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Abstract. This paper is concerned with the study of some properties of stationary solu-
tions to phase field crystal equations bifurcating from a trivial solution. It is assumed
that at this trivial solution, the kernel of the underlying linearized operator has dimen-
sion two. By means of the multiparameter method, we give a second order approxi-
mation of these bifurcating solutions and analyse their stability properties. The main
result states that the stability of these solutions can be described by the variation of a
certain angle in a two dimensional parameter space. The behaviour of the parameter
curve is also investigated.
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1 Introduction

During the last decades, pattern formation equations have attracted much attention from re-
searchers in applied sciences; see for instance [3, 4, 12, 21]. In materials sciences, pattern for-
mation equations (as Allen–Cahn or Cahn–Hilliard equations) are obtained by phase field
methods. In 2004, K. Elder and M. Grant have extended these methods by introducing the
so-called phase field crystal modelling in order to describe liquid/solid phase transitions in pure
materials or alloys [6]. The solid phase, which can be a crystal, is represented by a periodic
field whose wavelength accounts for the distance between neighbouring atoms. The liquid
state is described by a (spatially) uniform field. We refer the reader to [6, 7, 17–19] for a more
comprehensive exposition of the phase field crystal method.

The simplest phase field crystal model is the following sixth order evolution equation:

∂tu − ∂xx
(
∂xxxxu + 2∂xxu + f (u)

)
= 0, t > 0, x ∈ (0, L). (1.1)

Here L is the length of the domain and f is the derivative of a double-well potential. This
equation can be viewed as a conservative Swift–Hohenberg equation exactly as the Cahn–
Hilliard equation is a conservative version of the Allen–Cahn equation. Performing a linear
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change of variable mapping (0, L) onto (0, 1), equation (1.1) can be rewritten as

∂tu − ε∂xx
(
ε2∂xxxxu + 2ε∂xxu + f (u)

)
= 0, t > 0, x ∈ (0, 1), (1.2)

with ε = 1/L2.
This paper focuses on the stationary solutions to (1.2) complemented with initial and

boundary conditions (see (2.7)). In order to gain insight properties of stationary solutions, we
use a bifurcation approach.

A purpose of this paper is to construct (at least partially) phase diagrams (in the thermo-
dynamical sense) by means of a mathematical analysis of the phase field crystal equation (1.2):
see Figures 3.1 and 4.2 below. The parameters ε, M and r involved in the equation (see (2.13)
and (2.1)) play the role of thermodynamical state variables. In this respect, it is important to
investigate stability of solutions to (1.2). However, since we use perturbation methods, only
local stability results will be proved.

It is well known that bifurcations occur only if the kernel of the underlying linearized
operator is nontrivial. For the phase field crystal equation (1.2), the case of a one dimensional
kernel has been investigated in [16]. In this paper, we focus on two dimensional kernels.

The originality of our approach is the combination of a group theoretic approach (see for
instance [9, Chapter XX] or [5]), together with the multiparameter method (see [13, Chapter I]).
Indeed, the former gives a convenient way to compute bifurcating solutions. However, the
persistence of (explicit) solutions of the truncated bifurcation equation (see (4.30)) is not clear
and not obvious for the field crystal equation. In general, the proof of persistence can be very
computationally intensive: see for instance [2]. To our knowledge, even the sophisticated path
formulation method (see [15]) do not lead to 3-determinacy in our setting. Therefore we use
this approach as a guideline for our computations. More precisely, we use it when we rewrite
(4.26) with the help of notation (4.27) and (4.28).

The multiparameter method allows us to prove (quite simply) the existence of bifurcating
solutions to the field crystal equation (1.2). This is just a generalisation to higher dimensional
kernel of Lyapunov–Schmidt’s method. Indeed, for one dimensional kernel, the bifurcation
equation reads

g(y, ε) = 0 in R,

where y is a coordinate in the kernel and ε is the bifurcation parameter. By the implicit
function theorem, we then get a solution of the form

(y, ε(y)) for y ≃ 0.

In the case of a two dimensional kernel, the bifurcation equation reads

g(y, ε, M) = 0 in R2,

where y is a coordinate along a direction in the kernel and ε and M are the bifurcation param-
eters. Then we get a solution of the form

(y, ε(y), M(y)) for y ≃ 0.

For equation (1.2), the two parameters are ε and the mass M of the initial condition (which
is conserved by the dynamics).

The first step is to characterize the parameter values that give rise to two dimensional
kernels. The phase diagram of Figure 3.1 features a simple geometric criterion for this (see
also Proposition 3.1 for an analytic result).
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Then we implement the multiparameter method in order to get bifurcation branches and
expansions of solutions to (1.2). According to [13], we have to choose a direction ( α

β ) in
the kernel which will be tangent to a branch of solutions. Let us denote by y 7→ v(y) this
branch, where y ∈ R, y ≃ 0. The parameters ε and M are also parametrized by y; this gives
a parameter curve y 7→ (ε(y), M(y)) in R2. Theorem 4.1 states an existence result for these
pitchfork bifurcation branches and gives second order expansions of ε(·), M(·) and v(·). In
an explicit way, for y ≃ 0, the function x 7→ v(y)(x) is solution to

ε(y)2∂xxxxv(y) + 2ε(y)∂xxv(y) + f (M(y) + v(y)) =
∫ 1

0
f (M(y) + v(y))dx a.e. in (0, 1).

We are then led to study two curves: the parameter curve y 7→ (ε(y), M(y)) and the
function valued curve y 7→ v(y). The former is studied by considering its oriented tangent
at y = 0. This tangent will be denoted by T(α). We show how T(α) behaves w.r.t. α: see
Propositions 4.5, 4.9 and Figure 4.2.

In Proposition 4.10, we state a monotonicity result for α 7→ T(α). More precisely, in a well
identified region of the parameter space, T(α) turns clockwise when α goes from 0 to 1. In
a quite surprising way, this monotonicity result is related to the stability of the bifurcating
solutions; as we will see now.

The main result of this paper is stated in Theorem 5.3 and concerns the stability of the
bifurcating stationary solutions to the phase field crystal equation. If the wave numbers of the
interactive modes (i.e. k∗ and k∗∗ in the sequel) are not consecutive integers then the bifurcat-
ing solutions are unstable. This is easily proved. In order to show stability, we use the principle
of reduced stability from [13, Section I-18] (see also [14]). It allows us to reduce some infinite
dimensional eigenvalue problem to a two dimensional one. As evoked above, it appears that
the bifurcating solutions are stable exactly when the tangent T(α) turns clockwise. So we
connect the issue of stability in the PDE (2.7) with the variation of a one dimensional object
(the angle between T(α) and the horizontal axis).

Finally, we use a truncated bifurcation equation and symmetries to recover a bifurcation
diagram obtained originally in [16] by numerical integration: see Figure 6.1.

2 Equations and functional setting

Let Ω denote the interval (0, 1) ⊂ R and r be a real number. We define

f : R → R, u 7→ (1 + r)u + u3 (2.1)

V2 =
{

u ∈ H2(Ω) | u′(0) = u′(1) = 0
}

(2.2)

V4 =
{

u ∈ H4(Ω) | u′ = u′′′ = 0 on ∂Ω
}

(2.3)

L̇2(Ω) =

{
v ∈ L2(Ω)

∣∣∣ ∫
Ω

v dx = 0
}

V̇4 = V4 ∩ L̇2(Ω), V̇2 = V2 ∩ L̇2(Ω). (2.4)

The space V̇4 is equipped with the bilinear form

(u, v)V̇4
=
∫

Ω
u(4)v(4) dx,

which becomes in turn a Hilbert space since every v ∈ V̇4 satisfies

∥v∥2 ≤ 1
σ2

1
∥v(4)∥2, (2.5)
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where ∥ · ∥2 denotes the standard L2(Ω)-norm. Indeed,

∥v∥2 ≤ 1√
σ1
∥v′∥2 ≤ 1

σ1
∥v′′∥2 (2.6)

by Poincaré–Wirtinger and Poincaré’s inequalities. Here σ1 := π2 denotes the first eigenvalue
of the one-dimensional Laplace operator with homogeneous Dirichlet boundary conditions
on Ω. Moreover v′′ belongs to V̇2 thus the same estimates give ∥v′′∥2 ≤ 1

σ1
∥v(4)∥2. Then (2.5)

follows. In the same way, if (u, v)V̇2
:=
∫

Ω u(2)v(2) dx then (V̇2, (·, ·)V̇2
) is a Hilbert space. Of

course, u(2) stands for the second derivative of u.
Given initial data u0 = u0(x) and a positive parameter ε, the phase field crystal equation with

homogeneous Neumann boundary condition reads
∂tu − ε∂xx

(
ε2∂xxxxu + 2ε∂xxu + f (u)

)
= 0 in Ω × (0, ∞)

∂xu = ∂xxxu = ∂xxxxxu = 0 on ∂Ω × (0, ∞)

u(0) = u0 in Ω.

(2.7)

Since every solution u = u(t, x) to (2.7) satisfies∫
Ω

u(x, t)dx =
∫

Ω
u0(x)dx ∀t > 0,

the stationary solutions to the problem above solve

u ∈ M + V̇4, ε2u(4) + 2εu(2) + f (u) =
∫

Ω
f (u)dx in L2(Ω), (2.8)

where M :=
∫

Ω u0(x) is a real parameter.
Introducing the new function v defined by u = M + v, (2.8) is equivalent to

v ∈ V̇4, ε2v(4) + 2εv(2) + f (M + v) =
∫

Ω
f (M + v)dx in L2(Ω). (2.9)

The bifurcation problem

We will formulate a bifurcation problem in order to get nontrivial solutions of (2.9). To this
end, we will introduce some notation. Let ε > 0, ε∗ > 0 and M, M∗ be real parameters. We
put

δ := (ε, M), δ∗ := (ε∗, M∗), µ = (µ1, µ2) := δ − δ∗ ∈ R2.

Let also

L(δ, ·) : V̇4 → L̇2(Ω), v 7→ ε2v(4) + 2εv(2) + f ′(M)v (2.10)

L := L(δ∗, ·). (2.11)

In the sequel, δ∗ = (ε∗, M∗) is the bifurcation point and is fixed; the parameter δ will be close
to δ∗. Then we define

F : (−ε∗, ∞)× R × V̇4 → L̇2(Ω)

through

F(µ1, µ2, v) = (ε∗ + µ1)
2v(4) + 2(ε∗ + µ1)v(2) + f (M∗ + µ2 + v)−

∫
Ω

f (M∗ + µ2 + v)dx − Lv.
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With these notations, we will consider the following bifurcation problem

µ ∈ (−ε∗, ∞)× R, v ∈ V̇4, Lv + F(µ, v) = 0 in L̇2(Ω) (2.12)

or equivalently

δ = (ε, M) ∈ (0, ∞)× R, v ∈ V̇4, Lv + F(δ − δ∗, v) = 0 in L̇2(Ω). (2.13)

Remark that the equations in (2.9) and (2.13) are equivalent.
We Taylor expand F(µ, v) w.r.t. µ and v at (µ, v) = (0, 0). For this, we write

F(µ, v) = F1(µ)v + F2(µ)v2 + F03v3,

where

F1(µ)v = L(δ∗ + µ, v)− Lv

=
(
(ε∗ + µ1)

2 − ε2
∗
)
v(4) + 2µ1v(2) +

(
f ′(M∗ + µ2)− f ′(M∗)

)
v,

so that v 7→ F1(µ)v is a linear operator. Expanding F1(µ)v w.r.t. µ, we get

F1(µ)v = F11(µ)v + F21(µ)v

with (see (2.1))

F11(µ)v = µ1(2ε∗v(4) + 2v(2)) + 6µ2M∗v

F21(µ)v = µ2
1v(4) + 3µ2

2v.

