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Abstract

In this paper, we study the existence of triple positive solutions for second-order four-point boundary
value problem with sign changing nonlinearities. We first study the associated Green’s function and obtain
some useful properties. Our main tool is the fixed point theorem due to Avery and Peterson. The results of

this paper are new and extent previously known results.
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1. Introduction

Boundary value problems (BVP) with sign changing nonlinearities have received special attention
from many authors in recent years. Recently, existence results for positive solutions of second-order
three-point boundary value problems with sign changing nonlinearities have been studied by some
authors (see [3-6]). In [4], by applying the Krasnoseiskii fixed-point theorem in a cone, Liu have
proved the existence of at least one positive solution for the following second-order three-point BVP

{ u" (t) + Aa(t) f(u(t)) =0, te(0,1), (L1)
u(0) =0, u(l) = Bu(n).
where \ is a positive parameter, 0 < < 1,0 < n < 1, f:[0,4+00) — (0,400) is continuous and
nondecreasing, a : [0,1] — (—o0,400) is continuous and such that a(t) > 0, ¢ € [0,n]; a(t) < 0,
t € [n,1]. Moreover, a(t) does not vanish identically on any subinterval of [0, 1].

Very recently, in [2], by applying the Krasnoseiskii fixed-point theorem in a cone, we improved

the results obtained in [4] and established the existence of at least one or two positive solutions for

second-order four-point BVP as follows

* E-mail address: xiedapeng9@yahoo.com.cn

EJQTDE, 2009 No. 35, p. 1



{ u”(t) + Aa(t) f(u(t)) =0, te(0,1), (1.2)

u(0) = au(§), u(l) = Bu(n).
where A is a positive parameter, 0 < o, < 1,0 < { <n <1, f:[0,+00) — (0,400) is continuous
and nondecreasing, a : [0,1] — (—o00, +00) is continuous and such that a(t) <0, ¢t € [0,£]; a(t) > 0,
te ¢, n]; a(t) <0,t e [n,1]. Moreover, a(t) does not vanish identically on any subinterval of [0, 1].

Inspired by [2], in this paper, by using the fixed point theorem due to Avery and Peterson, we con-

sider the following second-order four-point boundary value problem with sign changing nonlinearities

u"(t) +a(t) f(u(t)) =0, te(0,1),
{ w(0) = (1), u(€) = Bu(n). (13)

We make the following assumptions:

. 1-6) (68 1—€)(é+min{n,1— ]
(Ho) 0 < max{n,1-n} < <1, —min{n,1-n} <a < _5((1,,2)(,(1:72)7 mi(n{n,i(fn}(lf%fn(q}ji) <B <1

(Hy) f:[0,400) — (0,400) is continuous and nondecreasing;

(Hs) a : [0,1] — (—o00,+400) is continuous and such that a(t) > 0, t € [0,n]; a(t) < 0, t € [n,&];
a(t) >0, t € [£,1]. Moreover, a(t) does not vanish identically on any subinterval of [0, 1];

(Hsz) There exists constant 71 € (41, 7), such that

o(t) = Sa*( — ) — v~ (n+)2 0, £ € [0, ],

where a™t(t) = max{a(t),0}, a~ (t) = — min{a(t),0} and
c_n-n . min{-a(l-§)F0-n)-(1-On
§-n’ (€= n)E+n—Bla+n) '

The aim of this paper is to improve the previous existence results in [4]. By using the fixed point

theorem due to Avery and Peterson, we will study the existence of triple positive solutions for the
BVP (1.3) under some conditions concerning the function a that is sign-changing on [0, 1]. To the
best of our knowledge, to date no paper has appeared in the literature which discusses the existence

of positive solutions for the BVP (1.3). This paper attempts to fill this gap in the literature.

Remark 1.1. We point out that condition (Hg) is reasonable. For example, we take n = %,
Szﬁ:%7a:_%a7—1:%aand
2 2
40(_ - t)’ te [0’ g]a
560 2 4 2 4
at)={ Z=(t-)(t—=2), tel,=
=] F-30-5. el
(- ) TIER)
5 ) 5’ )

A = 2L Moreover, for

Then, it is easy to check that (Hp) holds, and % =0n<m<n= %, 0= %, 60

t € [0, 2], we have
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Thus, condition (Hs) holds, and condition (Hz) holds too.

