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Abstract A multi-point boundary value problem involving the one dimensional p-Laplacian and
depending on a parameter is studied in this paper and existence of positive solutions is established
by means of a fixed point theorem for operators defined on Banach spaces with cones.
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1. Introduction

In this paper we study the existence of positive solutions to the boundary value problem

BVP) for the one-dimensional p-Laplacian
( ) p-Lap
(qbp(u’))’ + )\q(t)f(t, u) =0,te (0, 1)7 (1.1)

u'(0) = Z au’ (&), u(l) = Zﬁiu(«fi), (1.2)

where ¢,(s) = [s|[P72s, p>1,& € (0,1) with 0 < & < & < -+ < &2 < 1 and «y, §;, f satisfy

n—2 n—2
(Hy) oy, B; € [0,00) satisfy 0 < Y. a; < 1,and > 3; < 1;
i=1 =1

(HQ) [E€ C([Oa 1] X [0,00), [0,00));
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(H3) q(t) € C(0,1) N L*[0,1] with ¢ > 0 on (0,1). The number \ is regarded as a parameter
and is to be determined among positive numbers.

The study of multipoint boundary value problems for linear second-order ordinary differential
equations was initiated by Il'in and Moiseev [1,2]. Since then there has been much current attention
focused on the study of nonlinear multipoint boundary value problems, see [3,4,5,7]. The meth-
ods include the Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder,
coincidence degree theory, and fixed point theorem in cones. For example,

In [6], R. Ma and N. Castaneda studied the following BVP

2 (t) +a(t)f(x(t)) =0, 0<t <1,
m—2 m—2
'(0) = El o’ (&), (1) = El Bix(&i),
where 0 < & < -+ < &n_2 <1, a3,0; > 0 with 0 < 2211 a; <1 and 2211 B; < 1. They showed
the existence of at least one positive solution if f is either superlinear or sublinear by applying the
fixed point theorem in cones.

The authors in [7] considered the multi-point BVP for one dimensional p-Laplacian
(¢p(u') + f(t,u) =0, t€(0,1),

n—2 n—2
Gp(u'(0)) = D iy (u'(&)),  u(l) =) Biul&).
i=1 i=1
Using a fixed point theorem in a cone, we provided sufficient conditions for the existence of multiple

positive solutions to the above BVP.

In paper [8], we investigated the following more general multi-point BVPs
(¢p(u)) +q(t)f(t,u,u') =0, t € (0,1),
n—2 n—2
w(0) =Y au(&),  W1)=> Bl &),
i=1 i=1

n—2 n—2
W(0) = an/(&),  u(l)=> Bu(%).
i=1 i=1
The main tool is a fixed point theorem due to Avery and Peterson[9], we provided sufficient
conditions for the existence of multiple positive solutions.
In view of the common concern about multi-point boundary value problems as exhibited in
[6,7,8] and their references, it is of interests to continue the investigation and study the problem

(1.1) and (1.2).
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Motivated by the works of [7] and [8], the aim of this paper is to show the existence of positive
solutions u to BVP(1.1) and (1.2). For this purpose, we consider the Banach space E = C|0, 1]
with the maximum norm ||z|| = Jtax, |z(t)|. By a positive solution of (1.1) and (1.2), we means
a function u € C*0,1], (¢,(u'))'(t) € C(0,1) N L[0,1] which is positive on [0, 1] and satisfies the
differential equation (1.1) and the boundary conditions (1.2).

Our main results will depend on the following Guo-Krasnoselskii fixed-point theorem .

Theorem A[10][11]. Let FE be a Banach space and let K C E be a cone in E. Assume Q1, Qs

are open subsets of £ with 0 € Q;,Q; C Qo, and let
T:KN(Q\ Q) — K

be a completely continuous operator such that either

) ITz|| < ||z]l, z € KNIy and ||Tz| > ||z]|, v € K N0y, or

(i) |Tz|| = ||z||, x € KN9oQy and || Tx|| < ||z]|, x € K NOQs.

Then T has a fixed point in K N (Qa '\ Q).

In section 3, we shall present some sufficient conditions with A belonging to an open interval to
ensure the existence of positive solutions to problems (1.1) and (1.2). To the author’s knowledge,
no one has studied the existence of positive solutions for problems (1.1) and (1.2) using the Guo-
Krasnoselskii fixed-point theorem.

