 1

)
+ pi

+

(
p(x)

(1− x)−λL(1− x)
− pi

)]
.
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So, for the fixed ε > 0, there exists δε ∈ (0, 1) such that for x ∈ (δε, 1) and i ∈ {1, 2}, we have

∣∣∣∣τi

(
(x− 1)A′(x)

A(x)
− α +

(1− x)L′(1− x)
L(1− x)

)∣∣∣∣
≤ 3

2
ξ2

(∣∣∣∣ (x− 1)A′(x)
A(x)

− α

∣∣∣∣+ ∣∣∣∣ (1− x)L′(1− x)
L(1− x)

∣∣∣∣) ≤ ε

4
,

p1 −
ε

2
≤ p(x)

(1− x)−λL(1− x)
≤ p2 +

ε

2

and ∣∣∣τi

(
τi(1− x)2−λL(1− x)g′(vi(x)) + (2− λ)Cg

)∣∣∣
≤ 3

2
ξ2

∣∣∣τi(1− x)2−λL(1− x)g′(vi(x)) + (2− λ)Cg

∣∣∣ ≤ ε

4
.

Indeed, the last inequality follows from (1.5) and the fact that from Lemmas 2.2 and 2.3,
we have limx→1

(1−x)2−λ L(1−x)
θ(1−x) = 2− λ. This implies that for each x ∈ (δε, 1), we have

LAv1(x) + p(x)g(v1(x))

≥ g(v1(x))(1− x)−λL(1− x)
[
−ε + p1 − τ1

(
λ + (2− λ)Cg − α− 1

)]
= 0

and

LAv2(x) + p(x)g(v2(x))

≤ g(v2(x))(1− x)−λL(1− x)
[
ε + p2 − τ2

(
λ + (2− λ)Cg − α− 1

)]
= 0.

Let u ∈ C([0, 1]) ∩ C2((0, 1)) be the unique solution of (1.1)–(1.2) (see [15, Theorem 5]). Then,
there exists M > 0 such that

v1(δε)−Mv0(δε) ≤ u(δε) ≤ v2(δε) + Mv0(δε). (3.4)

We claim that

v1(x)−Mv0(x) ≤ u(x) ≤ v2(x) + Mv0(x) for each x ∈ (δε, 1). (3.5)

Assume for instance that the left inequality of (3.5) is not true. Then, there exists x0 ∈ (δε, 1)
such that

v1(x0)−Mv0(x0)− u(x0) > 0.

By (3.4), the continuity of the functions v1, v0 and u on [δε, 1) and that limx→1 v1(x) =

limx→1 v0(x) = limx→1 u(x) = 0, we deduce that there exists x1 ∈ (δε, 1) such that

0 < v1(x1)−Mv0(x1)− u(x1) = max
x∈[δε,1]

(v1(x)−Mv0(x)− u(x)) .

This implies that v′1(x1)−Mv′0(x1)− u′(x1) = 0 and

LA(v1 −Mv0 − u)(x1) = (v1 −Mv0 − u)′′(x1) ≤ 0.
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On the other hand, using the fact that p is nonnegative and the monotonicity of g, we
obtain

LA(v1 −Mv0 − u)(x1) = LA(v1)(x1) +
M

A(x1)
− LAu(x1)

≥ p(x1) [g(u(x1))− g (v1 (x1))] +
M

A(x1)

≥ p(x1) [g(u(x1) + Mv0(x1))− g(v1(x1))] +
M

A(x1)

> 0.

This yields to a contradiction. In the same way, we prove the right inequality of (3.5).
Now, since ψg ◦ θ ∈ NRVZ(2−λ)(1−Cg), there exists L̂ ∈ K such that ψg(θ(t)) = t(2−λ)(1−Cg) L̂(t)
for t ∈ (0, η). Moreover, since λ + (2− λ)Cg − α − 1 > 0, it follows by Proposition 2.1 that
limt→0

t1−α

t(2−λ)(1−Cg) L̂(t)
= 0. This implies that

lim
t→0

t1−α

ψg(τi
∫ t

0 s1−λL(s) ds)
= lim

t→0

t1−α

ψg(τiθ(t))
= lim

t→0

ψg(θ(t))
ψg(τi θ(t)

t1−α

ψg(θ(t))
= 0

uniformly in τi ∈ [ ξ1
2 , 3ξ2

2 ] ⊂ (0, ∞).
This together with (3.1) and Proposition 2.1 implies that

lim
x→1

v0(x)
ψg(τ1θ(1− x))

= lim
x→1

v0(x)
ψg(τ2θ(1− x))

= 0.