Above, F2(µ) : V̇4 × V̇4 → L̇2(Ω) is a continuous bilinear symmetric operator and F2(µ)v2

stands for F2(µ)(v, v). We proceed in the same way for F2(µ)v2, so that

F2(µ)v2 = F02v2 + F12(µ)v2

with

F02(µ)v2 = 3M∗

(
v2 −

∫
Ω

v2 dx
)

F12(µ)v2 = 3µ2

(
v2 −

∫
Ω

v2 dx
)

.

The last term is
F03v3 = v3 −

∫
Ω

v3 dx.

Solutions to (2.9) are critical point of E(M + ·, ε) in V̇4 where the energy E is defined
through

E : V2 × (0, ∞) → R, (u, ε) 7→
∫

Ω

1
2
(εu′′ + u)2 +

r
2

u2 +
1
4

u4 dx. (2.14)

3 The linearised equation

For δ = (ε, M) ∈ (0, ∞)× R, we study the eigenvalue problem (see the previous section and
in particular (2.10), for notation){

L(δ, φ) = λφ in L2(Ω)

φ ∈ V̇4 \ {0}, λ ∈ R.
(3.1)
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2D kernel

X := 3M2

ε 7→ −(σ1ε− 1)2 − r

The trivial solution is stable

The trivial solution is unstable

Figure 3.1: Phase diagram for r = 2 with four parabolas corresponding to k = 1, . . . , 4.

The eigenvalues of (3.1) are

λk := (εσk − 1)2 + r + 3M2, where σk := (kπ)2, k = 1, 2, . . . , (3.2)

with corresponding eigenfunctions

φk : Ω → R, x 7→ cos(kπx).

Then 0 is an eigenvalue of (3.1) iff there exists a positive integer k such that

3M2 = −(εσk − 1)2 − r.

That is to say, the point (ε, 3M2) is on the parabola given by the function

ε 7→ −(εσk − 1)2 − r. (3.3)

Thus the operator L(·, δ) will have a two dimensional kernel iff the point (ε, 3M2) lies at
the intersection of two such parabolas: see Figure 3.1. If we express this geometric property
in an analytical language, we obtain the following result whose proof is straightforward and
will be omitted.

Proposition 3.1. Let δ = (ε, M) ∈ (0, ∞)×R and k∗, k∗∗ be integers satisfying 1 ≤ k∗∗ < k∗. Then

ker L(δ, ·) = ⟨φ∗, φ∗∗⟩ ⇐⇒
{
(εσk∗ − 1)2 + r + 3M2 = 0,

(εσk∗∗ − 1)2 + r + 3M2 = 0.

Moreover, if ker L(·, δ) = ⟨φ∗, φ∗∗⟩, then

ε =
2

σk∗ + σk∗∗
. (3.4)

In the statement above, φ∗ := φk∗ , φ∗∗ := φk∗∗ and ⟨φ∗, φ∗∗⟩ denotes the real vector space
generated by φ∗ and φ∗∗.
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Stability of the trivial solution

In view of (1.2), the trivial solution v = 0 of (2.9) is said to be linearly stable if (3.1) has only
positive eigenvalues. In Figure 3.1, this corresponds to the case where the point (ε, 3M2) is
above all parabolas of the form (3.3). If (3.1) has at least one negative eigenvalue, then v = 0
is linearly unstable.

Besides, the trivial solution is called neutrally stable if 0 is an eigenvalue of (3.1) and all
the other eigenvalues of (3.1) are positive. In order to have stability of solutions to (2.12)
bifurcating from v = 0, it is necessary that the trivial solution is neutrally stable. The next
result gives a simple criterion for neutrally stability of v = 0 in the case of a 2D kernel.

Proposition 3.2. Let δ = (ε, M) ∈ (0, ∞)× R and k∗, k∗∗ be integers such that 1 ≤ k∗∗ < k∗ and

ker L(δ, ·) = ⟨φ∗, φ∗∗⟩.

Then v = 0 is neutrally stable iff k∗ = k∗∗ + 1.

Proof. For every k ≥ 1, we have with (3.2), (3.4)

λk − λk∗ = ε(σk − σk∗)
(
ε(σk + σk∗)− 2

)
=

2ε

σk∗ + σk∗∗
(σk − σk∗)(σk − σk∗∗)

=
2π4ε

σk∗ + σk∗∗
(k2 − k2

∗)(k
2 − k2

∗∗). (3.5)

If v = 0 is neutrally stable and k ̸= k∗, k∗∗, then λk > 0 = λk∗ . Hence

(k − k∗)(k − k∗∗) > 0, ∀k ̸= k∗, k∗∗. (3.6)

The value of (k − k∗)(k − k∗∗) at k = k∗∗ + 1 is k∗∗ + 1 − k∗. This number is nonpositive since
by assumption k∗∗ < k∗. Thus with (3.6) we get k∗ = k∗∗ + 1.

Conversely, if k∗ = k∗∗ + 1, then (3.5) imply that λk − λk∗ > 0 for k ̸= k∗, k∗∗. Thus v = 0
is neutrally stable.

Figure 3.1 points out two values of the parameter δ for which the kernel of L(·, δ) has
dimension two. One of these values corresponds to the case where k∗ = 2 and k∗∗ = 1 and
lies at the intersection of the green and red parabolas. By Proposition 3.2, the trivial solution
is neutrally stable for this value of δ. The other value corresponds to the case where k∗ = 3
and k∗∗ = 1. In this situation, v = 0 is not neutrally stable. Thus bifurcating solutions will be
unstable.

4 Bifurcation with 2D kernel

The case where the kernel of L(·, δ∗) has dimension one has been investigated in [16]. Here,
we focus on the case where this kernel is two dimensional. More precisely, let δ∗ := (ε∗, M∗) ∈
(0, ∞)× R, p := −r − 3M2

∗ and k∗, k∗∗ be integers satisfying 1 ≤ k∗∗ < k∗. We assume

M∗ ̸= 0 (4.1)

(ε∗σk∗ − 1)2 + r + 3M2
∗ = (ε∗σk∗∗ − 1)2 + r + 3M2

∗ = 0 (4.2)
k∗
k∗∗

̸= 2,
k∗
k∗∗

̸= 3. (4.3)
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From the geometrical point of view of Figure 3.1, (ε∗, 3M2
∗) is a specified point at the intersec-

tion of two parabolas. According to Proposition 3.1, it follows that

ker L(·, δ∗) = ⟨φ∗, φ∗∗⟩.

Consequently
ε∗σk∗ = 1 +

√
p, ε∗σk∗∗ = 1 −√

p. (4.4)

We will implement the multiparameter method (which is based on the Lyapunov–Schmidt
method, see for instance [13, Chapter I]). In view of equation (2.9), the parameters will be
ε and M. Moreover we will assume that δ = (ε, M) is close to δ∗ := (ε∗, M∗) so that (see
Section 2),

µ := δ − δ∗

will be close to zero. We recall that we have put

φ∗ := φk∗ , φ∗∗ := φk∗∗ . (4.5)

Since the operator L (defined by (2.11)) is self-adjoint with compact resolvent, the set{ φk

∥φk∥2
| k ∈ N \ {0}

}
is a spectral basis of L̇2(Ω). Thus

dim ker L = codim R(L),

where R(L) ⊂ L̇2(Ω) denotes the range of L, and

L̇2(Ω) = R(L)⊕ ker L

V̇4 =
(

R(L) ∩ V̇4

)
⊕ ker L.

This decomposition of L̇2(Ω), in turn, defines the projection

P : L̇2(Ω) → ker L along R(L). (4.6)

Denoting by (·, ·)2 the L2-scalar product, there holds

Pv = 2(v, φ∗)2φ∗ + 2(v, φ∗∗)2φ∗∗, ∀v ∈ L̇2(Ω). (4.7)

We decompose every v ∈ V̇4 in a unique way into

v = u0 + u1, (4.8)

where u0 ∈ ker L, u1 ∈ R(L) ∩ V̇4. Moreover (u0, u1)2 = 0 since L is self-adjoint.

Projection on R(L). Applying I − P to (2.12) and using the notations of Section 2, we obtain

(I − P)
{
(L + F1(µ))u1 + F2(µ)(u0 + u1)

2 + F03(u0 + u1)
3} = 0 in L̇2(Ω). (4.9)

By the implicit function theorem, for (u0, u1, µ) close to (0, 0, 0), this equation is equivalent to

u1 = U (µ, u0). (4.10)
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Moreover, U (µ, 0) = 0 and

U (µ, u0) = O(u2
0), for (µ, u0) ≃ (0, 0). (4.11)

This means that there exist C0, C such that

∥U (µ, u0)∥V̇4
≤ C∥u0∥2

V̇4
, ∀|µ| ≤ C0, ∥u0∥2

V̇4
≤ C0.

Thus
U (µ, u0) = a02u2

0 + O(µu2
0 + u3

0), (4.12)

where a02 : ker L × ker L → R(L) ∩ V̇4 is a continuous bilinear symmetric operator indepen-
dent of µ and a02u2

0 := a02(u0, u0). The equality (4.12) means that

∥U (µ, u0)− a02u2
0∥V̇4

≤ C
(
|µ|∥u0∥2

V̇4
+ ∥u0∥3

V̇4

)
, for (µ, u0) ≃ (0, 0).

Computation of a02u2
0. For α, β ∈ R, we put u0 = αφ∗ + βφ∗∗ and v2 := a02u2

0. At order u2
0,

(4.9) reads
(I − P)

{
(Lv2 + F02u2

0
}
= 0 in L̇2(Ω). (4.13)

Since k∗ ̸= 2k∗∗, we get

a02u2
0 = v2 =

1
2
(

x2k∗ φ2k∗ + xk∗+k∗∗ φk∗+k∗∗ + xk∗−k∗∗ φk∗−k∗∗ + x2k∗∗ φ2k∗∗
)
, (4.14)

with
x2k∗ = −3M∗

λ2k∗
α2, xk∗+k∗∗ = − 6M∗

λk∗+k∗∗
αβ,

xk∗−k∗∗ = − 6M∗
λk∗−k∗∗

αβ, x2k∗∗ = − 3M∗
λ2k∗∗

β2.
(4.15)

Computation of a02(u0, ·). This quantity will be useful later on. Since

a02(u0, ·) = 1
2

Du0 v2 =
1
2

Du0 a02u2
0,

we differentiate (4.13) w.r.t. u0 to get

(I − P)
{

La02(u0, ·) + F02(u0, ·)
}
= 0.