2. Preliminary lemmas

Let ¥ and 6 be nonnegative continuous convex functionals on K, x be a nonnegative continuous
concave functional on K, and ¢ be a nonnegative continuous functional on K. Then for positive real

numbers a, b, ¢ and d, we define the following convex sets:
K,d) ={u e K : ¥(u) < d};
K(9,k,b,d) ={u e K :b< k(u),d(u) <d};
K(9,0,k,b,¢c,d) ={u € K :b<r(u),0(u) <cJ(u) <d};

K(9,9,a,d) ={u e K :a <¢(u),d(u) <d}.

Lemma 2.1 [1]. Let K be a cone in a Banach space E. Let 19 and 6 be nonnegative continuous convex
functionals on K, k be a nonnegative continuous concave functional on K, and ¢ be a nonnegative
continuous functional on K satisfying 1(Au) < Ap(u) for 0 < A < 1, such that for some positive

numbers M and d,

A(u) < (u) and |[ul| < Mo (u) (2.1)

for allu € K(9,d). SupposeT : K(9,d) — K(¥,d) is completely continuous and there exists positive

numbers a, b and ¢ with a < b such that
(Cy) {ue K(0,0,k,b,c,d) : k(u) >d} # 0 and k(Tu) > b for u € K(9,0,k,b,c,d);
(Cq) K(Tu) > b, for u € K(V,k,b,d) with 0(Tu) > ¢;
(C3) 0¢ K(V,¢,a,d) and ¢(Tu) < a for u € K(9,v,a,d), with (u) = a.
Then T has at least three fixed points u1, up and uz € K(0,d) such that
Pu;) <dfori=1,2,3, b < k(ur), a < (uz) with s(ug) < b and ¥P(uz) < a.

Lemma 2.2. If A :=a+ & — B(a+n) #0, then for y € C[0, 1], the boundary value problem

u"(t)+y(t) =0, te(0,1), (2.2)
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u(O) = au/(l)’ u(g) = ﬂu(n)a (2-3)
has a unique solution

1 o 13
(=)= 6 =om)] | w(s)ds+ 235 [ (€= is)as

2D [ owtslds - [ 0= sulops

Proof. The proof follows by direct calculations.

u(t) =

B2

Let G(t,s) be the Green’s function for the BVP (2.2)-(2.3). By direct calculation, we have

Gi(t,s), se€0,n],
G(t,s) = ¢ Ga(t,s), s€[ng,
Gs(t,s), se€l¢1],

where
it = Gn<t,s>:§[§—ﬁn—<1—ﬂ>ﬂ, s<t,
| Gt = et =AYt - )+ 6 - Br—(1-B)slt, t<s
o Gor(t,5) = %[aﬁ(n 5+t —5)+ s(E— B, s <t
2(t,8) =
Gonlt,5) = R [0~ Bt + a(fn — ) +HE—5),  t<5,
Gty - | G159 = {10 =) €= nls —ale —pn) — (€~ ), s <t
’ Galt,s) = X [(1=B)t = (€= Bn)], t<s.

Lemma 2.3. Suppose (Hy) holds. Then G(t,s) has the following properties
(i) G(t,s) > 0, for all t,s € [0,1];

(ii) G(t,s1) > AG(t,s2), t € [0,1], s1 € [T1,7m], s2 € [1,&], where 71 and A are given as in (Hs).

Proof. (i) By calculating, we obtain

(1 —&)(& +min{n,1 —n}) >1—£
min{n,1 —n}(1-n)+n(1-§ ~ 1-n

and

(18— Bn) (1=~ B

a< — < —

BA—n)—(1=¢ ~ B(E—n)

From this and (Hg), we have

Gult,s) = 36— Bn— (1= B)) 2 X1 —m) - (1-€) 20,
Galtys) = a1 = B)(t =)+ [ — B — (1= Dslt}
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{—a(l=p8)(s —t) + [ = Bn — (1= B)nlt}
[—a(1=B)(s —1) + (€ —m)t] = 0,
Gar(t,s) = [aB(n = s) +1(Bn — s) + s(€ = On)]
> ~laB(n —s)+ (Bn — s) + s(§ = Bn)]
= <[Pl +a) = s[Bla+n) + (1 -}

{Bn(1 + ) = ¢Bla+n) + (1 =9I}
[—aB(§—n) — (1 =&§)(E = Bn)] =0,

[2(1 = B)t + a(Bn — s) + £(§ — 5)]