So, we get by (3.5)

lim sup
x→1

u(x)
v2(x)

≤ 1 ≤ lim inf
x→1

u(x)
v1(x)

.

Using this fact and assertions (iv), (i) and (vi) of Lemma 2.6, we deduce that

lim inf
x→1

u(x)
ψg(θ(1− x))

≥ lim inf
x→1

u(x)
v1(x)

v1(x)
ψg(θ(1− x))

≥ lim inf
x→1

ψg(τ1θ(1− x))
ψg(θ(1− x))

= τ
1−Cg
1 .

By letting ε to zero, we obtain that ξ
1−Cg
1 ≤ lim infx→1

u(x)
ψg(θ(1−x)) .

Similarly, we obtain that lim supx→1
u(x)

ψg(θ(1−x)) ≤ ξ
1−Cg
2 .

This proves in particular assertion (ii) of Theorem 1.3. Now, for λ < 2 we have by
Lemma 2.2

θ(1− x) ∼
x→1

(1− x)2−λL(1− x)
2− λ

.

Hence it follows by assertions (iv), (i) and (vi) of Lemma 2.6 that for λ < 2, we have

lim
x→1

ψg(θ(1− x))
ψg((1− x)2−λL(1− x))

= lim
x→1

ψg(θ(1− x))
ψg((2− λ)θ(1− x))

ψg((2− λ)θ(1− x))
ψg((1− x)2−λL(1− x))

=
1

(2− λ)1−Cg
.
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Proof of Theorem 1.6. We recall that g(t) = t−γ with γ ≥ 0 and λ = α+ 1+(α− 1)γ. In this case
Cg = γ

γ+1 and λ + (2− λ)Cg − α− 1 = 0. Let L ∈ K be the function given in hypothesis (H6).
Put

k(t) =
∫ η

t

L(s)
s

ds and vi(x) =
(
(1 + γ)τi

∫ 1−x

0
sγ−α(1+γ)k(s) ds

)1/(γ+1)

for i ∈ {1, 2}.

Then we have

LAvi(x) + p(x)g(vi(x)) = v′′i (x) +
A′(x)
A(x)

v′i(x) + p(x)g(vi(x))

= g(vi(x))(1− x)γ−α(1+γ)−1L(1− x)

×
[

τi
k(1− x)
L(1− x)

(
τi(1− x)γ−α(1+γ)+1k(1− x)g′(vi(x)) + γ(1− α)

)
+ τi

k(1− x)
L(1− x)

(
(x− 1)A′(x)

A(x)
− α

)
−τi + pi +

(
p(x)

(1− x)γ−α(1+γ)−1L(1− x)
− pi

)]
= g(vi(x))(1− x)γ−α(1+γ)−1L(1− x)

×
[

τi

(
k(1− x)
L(1− x)

(
τi(1− x)γ−α(1+γ)+1k(1− x)g′(vi(x)) + γ(1− α)

)
− γ

γ + 1

)
+ τi

k(1− x)
L(1− x)

(
(x− 1)A′(x)

A(x)
− α

)
+

γ

γ + 1
τi − τi + pi +

(
p(x)

(1− x)γ−α(1+γ)−1L(1− x)
− pi

)]
= g(vi(x))(1− x)γ−α(1+γ)−1L(1− x)

×
[

τi

(
k(1− x)
L(1− x)

(
τi(1− x)γ−α(1+γ)+1k(1− x)g′(vi(x)) + γ(1− α)

)
− γ

γ + 1

)
+ τi

k(1− x)
L(1− x)

(
(x− 1)B′(x)

B(x)

)
− τi

γ + 1
+ pi +

(
p(x)

(1− x)γ−α(1+γ)−1L(1− x)
− pi

)]
.