Since u0 = αφ∗ + βφ∗∗,

F02(u0, φ∗) =
3
2

M∗
(
αφ2k∗ + βφk∗+k∗∗ + βφk∗−k∗∗

)
.

Hence

a02(u0, φ∗) = −3
2

M∗

(
α

λ2k∗
φ2k∗ +

β

λk∗+k∗∗
φk∗+k∗∗ +

β

λk∗−k∗∗
φk∗−k∗∗

)
. (4.16)

In a same way,

a02(u0, φ∗∗) = −3
2

M∗

(
α

λk∗+k∗∗
φk∗+k∗∗ +

α

λk∗−k∗∗
φk∗−k∗∗ +

β

λ2k∗∗
φ2k∗∗

)
. (4.17)
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Projection on ker L. Since k∗ ̸= 2k∗∗,

PF02u2
0 = 0, ∀u0 ∈ ker L. (4.18)

Then, with u1 given by (4.10), the bifurcation equation reads

P
{

F1(µ)u0 + 2F2(µ)(u0, u1) + F2(µ)u2
1 + F03(u0 + u1)

3} = 0

or equivalently (see (4.12)),

P
{

F1(µ)u0 + 2F02(u0, a02u2
0) + F03u3

0 + O(µu3
0 + u4

0)
}
= 0. (4.19)

According to Lyapunov–Schmidt’s method, every solution (µ, u0) to the bifurcation equation
(4.19) provides a solution to (2.12). In order to solve (4.19), we use the Newton polygon
method. Namely, we fix α, β such that α2 + β2 = 1, set

φ0 = αφ∗ + βφ∗∗, u0 = yφ0, for y ∈ R, y ≃ 0 (4.20)

and rescale the parameter µ by setting

µ = y2µ̃.

If y ̸= 0, then (4.19) is equivalent to

P
{

F11(µ̃)φ0 + 2F02(φ0, a02 φ2
0) + F03 φ3

0 + O(y)
}
= 0.

We recast this equation under the form

G(µ̃, y) = 0. (4.21)

There holds in view of (4.4)

Dµ̃G(µ̃, 0) = F11(·)φ0 =

(
2 p+

√
p

ε∗
α 6M∗α

2 p−√
p

ε∗
β 6M∗β

)
. (4.22)

The above matrix is the matrix of the linear mapping Dµ̃G(µ̃, 0) : R2 → ker L, expressed in
the canonical basis of R2 and in the basis (φ∗, φ∗∗) of ker L. If α, β and M∗ are nonzero, then
Dµ̃G(µ̃, 0) is an isomorphism. Remark that p ̸= 0 due to (4.2) and k∗ ̸= k∗∗. In order to apply
the implicit function theorem, it is enough to find µ̃0 ̸= 0 such that

G(µ̃0, 0) = 0, with µ̃0 = (µ̃1, µ̃2) ∈ R2. (4.23)

For this, we notice that

G(µ̃0, 0) = P
{

F11(µ̃)φ0 + 2F02(φ0, a02 φ2
0) + F03 φ3

0
}

.

Moreover, by (4.22),

F11(µ̃)φ0 = 2α

(
µ̃1

p +
√

p
ε∗

+ 3M∗µ̃2

)
φ∗ + 2β

(
µ̃1

p −√
p

ε∗
+ 3M∗µ̃2

)
φ∗∗ (4.24)
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and, since k∗ ̸= 3k∗∗,

PF02(φ0, a02 φ2
0) =

3M∗
4
(

x2k∗α + (xk∗+k∗∗ + xk∗−k∗∗)β
)

φ∗

+
3M∗

4
(
(xk∗+k∗∗ + xk∗−k∗∗)α + x2k∗∗ β

)
φ∗∗

PF03 φ3
0 =

3
2

(
1
2

α3 + αβ2
)

φ∗ +
3
2

(
1
2

β3 + α2β

)
φ∗∗.

If we assume α ̸= 0 and β ̸= 0, then (4.23) is equivalent to
2

p +
√

p
ε∗

µ̃1 + 6M∗µ̃2 = −3M∗
2

(
x2k∗ + (xk∗+k∗∗ + xk∗−k∗∗)

β

α

)
− 3

4
α2 − 3

2
β2,

2
p −√

p
ε∗

µ̃1 + 6M∗µ̃2 = −3M∗
2

(
(xk∗+k∗∗ + xk∗−k∗∗)

α

β
+ x2k∗∗

)
− 3

4
β2 − 3

2
α2.

(4.25)

Since M∗ ̸= 0 and p ̸= 0, it is clear that (4.25) has a unique solution (µ̃1, µ̃2). Thus for every
y ≃ 0, we have a bifurcating solution (δ(y), v(y)) of (2.13). Moreover,

δ(y) = (ε(y), M(y)) = (ε∗ + µ̃1y2, M∗ + µ̃2y2) + O(y3).

Next we would like to compute (ε̈(0), M̈(0)) where ε̈(0) is the value at y = 0 of the second
derivative of ε(·). We readily have

ε̈(0) = 2µ̃1, M̈(0) = 2µ̃2.

Hence we obtain from (4.25) the following equations.
p +

√
p

ε∗
ε̈(0) + 3M∗M̈(0) = −3M∗

2

(
x2k∗ + (xk∗+k∗∗ + xk∗−k∗∗)

β

α

)
− 3

4
α2 − 3

2
β2,

p −√
p

ε∗
ε̈(0) + 3M∗M̈(0) = −3M∗

2

(
(xk∗+k∗∗ + xk∗−k∗∗)

α

β
+ x2k∗∗

)
− 3

4
β2 − 3

2
α2.

(4.26)

We will rewrite these equations in a more convenient form. For this, we put

f∗ :=
9
2

M2
∗

λ2k∗
− 3

4
, f∗∗ :=

9
2

M2
∗

λ2k∗∗
− 3

4
, (4.27)

CS := 9M2
∗

(
1

λk∗+k∗∗
+

1
λk∗−k∗∗

)
− 3

2
. (4.28)

In view of (4.15), equations (4.26) reads
p +

√
p

ε∗
ε̈(0) + 3M∗M̈(0) = ( f∗ − CS)α

2 + CS,

p −√
p

ε∗
ε̈(0) + 3M∗M̈(0) = (− f∗∗ + CS)α

2 + f∗∗.
(4.29)

In (4.29), the unknown is (ε̈(0), M̈(0)). ε∗, M∗, k∗, k∗∗ are fixed and α is a parameter ranging
in (0, 1).

Let us notice that f∗, f∗∗ and CS appear naturally if a group theoretic approach is consid-
ered (see for instance [9, Chapter XX] and, [5]). More precisely, if u0 = Xφ∗ + Yφ∗∗, that is
X = yα, Y = yβ, then, to third order, the bifurcation equation has the form{

− f∗X3 − CSXY2 +
(
(εσk∗ − 1)2 + r + 3M2)X = 0,

−CSX2Y − f∗∗Y3 +
(
(εσk∗∗ − 1)2 + r + 3M2)Y = 0.

(4.30)
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However, the drawback of this approach is that the persitence of (explicit) solutions to (4.30) is
not proved (and not obvious) when we return to the bifurcation equation. To our knowledge,
even recent and sophisticated methods like path formulation do not lead to 3-determinacy in
our setting.

Besides, it turns out that this truncated equation has a Z2 ⊕ Z2 symmetry; unlike the
bifurcation equation (since the fact that u0 is a solution to (4.19) does not implies that −u0 is
a solution too).

We derive from (4.29)

ε̈(0) =
3ε∗

8
√

p
(Aα2 + B), M̈(0) =

1
8M∗

(Cα2 + D), (4.31)

where A, B, C, D satisfy

3
8
(
√

p + 1)A +
3
8

C = f∗ − CS (4.32)

3
8
(
√

p + 1)B +
3
8

D = CS (4.33)

3
8
(
√

p − 1)A +
3
8

C = − f∗∗ + CS (4.34)

3
8
(
√

p − 1)B +
3
8

D = f∗∗. (4.35)

Subtracting (4.35) from (4.33), we obtain

3
4

B = − f∗∗ + CS. (4.36)

Also we obtain

D =
8
3

CS − (
√

p + 1)B (4.37)

3
4

A = f∗ + f∗∗ − 2CS (4.38)

C =
8
3
( f∗ − CS)− (

√
p + 1)A. (4.39)

In order to express A, B, C, D more simply, we put

x :=
(

k∗
k∗∗

)2

.

Then, in view of (4.4),
√

p =
x − 1
x + 1

and, since ε∗σk∗ = 1 +
√

p,

λ2k∗ = (4ε∗σk∗ − 1)2 − p = (4(1 +
√

p)− 1)2 − p

= 12x
4x − 1
(x + 1)2 . (4.40)
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Similarly,

λ2k∗∗ = −12
x − 4

(x + 1)2 , (4.41)

λk∗+k∗∗ = 4
√

x
(2
√

x + 1)(
√

x + 2)
(x + 1)2 , (4.42)

λk∗−k∗∗ = −4
√

x
(2
√

x − 1)(
√

x − 2)
(x + 1)2 . (4.43)

Then

A = 2 − M2
∗
(x + 1)2(2x2 − 61x + 2)

x(4x − 1)(x − 4)
, (4.44)

B = −1 + M2
∗
(x + 1)2(4x − 61)
2(4x − 1)(x − 4)

, (4.45)

C = −2
x − 1
x + 1

+ M2
∗
(x2 − 1)(4x2 − 57x + 4)

x(4x − 1)(x − 4)
, (4.46)

D = −2
x + 2
x + 1

− M2
∗
(x + 1)(4x2 − x + 60)

(4x − 1)(x − 4)
. (4.47)

Then we can state a bifurcation result whose proof comes from the above analysis.

Theorem 4.1. Let δ∗ = (ε∗, M∗) ∈ (0, ∞)× R, (α, β) ∈ (−1, 1)2 and k∗, k∗∗ be integers satisfying
1 ≤ k∗ < k∗∗. We assume that (4.1)−(4.3) hold and

α2 + β2 = 1, α ̸= 0, β ̸= 0. (4.48)

Then (δ, v) = (δ∗, 0) ∈ R2 × V̇4 is a bifurcation point for equation (2.13). More precisely, there exist
r1 > 0 (close to zero) and smooth functions

δ = (ε(·), M(·)) : (−r1, r1) → R2, v : (−r1, r1) → V̇4

depending on α, β, k∗ and k∗∗ such that for every y ∈ (−r1, r1), one has

ε(y)2v(y)(4) + 2ε(y)v(y)(2) + f (M(y) + v(y)) =
∫

Ω
f (M(y) + v(y))dx in L2(Ω).