[2(1 = B)s + a(Bn — s) + £(§ — 5)]

[—aB(s —n) + (& — )] =0,

{[a(l = B) + & = Bnls — a(§ = Bn) — (€ = Bn)t}
[a(1 = B) + (§ = Bn)§ — & — Bn) — (& — Bn)]
{al(1=8) = (€= Bn)] = (£ = Bn)(1 - &)}

{al1 =8 =B —n)] = (=1 -8} =0,

Gaa(t,s) = +[(1 = B)t = (€= pn)] =

B[ e

Thus, (i) holds.
(ii) By 5 > %, we get

a(l—ﬂ)+£—n2a(1—%)+£—n=%1;n20.

If t < 51, in view of (2.4) and (Hg), we have

Galt,51) = {al = B)(t = s1) + € = fn — (1 = B)sult}

- %{—a(l —B)s1+[a(l—B)+&—Pn— (1 —B)s1]t}

(1= 8) = (€ =B = 5 [BQL—n) ~ (1-0)] 20.

(2.4)
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>

{—a(l=P)s1 + (1 = B) + & — Bn— (1 - B)nlt}

>

= D=

{ma(l =P +[a(l = B) + & —nlt}

S —a(l - p)n
- A M

| —

Gao(t,s2) = —la(l — B)t + a(fn — s2) +1(§ — 52)]

IN

{=alsy = Bn) +ta(l = B) + € —nl}

IN
1>|»~ |>|»~ >|~ >|~ .

{—a(§ = Bn) +nla(l - B) + & —nl}
(E—=nn-a)

(€ =€ +n) — Bla+mn)
Thus,

G(t,sl) Glz(t,sl)
= > A.
G(t,SQ) G22(t,52) -

If s <t < s9, we have by (2.4) and (Hp) that

Gnlt,) = lsile—Bn— (- B)]} = x{nle —on— (1 - e}

[BT1(§ —n)] > A[B(l —n)— 1 =98]

-3

Gaalt,52) = < [a(t = $2) +aB(n — 1) + (€ — 52)]
< S {=alsz = ) + tla(1 = B) + € ul}
< S {-a(e — o) + a1~ §) + € )
= (€~ (€ - ap)
< (€~ mIE+n) — Bla+ )

So,

G(t, 81) _ Gn(t, 81)
G(t, 82) G22 (t, 82)

If t > s9, it follows from (Hp) that

> A
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\]

Gui(t,s1) > —[B(1 —n) — (1 - €],

| = D

Goi(t, s2) = —[aB(n — s2) + Bn(t — s2) + s2(§ — 1)]

[—aB(s2 —n) + (B — s2)t + s2(& — Bn)]
<

[—aB(§ —n) + (Bn —n)n+ &€ — Bn)]

Ble D= Bl

(& =€ +n) — Bla+n)].

Then,

G(t, 51) o Gn(t, 51)

= > A.
G(t,s2)  Galt,s2) —

This completes the proof.
Let C[0,1] be the Banach space with norm |ju| = [max |u(t)]. Denote
X={wuweC,1]: Ogltigl u(t) > 0 and u(0) = au/(1), u(&) = Bu(n) },
and define the cone K C X and the operator T': C[0,1] — C[0,1] by
K={ u e X: u(t) is concave on [0,n] U [£,1], u(t) is convex on [n,{] },
and
1
Tu) = [ Gt s)as) f(u)ds.
Lemma 2.4. Assume that u € K, then
u(t) = ¢(t)u(n), t € [0,n],  u(t) < ¢(t)u(n), t € [n,¢], (2.5)
where
t
57 le [07 77]7
dt)=9 -3 _
n+ (8- 1)t
B-DE e e
=1
Proof. Since u € K, then u(t) is concave on [0, 7], u(t) is convex on [n,&]. Thus, we have

Mt > EU(W)a for all t € [0, 7],

n n

u(t) > u(0) +

and

_§=Bn+(B-1t
£—n

u(n), for each t € [n,£].
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So, (2.5) holds.