Since g(t) = t−γ, then, by integration by parts, we obtain

τi(1− x)γ−α(1+γ)+1k(1− x)g′(vi(x)) + γ(1− α)

= −γτi(1− x)γ−α(1+γ)+1k(1− x)(vi(x))−(1+γ) + γ(1− α)

= γ

(
(1− α)− (1− x)γ−α(1+γ)+1k(1− x)

(1 + γ)
∫ 1−x

0 sγ−α(1+γ)k(s) ds

)

= γ

(
(1− α)(1 + γ)

∫ 1−x
0 sγ−α(1+γ)k(s) ds− (1− x)γ−α(1+γ)+1k(1− x)

(1 + γ)
∫ 1−x

0 sγ−α(1+γ)k(s) ds

)

= γ

(
−
∫ 1−x

0 sγ−α(1+γ)+1k′(s) ds

(1 + γ)
∫ 1−x

0 sγ−α(1+γ)k(s) ds

)

=
γ

γ + 1

∫ 1−x
0 sγ−α(1+γ)L(s) ds∫ 1−x
0 sγ−α(1+γ)k(s) ds

.
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On the other hand, by Remark 2.4, we have k in K. This together with Lemma 2.2, implies
that

lim
x→1

k(1− x)
L(1− x)

(
τi(1− x)γ−α(1+γ)+1k(1− x)g′(vi(x)) + γ(1− α)

)
− γ

γ + 1
= 0.

Now since (1−x)ζ B′(x)
B(x) is bounded in a neighborhood of 1 and by Proposition 2.1, we have

k
L ∈ K and limx→1

(1−x)1−ζ k(1−x)
L(1−x) = 0, we deduce that

lim
x→1

k(1− x)
L(1− x)

(
(1− x)B′(x)

B(x)

)
= lim

x→1

(1− x)1−ζk(1− x)
L(1− x)

(
(1− x)ζ B′(x)

B(x)

)
= 0.

Let ε ∈ (0, p1
2 ) and put τ1 = (γ + 1)(p1 − ε) and τ2 = (γ + 1)(p2 + ε).

So, for the fixed ε > 0, there exists δε ∈ (0, 1) such that for x ∈ (δε, 1), we have

LAv1(x) + p(x)g(v1(x))

≥ g(v1(x))(1− x)γ−α(1+γ)−1L(1− x)
[
− ε

3
− ε

3
− τ1

γ + 1
+ p1 −

ε

3

]
= 0

and

LAv2(x) + p(x)g(v2(x))

≤ g(v2(x))(1− x)γ−α(1+γ)−1L(1− x)
[

ε

3
+

ε

3
− τ2

γ + 1
+ p2 +

ε

3

]
= 0.

This implies that v1 and v2 are respectively a subsolution and a supersolution of the equa-
tion −LAu + p(x)u−γ = 0 in (δε, 1).

Let u ∈ C([0, 1]) ∩ C2((0, 1) be the unique solution of (1.1)–(1.2) (see [15, Theorem 5]). As
in the proof of Theorem 1.3, we choose M > 0 such that

v1 −Mv0 ≤ u ≤ v2 + Mv0 in (δε, 1).

Moreover, thanks to assumption (H6), we have limt→0 k(t) = ∞. So, using Lemma 2.2, we
obtain for i ∈ {1, 2}

lim
x→1

(1− x)1−α(
(1 + γ)τi

∫ 1−x
0 sγ−α(1+γ)k(s) ds

) 1
γ+1

= lim
x→1

(1− x)1−α

(1− x)1−α
( τi

1−α k(1− x)
) 1

γ+1
= 0.

This together with the fact that v0(x) ∼
x→1

(1−x)1−α

(1−α)B(1) gives that

lim
x→1

v0(x)
v1(x)

= 0 = lim
x→1

v0(x)
v2(x)

.

So we have lim supx→1
u(x)
v2(x) ≤ 1 ≤ lim infx→1

u(x)
v1(x) . This implies that

lim inf
x→1

u(x)(
(1 + γ)

∫ 1−x
0 sγ−α(1+γ)k(s) ds

) 1
γ+1
≥ τ1

1
γ+1 .

Since τ1 = (γ + 1)(p1 − ε), then by letting ε tends to zero, we get

lim inf
x→1

u(x)(
(1 + γ)

∫ 1−x
0 sγ−α(1+γ)k(s) ds

) 1
γ+1
≥ ((γ + 1)p1)

1
γ+1 .
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Similarly, we obtain that

lim inf
x→1

u(x)(
(1 + γ)

∫ 1−x
0 sγ−α(1+γ)k(s) ds

) 1
γ+1
≤ ((γ + 1)p2)

1
γ+1 .