Moreover,

ε(y) = ε∗ +
ε̈(0)

2
y2 + O(y3), (4.49)

M(y) = M∗ +
M̈(0)

2
y2 + O(y3), (4.50)

v(y) = yφ0 + y2v2 + O(y3), (4.51)

where ε̈(0), M̈(0) are defined through (4.31) and (4.44)−(4.47), φ0 = αφ∗ + βφ∗∗ and v2 is given by
(4.14), (4.15).
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4.1 Sign of ε̈(0) and M̈(0)

For every α ∈ (0, 1), Theorem 4.1 gives us the parameter curve

y 7→ δ(y) = (ε(y), M(y)).

The tangent to this curve at y = 0 is given by

δ̈(0) = (ε̈(0), M̈(0))

provided that this vector do not vanish. In the sequel, we will compute the signs of ε̈(0) and
M̈(0) in order to have informations on the profile of the above curve near y = 0. For instance,
if ε̈(0) and M̈(0) are positive, then δ(y) belongs to the first quadrant of the plane (ε, M).

We denote by A = A(x, M∗) the function defined on (1, ∞) \ {4} × R by the left-hand
side of (4.44). In the same way, we define the functions B = B(x, M∗), C = C(x, M∗) and
D = D(x, M∗) with (4.45)–(4.47).

Sign of ε̈(0)

Under the assumptions and notations of Theorem 4.1, it follows from (4.31) that ε̈(0) and
Aα2 + B have the same sign. So for every (x, M, α) ∈ (1, ∞) \ {4} × R × (−1, 1), we will com-
pute the sign of A(x, M)α2 + B(x, M). Taking advantage of the monotonicity of A(x, M)α2 +

B(x, M) w.r.t. α2, we will look at the sign of B(x, M) and (A+ B)(x, M). For this, we introduce
the so-called cancellation functions of B and A + B, namely

B0 : (1, ∞) \ {61/4} → R, x 7→ 2
(4x − 1)(x − 4)
(x + 1)2(4x − 61)

(4.52)

(A + B)0 : (1, ∞) → R, x 7→ −2
x(4x − 1)(x − 4)
(x + 1)2(61x − 4)

. (4.53)

These functions satisfy

M2 = B0(x) ⇐⇒ B(x, M) = 0

M2 = (A + B)0(x) ⇐⇒ (A + B)(x, M) = 0.

The sign of B(x, M) is given in the following result.

Lemma 4.2. If x ∈ (1, 4) ∪ ( 61
4 , ∞), then B0(x) > 0 and

M2 < B0(x) =⇒ B(x, M) < 0

B0(x) < M2 =⇒ B(x, M) > 0.

If x ∈ (4, 61
4 ), then B(x, M) < 0 for every M.

The statement of Lemma 4.2 and those of the seven forthcoming results are easily proved;
thus their proof will be omitted. Regarding the sign of A + B, we have the lemma below.

Lemma 4.3. If x ∈ (1, 4) then (A + B)0(x) > 0 and

M2 < (A + B)0(x) =⇒ (A + B)(x, M) > 0

(A + B)0(x) < M2 =⇒ (A + B)(x, M) < 0.

If x ∈ (4, ∞) then (A + B)(x, M) > 0 for every M.
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Moreover, the cancellation functions are ordered or are simultaneously negative.

Lemma 4.4. For every x ∈ (1, 4),

0 < (A + B)0(x) < B0(x).

For every x ∈ (4, 61
4 ), one has (A + B)0(x) < 0 and B0(x) < 0.

For every x ∈ ( 61
4 , ∞), one has (A + B)0(x) < 0 < B0(x).

Then we can give the sign of ε̈(0).

Proposition 4.5. Under the assumptions and notations of Theorem 4.1, the sign of

ε̈(0) =
3ε∗

8
√

p
(A(x, M∗)α

2 + B(x, M∗))

is as follows.

(i) If x ∈ (1, 4), then

(a) if M2
∗ < (A + B)0(x), then α 7→ ε̈(0) is increasing on (0, 1) and changes its sign on (0, 1);

(b) if (A + B)0(x) ≤ M2
∗ ≤ B0(x), then ε̈(0) < 0 for every |α| ∈ (0, 1);

(c) if B0(x) ≤ M2
∗, then α 7→ ε̈(0) is decreasing on (0, 1) and changes its sign on (0, 1).

(ii) If x ∈ (4, 61
4 ), then α 7→ ε̈(0) is increasing on (0, 1) and changes its sign on (0, 1).

(iii) If x ∈ ( 61
4 , ∞), then

(a) if M2
∗ < B0(x), then α 7→ ε̈(0) is increasing on (0, 1) and changes its sign on (0, 1);

(b) if B0(x) ≤ M2
∗, then ε̈(0) > 0 for every |α| ∈ (0, 1).

Sign of M̈(0)

We proceed as above. We define the cancellation functions D0 and (C + D)0 of D and C + D,
namely

D0 : (1, ∞) → R, x 7→ 2
(x + 2)(4x − 1)(x − 4)
(x + 1)2(−4x2 + x − 60)

(4.54)

(C + D)0 : (1, ∞) → R, x 7→ 2
(2x + 1)x(4x − 1)(x − 4)
(x + 1)2(−60x2 + x − 4)

. (4.55)

The signs of D(x, M) and (C + D)(x, M) are easily determined with the use of the cancellation
functions. More precisely, the following lemmas hold.

Lemma 4.6. If x ∈ (1, 4), then D0(x) > 0 and

M2 < D0(x) =⇒ D(x, M) < 0

D0(x) < M2 =⇒ D(x, M) > 0.

If x ∈ (4, ∞), then D0(x) < 0 and D(x, M) < 0 for every M.
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ε̈(0) −ր+

M̈(0) −ր+

M
2

ε̈(0)<0

M̈(0)<0

M̈(0)>0

ε̈(0) +ց−

Figure 4.1: The sign of ε̈(0) and M̈(0) in the parameter space (x, M2) with x := (k∗/k∗∗)2.

Lemma 4.7. If x ∈ (1, 4), then (C + D)0(x) > 0 and

M2 < (C + D)0(x) =⇒ (C + D)(x, M) < 0

(C + D)0(x) < M2 =⇒ (C + D)(x, M) > 0.

If x ∈ (4, ∞), then (C + D)0(x) < 0 and (C + D)(x, M) < 0 for every M.

Lemma 4.8. For every x ∈ (1, 4),

0 < (A + B)0(x) < B0(x) < (C + D)0(x) < D0(x).

For every x ∈ (4, ∞), one has (C + D)0(x) < 0 and D0(x) < 0.

Proposition 4.9. Under the assumptions and notations of Theorem 4.1, the sign of

M̈(0) =
1

8M∗
(C(x, M∗)α

2 + D(x, M∗))

is as follows.

(i) If x ∈ (1, 4), then

(a) if M2
∗ ≤ (C + D)0(x), then M̈(0) < 0 for every |α| ∈ (0, 1);

(b) if (C + D)0(x) < M2
∗ < D0(x), then α 7→ M̈(0) is increasing on (0, 1) and changes its

sign on (0, 1);

(c) if D0(x) ≤ M2
∗, then M̈(0) > 0 for every |α| ∈ (0, 1).

(ii) If x ∈ (4, ∞), then M̈(0) < 0 for every |α| ∈ (0, 1).

The result of Propositions 4.5 and 4.9 are illustrated by Figure 4.1 for x ranging in (1, 4).
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4.2 Variations of α 7→ M̈(0)
ε̈(0)

We will prove a monotonicity result for the function α 7→ M̈(0)
ε̈(0) . In the parameter space

(ε, M), M̈(0)
ε̈(0) is the tangent of the angle between the unit vector (1, 0) and (ε̈(0), M̈(0)). We

recall that (ε̈(0), M̈(0)) is tangent to the curve (ε(·), M(·)) at y = 0. As we will see later
on, the monotonicity of α 7→ M̈(0)

ε̈(0) is related to the stability of bifurcating solutions given by
Theorem 4.1.

If A(x, M∗)α2 + B(x, M∗) ̸= 0, then

M̈(0)
ε̈(0)

=

√
p

3M∗ε∗

Cα2 + D
Aα2 + B

(4.56)

and

∂

∂X
CX + D
AX + B

=
BC − AD
(AX + B)2 .

Thus it is enough to compute the sign of BC − AD. For this, we write

BC − AD = B(C + D)− D(A + B).

The previous results give informations on the signs of B, C + D, D and A + B. Thus the
following assertions hold.

(i) If x ∈ (1, 4), then

(a) if M2
∗ < (A + B)0(x) or D0(x) < M2

∗, then BC − AD > 0;

(b) B0(x) ≤ M2
∗ < (C + D)0(x), then

BC − AD < 0. (4.57)

(ii) If x ∈ (4, 61
4 ), then BC − AD > 0.

(iii) If x ∈ ( 61
4 , ∞) and M2

∗ < B0(x), then BC − AD > 0.

In the other cases, we have to push the analysis a little bit further.

(i) If x ∈ (1, 4), then there remain to consider two cases. The first one is when (A+ B)0(x) <
M2

∗ < B0(x). Let us denote by M1 the positive number satisfying M2
1 = (A + B)0(x). We

have
(BC − AD)(x, M1) = B(C + D)(x, M1).

Moreover B(x, M1) < 0 (according to Lemmas 4.2 and 4.4) and (C + D)(x, M1) < 0 (due
to Lemmas 4.7 and 4.8). Thus

(BC − AD)|M2=(A+B)0(x) > 0. (4.58)

Besides, by (4.57),
(BC − AD)|M2=B0(x) < 0. (4.59)

Moreover,

1
2
(BC − AD)(x, M) = 3 +

(x + 1)2b1(x)
x(4x − 1)(x − 4)

M2 +
(x + 1)4b2(x)

4x2(4x − 1)2(x − 4)2 M4, (4.60)
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with

b1(x) = −2x2 + 121x − 2

b2(x) = x(4x2 + 3583x + 4).

In particular, (BC − AD)(x, M) is a quadratic polynomial w.r.t. the variable X := M2.
With (4.58), (4.59), we deduce that, for every x ∈ (1, 4), there exists a unique J1(x) ∈
((A + B)0(x), B0(x)) such that

(BC − AD)
(

x,
√

J1(x)
)
= 0. (4.61)

The second case we will consider is when (C+ D)0(x) < M2
∗ < D0(x). Arguing as above,

we prove that there exists a unique J2(x) ∈ ((C + D)0(x), D0(x)) such that

(BC − AD)(x,
√

J2(x)) = 0. (4.62)

Then the sign of BC − AD follows easily by using (4.60), J1(x) and J2(x).

(ii) If x ∈ ( 61
4 , ∞) and B0(x) < M2, then in view of (4.60), the discriminant ∆(x) of the

polynomial

X 7→ 3 +
(x + 1)2b1(x)

x(4x − 1)(x − 4)
X +

(x + 1)4b2(x)
4x2(4x − 1)2(x − 4)2 X2 (4.63)

satisfies

∆(x) =
4(x + 1)4

x2(4x − 1)2(x − 4)2 (x4 − 124x3 + 975x2 − 124x + 1).

We check that there exists x3 ∈ (115, 116) such that

∆(x) < 0 on
( 61

4 , x3
)

∆(x) > 0 on (x3, ∞)

∆(x3) = 0.