Lemma 2.5. Assume that u € K.

i) If t) > t), then u(t) > for t 2.
(i) Org%xnu( ) ggfg{l u(t), then u(t) > v||ul|, for t € [Bn, ], (2.6)
i) If m > m h > fi + 5(1 — 2.
(ii) £<§1§X1 u(t) > Ogtagnu(t), then u(t) > ~||ul|, for t € [ ( £), o), (2.7)

where 11 € (6n,1), 72 € ({4 B(1 —¢§),1), v = min {5’1 - %’1 - ?__5}

Proof. Since u € K, then u(t) > 0, for all ¢ € [0, 1], u(t) is concave on [0,n] U [, 1], u(t) is convex
on [n,¢], and u(§) = Pu(n) < u(n). Thus, we have
lull = poax [u(t)] = max{ max u(t), max u(t)}.
There are two cases to consider

i t) > t), s 1) = t). Let
(i) OQ%XWU()_g%M ), s0 max [u(t)] = max u(t). Le

w1 = inf{e € [0,7] : Org%xnu(t) =u(e)}.

If t € [0,w;], then by the concavity of u(t), we have

u(wr) — u(O)t _ w1 — tu(O) I iu(m) > wilu(wl) > %Hu” (2.8)

t) > u(0
u(t) = u(0) + S —u(0)+

If t € [wy,n], similarly, we obtain

u(t) > u(wy) + %:z(n)(t —wi) = nn__uiu(wl) + ;:ill (n)
> 1 ) > = . (2.9)
n—w

In view of (2.8) and (2.9), we get

t t
ut) 2 min {21 Ll e € o1,
n n

which yields

. . !
min u(t) > min B,l——}u > | ul|-
i ut) 2 min 5,1 = 2l 2 ]

ii > h = . L
(ii) grgigxl u(t) > [fax u(t), then Joax lu(t)] grgigxl u(t). Let

wo = inf{e € (§,1] : Joax u(t) = u(e)}.

If t € (§,ws], by the concavity of u(t), we have
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) 2 u(e) + = g - 2 1 T2 )
t=¢ t—=¢
L v 2 =, (210)
If t € [wa, 1], similarly, we get
) 2 u(en) + M= ) = Lol 4 1220
N 11_—£2u(w2) > i:éuun, (2.11)
It follows from (2.10) and (2.11) that
) zmin{ =51 L=l ee e
From this
. . T2 —§
e () > min {51 - 2=l > 5l
Lemma 2.6. Assume that (Hy)-(Hg) hold. Then,
/nG(t, s)a* (s)f (u(s))ds >/ G(t, )a(s) f (u(s))ds. (2.12)

Proof. If x € [0,£ — 7], then n — dx € [r,n], n+ x € [1,€], where 71 and § as in (Hz). By the

definition of ¢ ( see Lemma 2.4 ), we have

¢(n—ox)=1-— 777(75__7—717)95 and ¢(n+2z)=1-— z:gx, for x € [0,& —n].
By On < 1 <n, we get
d(n —ox) > ¢(n + x), for all z € [0,£ — n). (2.13)

Let s = n—dz, Vz € [0, — n]. It follows from Lemmas 2.3 and 2.4, (2.13) and f is nondecreasing
that

n €=
/ G(t,s)at(s)f(u(s))ds = 6/0 G(t,n —dz)a™ (n — 0z) f (u(n — 6x))dx

é'_
> A ; ! G(t,n +z)a™ (n — 6x) f(p(n — 6x)u(n))dz

57
- [ "Gt + 2)a* (0 — 52) F(B(n + 2yuln))da. (2.14)

On the other hand, let s = n+ z, = € [0, — 7], by Lemma 2.4, one has
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3 ¢
/ Glt.s)a () f(uls)ds = [ Gltn+a)a™ (n+2)f(uly +))da

0
€= B
< G(t,n+z)a” (n+x)f(¢(n + 2)u(n))de. (2.15)
0
Thus, in view of (2.14) and (2.15), we know that (2.12) holds.
Lemma 2.7. Assume that (Ho)-(Hs) hold, then T : K — K is completely continuous.