2. The preliminary lemmas

Let

C*0,1] ={w e C[0,1] : w(t) > 0,t € [0,1]}.
Lemma 2.1 Let (H;) — (Hs) hold. Then for € CT[0,1], the problem
(dp(u))" + Aq(t) f (¢, x(t)) =0, t € (0,1), (2.1)
n—2 n—2
w'(0) = Z o' (&), u(l) = Zﬂiu(éi)a (2.2)
i=1 i=1
has a unique solution

u(t) = By — /tl o7 (Az _ )\/OS q(T)f(T,x(T))dT) ds, (2.3)
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where A,, B, satisfy

n-2 i
= Z aipy <Az - )x/o q(s)f(s,z(s))ds) , (2.4)

B, = Zﬂz/ <Az — )\/ q(T)f(T,SC(T))dT) ds.
1— Z B; i=1 & 0
Lemma 2.2 Suppose §;,r; >0 (i =1,2,---,n—2) and > 12 B; < 1, denote r = 1<Ilfé1n , o
R = max 7;, then there exists a unique
1<i<n-—2
ot (Tl s) ot (S )
T E = — T, = — R
1—¢p (Zz’:l ﬁi) 1—¢p (Zi:l ﬁi)

such that

T) = i Bigp(x +71).

i=1

Proof. Define
n—2
H(z) = ¢p(x) = > Bitp(w +14).
i=1
Then, H(z) € C((—o0, +0), R).

Let
o (S0 )

o (T 6) .
1—op (X0 6)

xTr = -r T =

1—op (X0 6)

then we have

H(z) = z;@% z+7)
< *Zﬂi‘bp(iﬁLT)
= dplz l <Zﬁ> z+7)
= ¢p(z) — dplz) =0,

and

H(@) = ¢p(f)—§ﬁi¢p(f+m)
> (T Tleﬁi¢p(f+R)
= 6@ l <Zﬁ> (T + R)
= ¢p(T) — ¢p(T) = 0.
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The zero point theorem guarantees that there exists an xg € [z, Z] such that H(zg) = 0.
If there exist two constants x1, 2 € [z, T] satisfying H(x1) = H(z2) = 0, then
Case 1. 21 = 0.
ie., H(0) = 0, T_lijﬁiqﬁp(m) = 0. So, Bigp(ri) = 0, (i = 1,2,---,n — 2), then, r;¢,(8;) =

0, (i=1,2,---,n—2). Therefore,

Hi) = opla)— Y fidla+ 1)

i=1

() — Z p (6, (Bi)a + 6,1 (B:)r:)

n—2
= dp(@) - Z Bigp(x) = (1 - @) bp(2)
i=1 i=1
Obviously, there exists a unique = = 0 satisfying H(x) = 0. So, 1 = 22 = 0.
Case 2. 1 # 0.

(i) If 1 € (—00,0), then

n—2

H(z1) = ¢p(21)— Zﬁi%(% +73)

i=1

- 2ﬂz¢p(xl)
<1 — z_:ﬁl> (bp(l'l) <0

IN

So, when, z; € (—00,0), H(z1) # 0.

(ii) If 21 € (0,400), then

Hm) = ¢p<x1>7im¢p<zl+m

- ll—Zmﬁp (1+—)]

= Gp(x1)H(21),
where
. n—2 r
H(z):kgg@p (1+§).
As H(xz1) = 0 and 1 # 0, so there must exist ig € {1,2,---,n — 2}, such that 3;,¢p(ri,) > 0.
Thus, we get H(z) is strictly increasing on (0, +00).

If H(zy) = H(zs) =0, then H(z1) = H(zy) = 0. So, 21 = 2 since H(x) is strictly increasing

n (0, +00).
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Therefore, H(2z) = 0 has a unique solution on (0, +00). Combining case 1, case 2, we obtain

H(z) = 0 has a unique solution on (—o0, +00) and z € [z, 7).
P (Z?:_f Oéi)
1—¢p (Z?j Oéz')
satisfies (2.4). Furthermore, A, is contained in the interval [)\k /01 q(s) f(s,x(s))ds, 0}

Lemma 2.3 Let k =

, then there exists a unique real number A, that

Proof The equation is equivalent to

n—2 i
67 (A = Y gy (Am =y q(s)f(s,:c<s>>ds> .

By Lemma 2.2, we can easily obtain
&1 En—2
Ar e [k [ afGats)ds b [ as) (s, 2(s))ds
0 0

c [O,Ak/olq(s)f(s,x(s))ds] .