(4.64)

From (4.60), (4.64), we immediately obtain that

(BC − AD)(x, M) > 0 ∀(x, M2) ∈
( 61

4 , x3
)
× (B0(x), ∞).

There remains to consider the case where x > x3. With straightforward computations,
we prove that the polynomial (4.63) has two positive roots J1(x) < J2(x) in the interval
(B0(x), ∞). Hence for every x > x3, there holds

(BC − AD)(x, M)

{
< 0 if M2 ∈ (J1(x), J2(x))

> 0 if M2 ∈ (B0(x), J1(x)) ∪ (J2(x), ∞)
.

We may summarize the above results in the proposition below.

Proposition 4.10. Under the assumptions and notations of Theorem 4.1, there exists x3 ∈ (115, 116)
such that for every x ∈ (1, 4) ∪ (x3, ∞), the polynomial (4.63) has two positive roots J1(x) < J2(x).
Moreover, the following hold.
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(i) If M2
∗ ∈ (J1(x), J2(x)), then the function α 7→ M̈(0)

ε̈(0) is decreasing on the positive intervals of its

domain of definition, i.e. on (0, 1) if AB(x, M∗) > 0 or on (0,
√
|B/A|) and on (

√
|B/A|, 1) if

AB(x, M∗) < 0.

(ii) If M2
∗ ∈ (0, J1(x)) ∪ (J2(x), ∞), then (BC − AD)(x, M∗) > 0 and α 7→ M̈(0)

ε̈(0) is increasing on
the positive intervals of its domain of definition.

If x ∈ (4, x3), then α 7→ M̈(0)
ε̈(0) is increasing on the positive interval of its domain of definition.

Remark 4.11.
• J1(x3) = J2(x3).
• We may compute explicitly J1(x) and J2(x) thanks to (4.60) (see [1]).
• ε̈(0) = 3ε∗

8
√

p (Aα2 + B) may vanish. This occurs for instance for some α0 ∈ (0, 1) if x ∈ (1, 4)

and M2
∗ < (A + B)0(x). See Proposition 4.5. In this case, the function α 7→ M̈(0)

ε̈(0) is defined on

(−1, 1) \ {−
√
|B/A|,

√
|B/A|}.

• Fig 4.2 is a phase diagram in the parameter space (ε, 3M2). We have chosen some x ∈
(1, 4) and M2

∗ ∈ (J1(x), J2(x)). The vector u⃗ is positively colinear to the tangent to the curve
(ε(·), 3M2(·)) at y = 0 for α = 0.6. If α = 0 or α = 1, then u⃗ = 0 since there is no bifurcation
branch according to Theorem 4.1. When α goes from 0 to 1, the vector u⃗ turns clockwise; in
accordance with the assertion (i) of Proposition 4.10. Its range is depicted by the blue curve.

(ε∗, 3M
2

∗
)

~u

α = 0.6

α = 0.1

ε 7→ −(εσk∗∗
− 1)2 − r

ε 7→ −(εσk∗
− 1)2 − r

Figure 4.2: Phase diagram for k∗ = 3, k∗∗ = 2 (thus x = 9/4) and
M2

∗ = 0.4(C + D)0(x) + 0.6J2(x). See Remark 4.11.

Finally we can combine the above results on the signs of ε̈(0), M̈(0) and the variation of
M̈(0)
ε̈(0) to obtain a better insight of the behaviour of the curve y 7→ δ(y) w.r.t. α. We will only

investigate the cases useful in the sequel.
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We assume that x ∈ (1, 4) and recall that

(A + B)0(x) < J1(x) < B0(x) < (C + D)0(x) < J2(x) < D0(x). (4.65)

(a) If (C + D)0(x) < M2 < J2(x), then, due to Proposition 4.5 and (4.65), α 7→ ε̈(0) has a
unique zero α0 in (0, 1) and α0 =

√
|B/A|. Also (see Proposition 4.9), α 7→ M̈(0) has a

unique zero α1 ∈ (0, 1) and α1 =
√
|D/C|.

Let us show that α0 < α1. By Proposition 4.10 and (4.65), α 7→ M̈(0)
ε̈(0) is decreasing on (0, α0)

and on (α0, 1). Moreover, Lemmas 4.2 and 4.6 imply that

M̈(0)
ε̈(0)

∣∣∣∣
α=0

=
D
B

< 0. (4.66)

Thus
M̈(0)
ε̈(0)

< 0 ∀α ∈ (0, α0).

Hence M̈(0) ̸= 0 for every α ∈ (0, α0), and consequently, α1 ≥ α0. That is to say −D/C ≥
−B/A. However, these two numbers are not equal since M2 ̸= J1(x), J2(x). Then α0 < α1.
Summing up, we get

ε̈(0) ≥ 0, M̈(0) < 0 ∀α ∈ (0, α0] (4.67)

ε̈(0) < 0, M̈(0) < 0 ∀α ∈ (α0, α1)

ε̈(0) < 0, M̈(0) > 0 ∀α ∈ (α1, 1].

This behaviour may be observed in Figure 4.2.

(b) If J2(x) < M2 < D0(x), then, as above, α0, α1 belong to (0, 1) and α0 ̸= α1. Moreover,
α 7→ M̈(0)

ε̈(0) is increasing on (0, α0), hence

lim
α→α0,α<α0

M̈(0)
ε̈(0)

= ∞.

Since (4.66) still holds, we deduce that M̈(0) vanishes in (0, α0). Thus α1 < α0. Summing
up, we get

ε̈(0) > 0, M̈(0) < 0 ∀α ∈ (0, α1)

ε̈(0) ≥ 0, M̈(0) > 0 ∀α ∈ (α1, α0] (4.68)

ε̈(0) < 0, M̈(0) > 0 ∀α ∈ (α0, 1].

5 Properties of bifurcating solutions

5.1 Energy of the bifurcating solutions

In this section, we will compare the energy of the bifurcating solutions u = M(y) + v(y)
given by Theorem 4.1 and the energy of the trivial solution u = M(y). Let us recall that, for
(u, ε) ∈ V2 × (0, ∞), the energy of u is given by (2.14). Moreover, δ(y) := (ε(y), M(y)) for
y ≃ 0.
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Theorem 5.1. Let y 7→ (δ(y), v(y)) be a bifurcation branch given by Theorem 4.1. Then

E
(

M(y) + v(y), ε(y)
)
− E

(
M(y), ε(y)

)
=

1
8

G(α)y4 + O(y5),

where

G(α) := (2
√

pα2 + p −√
p)

ε̈(0)
ε∗

+ 3M∗M̈(0). (5.1)

Proof. We put u(y) := M(y)+ v(y). For y ≃ 0, the derivative of the function S defined through

S(y) = E
(
u(y), ε(y)

)
− E

(
M(y), ε(y)

)
satisfies

d
dy

S(y) = DuE
(
u(y), ε(y)

)(
Ṁ(y) + v̇(y)

)
+ DεE

(
u(y), ε(y)

)
ε̇(y)

− DuE
(

M(y), ε(y)
)

Ṁ(y)− DεE
(

M(y), ε(y)
)
ε̇(y).

(5.2)

Since u(y) and M(y) solve (2.8) with M = M(y) and
∫ 1

0 v̇(y)dx = 0, we have

DuE
(

M(y), ε(y)
)

Ṁ(y) =
∫ 1

0
f
(

M(y)
)

dx Ṁ(y)

DuE
(
u(y), ε(y)

)(
Ṁ(y) + v̇(y)

)
=
∫ 1

0
f
(
u(y)

)
dx Ṁ(y).

Furthermore, by Taylor expansions,∫ 1

0
f
(
u(y)

)
− f

(
M(y)

)
dx = 3M(y)

∫ 1

0
v(y)2 dx +

∫ 1

0
v(y)3 dx

= 3M∗y2
∫ 1

0
φ2

0 dx + O(y3),

in view of (4.50), (4.51). Thus∫ 1

0
f
(
u(y)

)
− f

(
M(y)

)
dx Ṁ(y) =

3
2

M∗M̈(0)y3 + O(y4).

Considering, in (5.2), the derivatives w.r.t. ε, we have

DεE
(

M(y), ε(y)
)
= 0

DεE
(
u(y), ε(y)

)
=
∫ 1

0
ε(y)

(
v(y)xx

)2 −
(
v(y)x

)2 dx.

Thanks to (4.51), we get the following expansions.∫ 1

0

(
v(y)x

)2 dx = y2
∫ 1

0
(φ0x)

2 dx + O(y3)∫ 1

0

(
v(y)xx

)2 dx = y2
∫ 1

0
(φ0xx)

2 dx + O(y3).

By (4.49), we have ε̇(y) = ε̈(0)y + O(y2); and since φ0 = αφ∗ + βφ∗∗, we infer

DεE
(
u(y), ε(y)

)
ε̇(y) = y3 ε̈(0)

2ε∗
(2
√

pα2 + p −√
p).

By combining the above results, we prove the assertion of the theorem.
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According to Theorem 5.1, it is enough to compute the sign of G(α). Before stating our
result, we will introduce some notation. In view of (4.27), (4.40) and (4.41), we have

f∗ = f∗(x, M) =
3
8

M2
∗

x(4x − 1)
(x + 1)2 − 3

4
, f∗∗ = f∗∗(x, M) = −3

8
M2

∗
x − 4

(x + 1)2 − 3
4

.

Then we denote by ( f∗)0 the cancellation function of f∗, i.e.

( f∗)0(x) := 2
x(4x − 1)
(x + 1)2 . (5.3)

Similarly

( f∗∗)0(x) := −2
x − 4

(x + 1)2 . (5.4)

Theorem 5.2. Let M∗ > 0, α ∈ (0, 1) and G(α) be given by (5.1).

(i) If x ∈ (1, 4), then

(a) if M2
∗ < J2(x), then G < 0 on (0, 1) and consequently,

E
(
u(y), ε(y)

)
< E

(
M(y), ε(y)

)
for y ≃ 0;

(b) if J2(x) < M2
∗ < ( f∗∗)0(x), then G has two zeros 0 < α1 < α2 < 1 and

G < 0 on (0, α1) ∪ (α2, 1), G > 0 on (α1, α2);

(c) if ( f∗∗)0(x) < M2
∗ < ( f∗)0(x), then G has one zeros 0 < α1 < 1 and

G > 0 on (0, α1), G < 0 on (α1, 1);

(d) if ( f∗)0(x) < M2
∗, then G > 0 on (0, 1).

(ii) If x ∈ (4, ∞), then

(a) if M2
∗ < ( f∗)0(x), then G < 0 on (0, 1);

(b) if ( f∗)0(x) < M2
∗, then G has one zeros 0 < α1 < 1 and

G < 0 on (0, α1), G > 0 on (α1, 1).

Proof. By (4.29), we can write

G(α) = 2
√

p
ε̈(0)
ε∗

α2 + (− f∗∗ + CS)α
2 + f∗∗.

With (4.31) and (4.36), we get

G(α) =
3
4

Aα4 +
3
2

Bα2 + f∗∗.