Proof. Firstly, we claim T(K) C K. In fact, for all u € K, we have by Lemma 2.6 that

1
= /0 G(t,s)a(s)f(u(s))ds

_ < /0 " G s)at (s) f(u(s))ds + /T "Gt 5)a" (5)  (u(s))ds
—/gG(t,s)a_( ds+/ G(t,5)a* (s) f (u(s ))ds> >0,

Moreover, (Tu)(0) = a(Tu) (1), (Tu)(€) = B(Tu)(n), Then, T : K — X. On the other hand,
(Tw)"(t) = —a™ (t)f(u(t)) <0, t€[0,7],
(Tw)"(t) = a™ () f(u(t)) 2 0, t€né,
(Tw)"(t) = —a* (1) f(u(t)) <0, te[g 1],

This show that T : K — K. It can be shown that T' : K — K is completely continuous by

Arzela-Ascoli theorem.
3. Main result

Let the nonnegative continuous concave functional x on K, the nonnegative continuous convex

functionals 6, 9 and the nonnegative continuous functional ¥ be defined on the cone K by

() = min min (u(t), | min ()]}, 0(w) = 6(u) = vu) = max [u(t)]. for u € K.

For the sake of brevity, we denote

1
= max (/ G(t,s) s)ds+/ G(t, s)a*(s)ds),
" o<i<l ¢

M = min{ My, My, M3, My},

where

T1 T1
M, = G(Bn,s)a™(s)ds, My = G(11,8)a™ (s)ds,
Bn Bn
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T2

M= [ Gler -t (s, M= [ Glos)at(s)ds.
§+6(1-¢) §+6(1-¢)

Therorem 3.1. Suppose that (Hy)-(Hs) hold. Let 0 < a < b < ~d, and the following conditions
hold,

(Hy) flu(t)) < &, for all t € [0,1], u € [0,d],
(H5) f(u(t)) > %a for all t € [577,71] U [5 + 6(1 - 5)’7—2]a u € [b’ %]:
(Hg) f(u(t)) < %, for all t € [0,1], u € [0, al.

Then the BVP (1.3) have at least three positive solutions uy, us and us such that

max lui(t)] < d fori=1,2,3,b< min |ui(t)| (ord< min lui(t)| ), max |ui| < d,
0<t< n<t<m +A(1-€)<t<r 0<t<1
b owith i . .
a< Joax \uz( ) <3 b wit Bnrggn lug(t)| < b (or £+ﬁ(lr£151§t§m lug(t)| < b ), and [oax lug(t)| < a

Proof. Firstly, we check T': K(¢,d) — K (9, d) is completely continuous operator.
If ue K(9,d), then 9(u) = Juax lu(t)| < d. It follows from (H4) that

1

9(Tu) = max [Tu(t)] = max ; G(t,s)a(s)f(u(s))ds

ul €
= max (/0 G(t,S)a‘L(s)f(u(s))ds—/77 G(t,s)a” (s)f(u(s))ds

+/§1 G(t, s)a+(s)f(u(s))ds>
< s ( / " G(t, 5)a™ (3) f(u(s))ds + /£ ‘o, s>a+<s>f<u<s>>ds>
< N s </ Gl ) s)ds+/: G(t,s)a+(s)d5> _d

Therefore, T : K(9,d) — K(v,d). From this and Lemma 2.7, we know that 7' : K(9,d) — K(9,d)

is completely continuous operator.

To check condition (C;) of Lemma 2.1, we choose u(t) = Q 0 <t < 1. It is easy to check that
u(t)—QGK(vﬂeand)andﬁ( )—n( ) > b, andso{uGK(ﬁHnb,:,d) k(u) > b} # 0.

Thus, for all u € K(¢,0,k,b, f{,d) we have that b < u(t) < f{, for t € [Bn, U + B(1 —&), 2]. We

consider the following two cases.

Case (i) Suppose that mzax u(t) > gnr1§1<x1 u(t). Forallu € K(9,0,k,b, %, d), then we have Tu € K,
<n <t<
and so T'u is concave on [0,7], we have to distinguish two cases: (1) ﬁrgg Tu(t) = Tu(Bn); (2)
n<t<m

5 12112 Tu(t) = Tu(m). For case (1), we have from Lemma 2.6 that
n<t<m1
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Bn<t<m

1
min  Tu(t) = Tu(fn) = /0 G(Bn, s)a(s)f(u(s))ds
— /07'1 G(ﬁn, 3)a+ (s)f(u(s))ds 4 /17 G(/Bna S)CL+ (S)f(u(s))ds
3

1
- / G(Bn, 5)a~ (5) f (u(s))ds + /5 G(Bn, 5)a* (s) f(u(s))ds

n

T1 1
> /0 G(Bn, s)a™ (5) f (u(s))ds + /6 G(Bn, 5)a™ () f (u(s))ds

> [ G(Bn,s)a"(s)f(u(s))ds
Bn
> 2 " G(on, s)at (s)ds > b
2y, n,s)a” (s)ds > b.
For case (2), similarly, we get

T1

min Tu(t) = Tu(m) > G(71,8)a™ (s)f(u(s))ds > % : /ﬂT1 G(71,8)a™ (s)ds > b.