On the other hand, since

(1 + γ)
∫ 1−x

0
sγ−α(1+γ)k(s) ds ∼

x→1

(1− x)(1+γ)(1−α)

(1− α)
k(1− x) =

(1− x)(1+γ)(1−α)

(1− α)

∫ η

1−x

L(t)
t

dt,

we deduce that

(b1)
1

γ+1 ≤ lim inf
x→1

u(x)

(1− x)1−α
(∫ η

1−x
L(t)

t dt
) 1

γ+1
≤ lim sup

x→1

u(x)

(1− x)1−α
(∫ η

1−x
L(t)

t dt
) 1

γ+1
≤ (b2)

1
γ+1 ,

where b1 = (γ+1)p1
1−α and b2 = (γ+1)p2

1−α .
In particular, if p1 = p2 = p0, then

lim
x→1

u(x)

(1− x)1−α
(∫ η

1−x
L(t)

t dt
) 1

γ+1
=

(
(γ + 1)p0

1− α

) 1
γ+1

.

This completes the proof.

4 Application

We consider the following singular problem
− 1

A (Au′)′ + β
u (u′)2 = p(x)g(u), x ∈ (0, 1),

u > 0, in (0, 1),

limx→0+(Au′)(x) = 0, u(1) = 0,

(4.1)

where β < 1 and limx→1
p(x)

(1−x)−λ L(1−x) = p0 with λ ≤ 2 and L∈K such that
∫ η

0 s1−λL(s) ds < ∞.
We assume (H1) and that g satisfies the following hypotheses.

(A1) The function t → t−βg(t) is nonincreasing, continuously differentiable form (0, ∞) into
(0, ∞).

(A2) limt→0 g′(t)
∫ t

0
1

g(s) ds = −Cg with max(0, β
β−1 ) ≤ Cg ≤ 1.

(A3) 1− α− (2− λ)(1− β)(1− Cg) > 0.

Note that for γ ≥ 0 and −γ < β < 1, the function g(t) = t−γL0(t), where L0 ∈ K, satisfies
assumptions (A1) and (A2).

Put u = v
1

1−β . Then v satisfies
− 1

A (Av′)′ = (1− β)p(x)g(v
1

1−β )v
−β

1−β , x ∈ (0, 1),

v > 0, in (0, 1),

limx→0+(Av′)(x) = 0, v(1) = 0,

(4.2)
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The function f (t) = (1− β)g(t
1

1−β )t
−β

1−β is nonincreasing on (0, ∞) and a simple computa-

tion shows that ψg = (ψ f )
1

1−β and

lim
t→0

f ′(t)
∫ t

0

1
f (s)

ds = (1− β)(1− Cg)− 1 =: −C f with 0 ≤ C f ≤ 1.

Applying Corollary 1.4 to problem (4.2), we deduce that there exists a unique solution v
to (4.2) such that

(a) if C f = 1, then

(i) limx→1
v(x)

ψ f ((1−x)2−λ L(1−x)) = 1 if λ < 2;

(ii) limx→1
v(x)

ψ f

(∫ 1−x
0

L(t)
t dt

) = 1 if λ = 2;

(b) if C f < 1, then

(i) limx→1
v(x)

ψ f ((1−x)2−λ L(1−x)) =
(

p0

(2−λ)(λ+(2−λ)C f−α−1)

)1−C f
if λ < 2;

(ii) limx→1
v(x)

ψ f

(∫ 1−x
0

L(t)
t dt

) =
( p0

1−α

)1−C f if λ = 2.

This implies that

(a) If Cg = 1, then

(i) limx→1
u(x)

ψg((1−x)2−λ L(1−x)) = 1 if λ < 2;

(ii) limx→1
u(x)

ψg

(∫ 1−x
0

L(t)
t dt

) = 1 if λ = 2.

(b) If Cg < 1, then

(i) limx→1
u(x)

ψg((1−x)2−λ L(1−x)) =
(

p0

(2−λ)(1−α−(2−λ)(1−β)(1−Cg))

)1−Cg
if λ < 2;

(ii) limx→1
u(x)

ψg

(∫ 1−x
0

L(t)
t dt

) =
( p0

1−α

)1−Cg if λ = 2.
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condition for boundary blow-up solutions, Adv. Nonlinear Stud. 7(2007), No. 2, 271–298.
MR2308040
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