Thus we will study the quadratic polynomial H(·) defined through

H(X) =
3
4

AX2 +
3
2

BX + f∗∗.
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We readily have

H′(α2) = 4
√

p
ε̈(0)
ε∗

H(0) = f∗∗.
(5.5)

Then
H(0) > 0 ⇐⇒ x ∈ (1, 4) and M2

∗ > ( f∗∗)0(x). (5.6)

Regarding H(1), it turns out that, with (5.1) and (4.29), there holds

H(1) = G(1) = (p +
√

p)
ε̈(0)
ε∗

+ 3M∗M̈(0)
∣∣∣∣
α=1

= f∗.

Then
H(1) > 0 ⇐⇒ M2

∗ > ( f∗)0(x). (5.7)

Moreover we prove easily that

D0(x) < ( f∗∗)0(x) < ( f∗)0(x) ∀x ∈ (1, 4). (5.8)

Hence we are in position to study the different cases appearing in the statement of the theorem
and labelled from (i) (a) to (ii) (b).

(i) (a) First we claim that H(0) and H(1) are negative due (5.6), (5.7), (5.8) and (4.65). Thus if
ε̈(0) has a sign on (0, 1), then (5.5) implies that H < 0 on (0, 1). Otherwise ε̈(0) has a
unique zero α0 in (0, 1) and, by (5.5), X := α2

0 is the unique critical point of H in (0, 1).
Moreover by (5.1),

H(α2
0) = G(α0) = 3M∗M̈(0)

∣∣
α=α0

. (5.9)

If M2
∗ ≤ (C + D)0(x), then at α = α0, we have M̈(0) < 0 by Proposition 4.9.

If (C + D)0(x) < M2
∗ ≤ J2(x), then at α = α0, M̈(0) is also negative by (4.67). Conse-

quently,
G(α) < 0 ∀α ∈ (0, 1).

(i) (b) We still have H(0) and H(1) negative. If J2(x) < M2
∗ < D0(x), then

M̈(0)
∣∣
α=α0

> 0

by (4.68). Thus H(α2
0) > 0 in view of (5.9) and we are able to conclude in this case since

X := α2
0 is the unique critical point of H in (0, 1).

If D0(x) ≤ M2
∗ < ( f∗∗)0(x), then M̈(0) > 0 for every α ∈ (0, 1), according to Proposi-

tion 4.9. So the assertion follows in this case also.

The other case can be proved easily by using the above methods together with Proposition 4.9.

5.2 Stability of bifurcation solutions

We refer to the appendix hereafter for the background concerning the one-dimensional phase
field crystal equation (2.7). The main result of this paper is the following.
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Theorem 5.3. Under the assumptions and notations of Theorem 4.1, let us suppose that

M2
∗ ̸= − (4x − 1)(x − 4)

15(x + 1)2 . (5.10)

Then the stability of the stationary solution v(y) to the phase field crystal problem (A.1) is as follows.
If k∗ = k∗∗ + 1 (i.e. x = (1 + 1

k∗∗ )
2) and M2

∗ ∈ (J1(x), J2(x)), then v(y) is asymptotically stable in
the sense of Lyapunov.
If k∗ = k∗∗ + 1 and M2

∗ ̸∈ [J1(x), J2(x)], then v(y) is not stable in the sense of Lyapunov.
If k∗ ̸= k∗∗ + 1, then v(y) is not stable in the sense of Lyapunov.

Remark 5.4.
• For x ∈ (1, 4), J1(x) and J2(x) are defined by (4.61) and (4.62). Notice that they are the
cancellation function of BC − AD.
• If x ∈ (1, 4) and M2

∗ ∈ (J1(x), J2(x)), then the tangent at y = 0 (denoted by T(α)) to the
parameter curve y 7→ δ(y) turns clockwise when α goes from 0 to 1. See Proposition 4.10 and
Figure 4.2.
• The above result was unexpected since it connects the stability of bifurcating solutions with
the variation of the angle of T(α) with the horizontal axis.
• In view of (4.42), (4.43), CS defined by (4.28) satisfies

CS = −45
2

(x + 1)2

(4x − 1)(x − 4)
M2

∗ −
3
2

.

Thus (5.10) is equivalent to CS ̸= 0.
• Let x ∈ (1, 4). Recalling that ( f∗∗)0(x) is defined by (5.4), let us suppose that M2 ∈
(J2(x), ( f∗∗)0(x)). Then v(y) is unstable according to the above result. However, the energy of
v(y) may be less than the energy of the trivial solution. More precisely, by Theorem 5.2, there
exists α1 ∈ (0, 1) such that for every α ∈ (0, α1) and y ≃ 0,

E
(

M(y) + v(y), ε(y)
)
< E

(
M(y), ε(y)

)
.

This result is not so common in the literature. Let us recall that v(y) depends on α in the
following way:

v̇(0) = αφ∗ + βφ∗∗.

Proof of Theorem 5.3. According to Proposition A.1, it is enough to consider the constrained
Swift–Hohenberg equation (A.2). As explain in Section 3, if the trivial solution v = 0 is not
neutrally stable, then v(y) is unstable. By Proposition 3.2, it follows that v(y) is unstable if
k∗ ̸= k∗∗ + 1.

Let us now assume that k∗ = k∗∗ + 1. We use the principle of reduced stability from [13,
Section I-18] (see also [14]). According to this result, it is enough to consider the two-
dimensional eigenvalue problem obtained from the linearization of the bifurcation equation
(4.19) at u0 = yφ0. That is to say (by differentiating (4.19) w.r.t. u0), we have to find λ ∈ R

such that the following linear equation set on ker L, namely

P
{

F1(µ) ·+2F02(·, a02u2
0) + 4F02(u0, a02(u0, ·)) + 3F03(·, u2

0) + O(µu2
0 + u3

0)
}
= λ Idker L (5.11)

has nontrivial solutions. For the bifurcating solution (µ(y), v(y)) of (2.12), we have u0 = yφ0

with φ0 = αφ∗ + βφ∗∗ and µ(y) = y2µ2 + O(y3). Here µ2 stands for the vector 1
2 (ε̈(0), M̈(0)).
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Thus we rescale the eigenvalue λ into λ = y2λ̃ and we denote by A : ker L → ker L, the linear
operator defined by

Aw := P
{

F11(µ2)w + 2F02(w, a02 φ2
0) + 4F02(φ0, a02(φ0, w)) + 3F03(w, φ2

0)
}

. (5.12)

So that (5.11) reads
A+ O(y) = λ̃ Idker L. (5.13)

Then eigenvalues λ̃ satisfy

g(y, λ̃) := det(A+ O(y)− λ̃ Idker L) = 0.

In view of Lemma 5.5 below, A is a symmetric and non-diagonal operator since (5.10) is
equivalent to CS ̸= 0. Hence A possesses two distinct real eigenvalues λ̃1 < λ̃2. Then, for
i = 1, 2,

g(0, λ̃i) = 0,
∂

∂λ̃
g(0, λ̃i) =

d
dλ̃

det(A− λ̃)
∣∣
λ̃=λ̃i

̸= 0,

since λ̃i is a simple eigenvalue. Therefore, by the implicit function theorem, we get for y ≃ 0,
two eigenvalues of (5.13), namely

λ̃1(y) = λ̃1 + O(y), λ̃2(y) = λ̃2 + O(y).

The principle of reduced stability states that the eigenvalue problem

ε(y)2w(4) + 2ε(y)w(2) + f ′(M(y) + v(y))w −
∫

Ω
f ′(M(y) + v(y))w dx = λw,

w ∈ V̇4, w ̸= 0, λ ∈ R,

has two critical eigenvalues λ1(y), λ2(y) (i.e. eigenvalues close to zero for y ≃ 0) with the
following expansions

λ1(y) = y2λ̃1 + O(y3), λ2(y) = y2λ̃2 + O(y3).

Hence it remains to compute the sign of the eigenvalues λ̃1 and λ̃2 of A.
If M2

∗ ̸∈ [J1(x), J2(x)], then according to (4.56) and Proposition 4.10, we have

(BC − AD)(x, M∗) > 0.

So detA = λ̃1λ̃2 < 0 by Lemma 5.7 below. Hence v(y) is unstable.
In the same way, if M2

∗ ∈ (J1(x), J2(x)), then λ̃1λ̃2 = detA > 0. Since (see (4.65), (5.8))

J2(x) < ( f∗∗)0(x) < ( f∗)0(x),

one has
f∗ < 0, f∗∗ < 0.

Thus, with Lemma 5.5,

λ̃1 + λ̃2 = trace(A) = −2( f∗α2 + f∗∗β2) > 0. (5.14)

Therefore λ̃1 and λ̃2 are positive and v(y) is stable for y ≃ 0. This completes the proof of the
theorem.
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We now state and prove the lemmas used in the proof of Theorem 5.3.

Lemma 5.5. Let A : ker L → ker L be the linear operator defined by (5.12). Then the matrix M(A)

of A in the basis (φ∗, φ∗∗) is

M(A) = 2
(
− f∗α2 −CSαβ

−CSαβ − f∗∗β2

)
. (5.15)

Remark 5.6. The simple formula (5.15) can be obtained, at least at a formal level, by differen-
tiation starting from (4.30). Since (4.30) has a Z2 ⊕ Z2 symmetry, (5.15) is in accordance with
the results of [8, Chapter X]. These results are obtained by using symmetries and universal
unfolding theory. Moreover the analogue of v(y) is obtained in [8] as a secondary bifurcation.
Here, there is no Z2 ⊕ Z2 symmetry in (2.12) and v(y) is a primary bifurcating solution in the
sense that it bifurcates from the trivial solution.

Proof. We compute the first column of the matrix.

Aφ∗ = P
{

F11(µ2)φ∗ + 2F02(φ∗, a02 φ2
0) + 4F02

(
φ0, a02(φ0, φ∗)

)
+ 3F03(φ∗, φ2

0)
}

.

We have µ2 = 1
2 (ε̈(0), M̈(0)), thus with (4.24),

PF11(µ2)φ∗ =

(
p +

√
p

ε∗
ε̈(0) + 3M∗M̈(0)

)
φ∗.

Due to (4.14), (4.15), we infer

2PF02(φ∗, a02 φ2
0) = −9

2
M2

∗
α2

λ2k∗
φ∗ − 9M2

∗αβ

(
1

λk∗+k∗∗
+

1
λk∗−k∗∗

)
φ∗∗.

In view of (4.16), we obtain

4PF02 (φ0, a02(φ0, φ∗))

= −9M2
∗

{(
α2

λ2k∗
+ β2(

1
λk∗+k∗∗

+
1

λk∗−k∗∗
)

)
φ∗ + αβ

(
1

λk∗+k∗∗
+

1
λk∗−k∗∗

)
φ∗∗

}
.

Besides

3PF03(φ∗, φ2
0) =

(
9
4

α2 +
3
2

β2
)

φ∗ + 3αβφ∗∗.

Let us denote the entries of M(A) by

M(A) =

(
a11 a12

a21 a22

)
.