Bn<t<my 6n n
Thus,
min  Tu(t) > b, for all u € K(0,0,r,b, 2, d) with b < u(t) < 2, t € [Bn, 7] (3.1)
Bn<t<m v v

Case (ii) Suppose that max u(t) > max u(t). For all u € K(9,0,r, b,%,d), then we have

£<it<1 0<t<n

Tu € K, and so Tu is concave on [, 1], we have to distinguish two cases: (1) min Tu(t) =
§+A(1-E)<t<m

Tu(+ B(1 =¢)); (2) min Tu(t) = Tu(re). For case (1), it follows from Lemma 2.6 that
§+B(1—§)<t<m

T2

&Bu@gﬁgm Tu(t) = Tu(é + B(1 —€)) > /5 o G(E+B(1—€),s)a™(s)f(u(s))ds

b T2
v G(&+B(1 =€), s)a" (s)ds > .
M Jersa-o
For case (2), similarly, we obtain

T2

i = _ +
54_5(1r£15r1§t§T2 Tu(t) = Tu(m) > /§+ﬁ(15) G+ P —=E),s)a"(s)f(u(s))ds
> L [T Gl 50— g s)at (s)ds b
M- Jerp-¢)
Hence,

wu@gﬁ@ Tu(t) > b, for all w € K(9,0,r,b, 2, d) with b < u(t) < 2, t € [€ + B(1 - €),m].(3.2)

In view of (3.1) and (3.2), we have
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Tu) = Tul(t Tu(t)} > b, for all u e K(9,0,k,b,2,d).
k(Tu) = mln{ﬁnrgggn u(t), §+/3(1mgl<t<rg u(t)} > b, for all u ( K, b, 2, d)

This shows that condition (C;) of Lemma 2.1 is sastisfied.

Secondly, we show (Cgz) of Lemma 2.1 is satisfied. If max w(t) > max u(t). By Lemma 2.5 (i)
0<t<n £<t<1

and Lemma 2.7, we have

5 rggg Tu(t) > v||Tu|| = v0(Tw) > b, for all uw € K(9, k,b,d) with 0(T'u) > %. (3.3)
n<t<mi
If max w(t) > max u(t). It follows from Lemma 2.5 (ii) and Lemma 2.7 that
£<t<1 0<t<n
min Tu(t) > ~||Tul| = v0(Tu) > b, for all u € K (9, k,b,d) with §(Tu) > L. 3.4
crpin _ Tu(®) 2 y|[Tull = 0(Tw) ( ) with 6(T'w) > 2 (3-4)

Therefore, we obtain by (3.3) and (3.4) that

Tu) = Tu(t Tu(t)} > b, for all u € K (0, k,b,d) with 0(Tu) > £.
k(Tu) = mln{ﬁnrilggn u )§+/3(1mgl<t<rg u(t)} > b, for all u (9, k,b,d) with 6(Tu) 5

Finally, we show condition (C3) of Lemma 2.1 is also satisfied. Obviously, as ¥(0) = 0 < a, there
holds 0 ¢ R(9,v,a,d). Suppose u € R(9,v,a,d) with ¢)(u) = a. Then we have by condition (Hg)
that

W(Tu) = Joax |Tu(t)] = OIE&XI/ G(t,s)a(s)f(u(s))ds

3
= max ( / G(t, s)a™t (s)f(u(s))ds — /17 G(t, s)a~ (s)f(u(s))ds

+/§1 G(t, s)a+(s)f(u(s))ds>

So, condition (Cs) of Lemma 2.1 is satisfied. Therefore, according to Lemma 2.1, there exist three

positive solutions uj, uz and us for the BVP (1.3) such that

max |u;(t)] <dfori=1,2,3,b< min J|ui(t)] (orb< min lui(t)] ), max |u1| <d,
0<t<1 Bn<t<r E+B(1-6)<t<m 0<t<1
h i .
a< Joax luz ()] < = b wit 5 rilgn lug(t)| < b (o £+ﬁ(1r£151§t§m lug(t)| < b ), and fax, lus(t)| < a
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