Then, since α2 + β2 = 1,

a11 = (p +
√

p)
ε̈(0)
ε∗

+ 3M∗M̈(0) +
3
4

α2 +
3
2

− 9M2
∗

{(
3

2λ2k∗
−
(

1
λk∗+k∗∗

+
1

λk∗−k∗∗

))
α2 +

1
λk∗+k∗∗

+
1

λk∗−k∗∗

}
.

Recalling the notation (4.27), (4.28) and using (4.29), we obtain

a11 = ( f∗ − CS)α
2 + Cs + (−3 f∗ + CS)α

2 − CS

= −2 f∗α2.
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Regarding a21, we have

a21 = −18M2
∗

(
1

λk∗+k∗∗
+

1
λk∗−k∗∗

)
αβ + 3αβ

= (−2CS − 3)αβ + 3αβ

= −2CSαβ.

This gives the first column of M(A). By using symmetries resulting from the non-resonant
condition x ̸= 4, 9, we may obtain the second column from the first one. More precisely, the
second column is obtained by exchanging k∗ and k∗∗ on one hand, and by exchanging α and
β on the other hand. Thus a12 = a21 and

a22 = −2 f∗∗β2.

This completes the proof of the lemma.

Lemma 5.7. Let M∗ ∈ R, k∗, k∗∗ be positive integers such that k∗∗ < k∗ and f∗, f∗∗, CS be defined by
(4.27), (4.28). Let A, B, C, D be given by (4.36)−(4.39) and A be the operator defined through (5.12)
(whose matrix is given by (5.15)). Then

detA = −9
8

α2β2(BC − AD). (5.16)

Remark 5.8. To our knowledge, the relation (5.16) is new. It explains why the statement of the
stability of v(y) is quite simple in the sense that the stability is linked to quantities relying on
the parameter curve y 7→ δ(y). In particular, if

α 7→ M̈(0)
ε̈(0)

is increasing, then (5.16) implies that v(y) is unstable.

Proof. By using (4.36)−(4.39), we get

BC − AD = B
(

8
3
( f∗ − CS)− (

√
p + 1)A

)
− A

(
8
3

CS − (
√

p + 1)B
)

=
8
3
(

B( f∗ − CS)− ACS
)

=
8
3

(
4
3
(− f∗∗ + CS)( f∗ − CS)−

4
3
( f∗ + f∗∗ − 2CS)CS

)
=

32
9
(− f∗ f∗∗ + C2

S).

However by (5.15),

detA = 4α2β2( f∗ f∗∗ − C2
S).

Thus (5.16) follows.
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5.3 Symmetries

We start to state precisely a local uniqueness result for bifurcating branches. In particular, we
will emphasize the dependence of these solutions w.r.t. α and β.

Theorem 5.9. Under the assumptions and notations of Theorem 4.1, there exist

R1 = R1(α, β) > 0, δ1 = δ1(α, β) > 0

and a smooth function
µ(·, α, β) : (−δ1, δ1) → (−R1, R1)

such that for every y ∈ (−δ1, δ1) and µ ∈ (−R1, R1), one has

PF
(
µ, yφ0 + U (µ, yφ0)

)
= 0 ⇐⇒ µ = µ(y, α, β).

Remark 5.10.
• We recall that φ0 := αφ∗ + βφ∗∗.
• δ1 and R1 may be chosen independently of α and β provided that α and β remain bounded
away from 0.
• In this setting, the bifurcating solution v(y) of Theorem 4.1 will be denoted by v(y, α, β).

Let (α, β) ∈ (−1, 1)2 satisfy (4.48). For y close to zero, we have four (distinct) solutions(
µ(y,±α,±β), v(y,±α,±β)

)
to equation (2.12). In view of the remark above, we may suppose that the numbers
δ1(y,±α,±β) are equal. So we will denote their common value by δm.

The goal of this subsection is to establish relations between these solutions. This is
achieved by using a suitable translation of the space variable. Let us write k∗ and k∗∗ un-
der the form

k∗ = 2r1ℓ∗, k∗∗ = 2r2ℓ∗∗, (5.17)

where r1, r2 are nonnegative integers and ℓ∗, ℓ∗∗ are positive odd integers. Let us denote by r
the minimum of r1 and r2.

The above mentioned translation consists, roughly speaking, in the translation x 7→ x + 2−r.
To be more specific, for every v ∈ L2(Ω), let us denote by Jv : R → R the 2-periodic and even
function satisfying

Jv = v a.e. in [0, 1].

We put
Tv := (Jv)(·+ 2−r)

∣∣
Ω ,

which means that Tv is the restriction to Ω of the function (Jv)(·+ 2−r).
Let

L̇2
21−r(Ω) =

{
v ∈ L̇2(Ω) | Jv is 21−r periodic

}
.

Then L+ F(µ, ·) maps V̇4 ∩ L̇2
21−r(Ω) into L̇2

21−r(Ω) and φ∗, φ∗∗ belong clearly to L̇2
21−r(Ω). Then

we infer that Theorem 4.1 still holds if we restrict our analysis to 21−r-periodic functions. Thus,
each bifurcating solution given by Theorem 4.1 satisfies

v(y, α, β) ∈ L̇2
21−r(Ω).



Bifurcations for PFC equation with 2D kernel 29

Moreover,

T
(

L̇2
21−r(Ω)

)
⊂ L̇2

21−r(Ω)

T
(
V̇4 ∩ L̇2

21−r(Ω)
)
⊂ V̇4 ∩ L̇2

21−r(Ω)

since every v ∈ V̇4 ∩ L̇2
21−r(Ω) has the representation

v = ∑
m≥1

xm2r φm2r in V̇4.

Thus T commutes with L + F(µ, ·).
Since ℓ∗ and ℓ∗∗ are odd, we have

Tφ∗ = (−1)2r1−r
φ∗ =

{
−φ∗ if r1 = r

φ∗ if r1 > r
, Tφ∗∗ = (−1)2r2−r

φ∗∗ =

{
−φ∗∗ if r2 = r

φ∗∗ if r2 > r
.

We then deduce in a standard way that, for every y ∈ (−δm, δm),

v
(
y, (−1)2r1−r

α, (−1)2r2−r
β
)
= Tv(y, α, β), µ(y, (−1)2r1−r

α, (−1)2r2−r
β) = µ(y, α, β). (5.18)

Thus, among the four (distinct) solutions (µ, v)(y,±α,±β) to (2.12), only two are essentially
different. The other ones are obtained through T (since at least one of the numbers r1 − r,
r2 − r vanishes). For instance, if r = r1 < r2, then

v(y,−α, β) = Tv(y, α, β), µ(y,−α, β) = µ(y, α, β)

v(y,−α,−β) = Tv(y, α,−β), µ(y,−α,−β) = µ(y, α,−β).

If r = r1 = r2, then µ(·, α, β) is even. Indeed, by Theorem 5.9 and (5.18), we have

µ(−y, α, β) = µ(y,−α,−β) = µ(y, (−1)2r1−r
α, (−1)2r2−r

β)

= µ(y, α, β).

However, if k∗ = 4k∗∗, then we can prove that µ(·, α, β) is not even.
Let us notice that (2.12) has the trivial symmetry

S : L2(Ω) → L2(Ω), u 7→ u(1 − ·).

This symmetry allows to relate solutions in some cases. However, if k∗, k∗∗ are even, then it
turns out that each of the four solutions(

µ(y,±α,±β), v(y,±α,±β)
)

is invariant under S. So S is useless in what case unlike T (see (5.18)).

6 Rough approximation of the 8-loop

The aim of this section is to recover by means of two analytical approximations the so-called
8-loops appearing in [16, Figure 15]. More precisely, we will use the truncated bifurcation
equation (4.30) to approximate the bifurcating solutions (µ, v) to (2.12) given by Theorem 4.1.
By suitable choices of parameter values, we will reconstruct analytically the first 8-loop on the
left of [16, Figure 15], which was obtained by numerical integration.
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(εk∗
,M0)

M0 + v|
x=0

α > 0, β > 0

α < 0, β < 0

α > 0, β < 0

α < 0, β > 0α < 0, β > 0

Figure 6.1: The blue curves represent four branches bifurcating from the point (ε∗, M∗) with
2D kernel. The two red curves show bifurcation branches with 1D kernel, fixed mass M0 and

bifurcation points εk∗ (pointed on the figure) and εk∗∗ . We have chosen k∗ = 4, k∗∗ = 3,
r = −0.5 and M0 =

√
2/15. See also Remark 6.1.

Under the assumptions and notations of Theorem 4.1, we set for δ = (ε, M) ∈ (0, ∞)× R

P∗(δ) := (εσk∗ − 1)2 + r + 3M2,

P∗∗(δ) := (εσk∗∗ − 1)2 + r + 3M2.

If we neglect the higher order terms in (4.19), we may assume that (X, Y) solves (4.30). This is
the first approximation. Thus, if y, α and β are not zero, we have{

f∗y2α2 + CSy2β2 = P∗(δ),

CSy2α2 + f∗∗y2β2 = P∗∗(δ).
(6.1)

In order to clarify things, we would like to highlight that, in (6.1), f∗ depends on δ∗ and not
on δ, since in (4.27), we have

λ2k∗ = (ε∗σ2k∗ − 1)2 + r + 3M2
∗.

Our second approximation is a second order approximation of the function v(y, δ, α),
namely

v(y, α, β) ≃ yφ0 + y2a02 φ2
0,
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where φ0 = αφ∗+ βφ∗∗ and a02 φ2
0 is given by (4.14) and (4.15). Unlike to our previous analysis,

we will no more assume that y is close to zero. This is why the above approximation is said
to be rough.

In order to solve (6.1), we choose a suitable value M0 of M, close to M∗. The solutions are
parametrized by ε ≃ ε∗ as in [16]. We obtain

y2α2 =
− f∗∗P∗(ε, M0) + CSP∗∗(ε, M0)

− f∗ f∗∗ + C2
S

(6.2)

y2 =
P∗(ε, M0)− ( f∗ − CS)y2α2

CS
. (6.3)

If, in the above equations, y2 ∈ (0, 1) and α2 ∈ (0, 1), then we choose w.l.o.g. y, α to be positive
and β :=

√
1 − α2. So what for δ = (ε, M0), we obtain four approximated solutions to (2.8) of

the form M0 + ṽ(y,±α,±β) with

ṽ(y, α, β) = y(αφ∗ + βφ∗∗)

− 3M∗
2

y2
(

α2

λ2k∗
φ2k∗ + 2

αβ

λk∗+k∗∗
φk∗+k∗∗ + 2

αβ

λk∗−k∗∗
φk∗−k∗∗ +

β2

λ2k∗∗
φ2k∗∗

)
.

Remark 6.1. Let us make some comments on the bifurcation diagram of Figure 6.1.
• The top blue curve is the graph of

ε 7→ M0 + ṽ(y, α, β)|x=0 ,

where the dependence of (y, α, β) w.r.t. ε is given by (6.2), (6.3).
• Following [16, Figure 15], we have chosen k∗ = 4, k∗∗ = 3, r = −0.5 and M0 =

√
2/15. Then

by (4.4),

√
p =

7
25

ε∗ =
2

25π2

M∗ =

√
−1

3
(r + p) =

√
3162
150

.

• We have
0 <

M∗ − M0

M∗
< 0.026.

So M0 is close to M∗ as required by the theory. Moreover, M0 must be chosen smaller than
M∗. Indeed, one has

(x, M2
∗) ≃ (1.8, 0.14).

Thus, in view of Figure 4.1, we have M̈(0) < 0 for all |α| ∈ (0, 1) and, by (4.50), each bifurcat-
ing branch of mass y 7→ M(y) satisfies

M(y) < M∗, ∀y ≃ 0.

This estimate can also be obtained by analytical arguments thanks Proposition 4.9.
• The translation T of subsection 5.3 acts on the approximate solutions ṽ(y,±α,±β) as well.
Indeed, we have 0 = r = r2 < r1 = 2. Thus

ṽ(y, α,−β) = Tṽ(y, α, β), ṽ(y,−α,−β) = Tṽ(y,−α, β).
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Thus, in Figure 6.1, the curve corresponding to α > 0, β > 0 can be related to the curve
corresponding to α > 0, β < 0 by means of T. Also the curve corresponding to α < 0, β < 0
can be related to the curve corresponding to α < 0, β > 0 by means of T.
• We can see secondary bifurcations between interactive modes solutions and single modes
solutions. At the bifurcation point, we have α = 0 or β = 0.
• Let k∗ = 4, k∗∗ = 3 and r = −0.5. If y is small enough, then v(y, α, β) is an asymptotically
stable solution to

∂tv − ε(y)∂xx
(
ε(y)2∂xxxxv + 2ε(y)∂xxv + f (M(y) + v)

)
= 0.

Indeed, (4.65) implies that the graphs of x 7→ J1(x) and x 7→ J2(x) lie respectively between
the red curves and the blue curves of Figure 4.1. Thus in view of the remark above M2

∗ ∈
(J1(x), J2(x)). The claim follows then from Theorem 5.3. This stability result is in accordance
with the numerical simulations featured in [16, Figure 15].

A Phase field crystal equation and stability

The aim of this appendix is to show that stability for the phase field crystal equation (2.7) and
for the following constrained Swift–Hohenberg equation,

∂tu + ε2∂xxxxu + 2ε∂xxu + f (u) =
∫

Ω
f (u)dx in Ω × (0, ∞)

∂xu = ∂xxxu = 0 on ∂Ω × (0, ∞)

u(0) = u0 in Ω,

are essentially the same. Notice that, in view of Section 4, a stability analysis will give result
concerning the above equation. So we have to fill the gap with the phase field crystal equation.

Since the linearized operator corresponding to (2.7) is not symmetric, we will consider for
this equation, asymptotic stability in the sense of Lyapunov; see for instance [11, Chapter 3]. We
will first define the semigroup associated to (2.7). For simplicity, the derivatives ∂x and ∂xx

will be denoted by ∇ and ∆. Moreover, notice that all of the results below still hold if the
interval Ω is replaced by a smooth bounded domain of R2 or R3.

Recalling the notation (2.3), we put

V̇5 :=
{

u ∈ H5(Ω) | u′ = u′′′ = 0 on ∂Ω
}

Ḣ−1(Ω) := dual of H1(Ω) ∩ L̇2(Ω).

Let v0 ∈ V̇2 and T ∈ (0, ∞). We say that v is a weak solution to (2.7) in Ω × (0, T) if

v ∈ L2(0, T, V̇5) ∩ C([0, T], V̇2),
d
dt

v ∈ L2(0, T, Ḣ−1(Ω))

d
dt

v − ε∆
(
ε2∆2v + 2ε∆v + f (M + v)−

∫
Ω f (M + v)dx

)
= 0 in L2(0, T, Ḣ−1(Ω))

v|t=0 = v0 in V̇2.

(A.1)

By implementing the Galerkin scheme, we prove that (A.1) admits a unique solution v (see
[10,20]). Moreover, the map SPFC : [0, ∞)× V̇2 → V̇2, (t, v0) 7→ v(t) is a semigroup in the sense
of Temam. Thus SPFC(t)v0 stands for v(t).
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In the same way but referring to the above constrained Swift–Hohenberg equation, the prob-
lem

v ∈ L2(0, T, V̇4) ∩ C([0, T], V̇2),
d
dt

v ∈ L2(0, T, L̇2(Ω))

d
dt

v + ε2∆2v + 2ε∆v + f (M + v)−
∫

Ω f (M + v)dx = 0 in L2(0, T, L̇2(Ω))

v|t=0 = v0 in V̇2

(A.2)

has a unique (strong) solution and infer also a semigroup denoted by ScSH. Without loss of
generality, we may assume ε = 1 and M =

∫
Ω u0 dx = 0. It is clear that (A.1) and (A.2) have

the same steady states. Moreover, the energy E − see (2.14) − defined through

E(v) =
1
2
∥∆v∥2

2 − ∥∇v∥2
2 +

∫
Ω

r + 1
2

v2 +
1
4

v4 dx

is a Lyapunov functional for SPFC and ScSH. It is clear for the later. For the former, we test the
equation of (A.1) with (−∆−1) d

dt v where −∆ : H1(Ω) ∩ L̇2(Ω) → Ḣ−1(Ω). We find

d
dt

E
(
v(t)

)
= −

∥∥∥∥ d
dt

v
∥∥∥∥2

Ḣ−1
≤ 0.

Notice that the linearized operator for (A.2) at any stationary solution v∞ is self adjoint
with compact resolvant. Thus its spectrum consists on an increasing sequence of eigenvalues.

The main result of this appendix is the following.

Proposition A.1. Let v∞ be a stationary solution to (A.1). If v∞ is linearly stable for the semigroup
ScSH (i.e. the corresponding eigenvalues are positive), then v∞ is asymptotically stable in the sense of
Lyapunov, for the semigroup SPFC.

If one of these eigenvalues is negative and 0 is not an eigenvalue, then v∞ is not stable in the sense
of Lyapunov, for the semigroup SPFC.

Roughly speaking, the above results states that if 0 is not an eigenvalue, then the stationary
solution v∞ has the same stability for the semigroup SPFC and for the semigroup ScSH.

Proof. Let us assume that v∞ is linearly stable for ScSH . Expanding the energy E(v) for v ∈ V̇2,
v ≃ v∞, we get

E(v) = E(v∞) +
1
2

D2E(v∞)(v − v∞)
2 + O(∥v − v∞∥3

V̇2
).

With Lemma A.2 below, we deduce that there exist ε > 0 and r2 > 0 such that

E(v) ≥ E(v∞) + 2ε, ∀v ∈ V̇2, ∥v − v∞∥V̇2
= r2. (A.3)

Since v∞ is linearly stable, we may assume without loss of generality, that v∞ is the only
one stationary solution in the ball B(v∞, r2) of V̇2 with radius r2 and center v∞. Since (A.1)
and (A.2) have the same steady states, v∞ is also the unique stationary solution to (A.1) in
B(v∞, r2).

Besides, by continuity of E(·), there exists r1 ∈ (0, r2) such that

E(v0) ≤ E(v∞) + ε, ∀v0 ∈ B(v∞, r1).

Since the energy is a Lyapunov function for the semigroup SPFC, there holds

E(SPFC(t)v0) ≤ E(v∞) + ε, ∀v0 ∈ B(v∞, r1), ∀t ≥ 0.
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Hence by (A.3),
SPFC(t)v0 ∈ B(v∞, r2), ∀t ≥ 0.

Moreover, by standard methods (see [20]), we can show that the trajectory {SPFC(t)v0 | t ≥ 0}
is relatively compact in V̇2. Since v∞ is a isolated stationary solution, we deduce from LaSalle’s
invariance principle (see [11]) that

SPFC(t)v0 −−→
t→∞

v∞ in V̇2.

Thus v∞ is asymptotically stable equilibrium of SPFC.

Conversely, since 0 is not in the spectrum of the linearized operator for (A.2) at v∞, there
exists r3 > 0 such that v∞ is the only one stationary solution to (A.1) in B(v∞, r3).

Since v∞ is linearly unstable, there exists v0 ∈ V̇2 arbitrary close to v∞ such that

E(v0) < E(v∞).

By continuity of E, there exists a positive number r1 depending on v0 such that

E(v) > E(v0), ∀v ∈ B(v∞, r1).

Moreover,
E(SPFC(t)v0) ≤ E(v0), ∀t ≥ 0,

since E is a Lyapunov function for the semigroup SPFC. Thus

SPFC(t)v0 ̸∈ B(v∞, r1), ∀t ≥ 0.

Moreover, LaSalle’s invariance principle implies that

d
(
SPFC(t)v0, E

)
:= inf

w∈E
∥SPFC(t)v0 − w∥V̇2

−−→
t→∞

0,

where E denotes the set of all stationary solutions to (A.1). Thus for some positive time t1 and
w∞ ∈ E , there holds

∥SPFC(t1)v0 − w∞∥V̇2
≤ r3

2
.

However, since v∞ is the only steady states of (A.1) in B(v∞, r3), we have

∥v∞ − w∞∥V̇2
≥ r3.

Thus
∥SPFC(t1)v0 − v∞∥V̇2

≥ ∥v∞ − w∞∥V̇2
− ∥SPFC(t1)v0 − w∞∥V̇2

≥ r3

2
,

which means that v∞ is not stable in the sense of Lyapunov. This completes the proof of the
proposition.

Lemma A.2. Let v∞ ∈ V̇2. Let us assume that, for some positive constant c, we have

D2E(v∞)v2 ≥ c∥v∥2
2, ∀v ∈ V̇2, (A.4)

where ∥ · ∥2 denote the standard norm in L2(Ω). Then the bilinear mapping D2E(v∞) is coercive on
V̇2, that is there exists c1 > 0 such that

D2E(v∞)v2 ≥ c1∥v∥2
V̇2

, ∀v ∈ V̇2. (A.5)
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Proof. Let ε > 0 to be chosen later. Since v∞ ∈ L∞(Ω), there exists C > 0 such that for every
v ∈ V̇2,

ε
∫

Ω
f ′(v∞)v2 dx ≥ −εC∥v∥2

2.

With (A.4),

∥∆v∥2
2 − 2∥∇v∥2

2 + (1 + ε)
∫

Ω
f ′(v∞)v2 dx ≥ (c − εC)∥v∥2

2.

Then
(1 + ε−1)D2E(v∞)v2 ≥ ∥∆v∥2

2 − 2∥∇v∥2
2 + (cε−1 − C)∥v∥2

2.

We use the interpolation inequality

∥∇v∥2
2 ≤ ∥∆v∥2∥v∥2 ≤ 1

4
∥∆v∥2

2 + ∥v∥2
2,

to get

(1 + ε−1)D2E(v∞)v2 ≥ 1
2
∥∆v∥2

2 + (cε−1 − C − 2)∥v∥2
2.

We obtain (A.5) by choosing ε small enough.
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