So the conclusion is obvious.
Lemma 2.4 Let (H;) — (H3) hold. If z € C*[0,1] and A > 0, then the unique solution of
problem (2.1)-(2.2) satisfies u(t) > 0 for ¢ € [0,1].

Proof: According to Lemmas 2.1 and 2.3, we first have

u(l) = By

I
|
3
&
=
\H
©-
Sl
—_
7N
N
8
|
>
ﬁ
=
-
K,j
—
o
=2
2
=
\]
'
IS
&

n—2

= — S ot (e [ arsratrar) as

n—2
1= > B =t '
i=1

@25 /j %' <A/OS(1(T)f(T,:c(T))dT> ds

i=1
0,

v

Y]

and

u(0) = B, — /01 o, " (Am — )\/Osq(T)f(T,x(T))dT) ds
= u(l)+ /1 qb;l (—Am + )\/OS q(T)f(T,ac(T))dT) ds
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If t € (0,1), we have

ut) = Bgc/t1 o, (Az A/Osq(f)f(T,x(T))dT> ds
o, <Az + A/OS q(T)f(T,x(T))dT> ds

Y
£
=
+

%
o

So u(t) > 0,t € [0, 1].
Lemma 2.5 Let (H;) — (Hs) hold. If z € C*[0,1] and A > 0, then the unique solution of
problem (2.1)-(2.2) satisfies

) > ’
tg[lég]U( ) > llull

where
i Al - &)
1— z;‘:f Biki

Proof: Clearly u'(t) = ( /\fo ))ds) =—¢;! (fAI + /\fot q(s) f(s, z(s))ds) <

0. This implies that

’7:

= (0 d i t) =u(l).
Jull = u(0) and  min u(t) = u()

Furthermore, it is easy to see that u/(t2) < u/(¢1) for any t1,t2 € [0,1] with ¢; < to. Hence /() is
a decreasing function on [0,1]. This means that the graph of w'(¢) is concave down on (0,1). For

each i € {1,2,---,n — 2} we have

u(€) —u(1) _ u(0) —u(l)
1-¢& - 1 ’
u(&) — &u(l) = (1 —&)u(0)
so that

n—2
> Biu(&) - Zﬂ@ ) > Z@ &)
=1

and, by means of the boundary condition u(1) = i Biu(&;), we have

u(l 0).
W > 1{?12% u(0)

This completes the proof.
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Now we define

K = {wlw € CH0,1], min w(t) > ylll},

where 7 is defined in Lemma 2.5. For any A > 0, define operator Ty : C*[0,1] — K by

(Thx)(t) = @ T;Q@- /; ¢, (Az A/Osq(T)f(T,x(T))dT> ds

/tl 671 (Az - A/Osq(T)f(T,x(T))dT) ds. (2.5)

By Lemmas 2.1 and 2.3, we know T)z is well defined. Furthermore, we have the following result.

Lemma 2.6[Lemma 2.4, 7] T : K — K is completely continuous.

Let
t t
min fo := lim inf min il ,1)7 max fo ;= lim sup max f( az),
T—00 t€[0,1] ¢p($) z—0t te[0,1] (bp(-r)
t t
min fp := lim inf min /( ,x), max foo := lim sup max f( az)_
e—0t  t€[0,1] ¢p(x) w00 1e(0.1] ¢p()

3. Main results

We now give our results on the existence of positive solutions of BVP(1.1) and (1.2).

Theorem 3.1 Let (Hy) — (H3) hold and min fo, > 0,max fy < co. If

1 1
A . 3.1
~P~lmin fu - NP1 SAS (k4 1) max fo - Mpr—1 (3.1)

where

n—2 1
wo— e P8 ().

172?:71251'
1 n—2 1 s 1 s
N = —— 2 ~1 dr)d ~1 dr | ds,
— S [ ([[wow)aor [ ([ aar)
=1

then the problem (1.1)(1.2) has at least one positive solution.

Proof. Define the operator T as (2.5). Under the condition (3.1), there exists an € > 0 such

that
1 1
<A< . 3.2
AP~ (min foo —e) - NP1 = = (k4 1)(max fo +¢) - MP~1 (32)
1). Since max fo < 00, there exists an H; > 0 such that for z : 0 < ax < H;y,
i). Si f h i H 0 h that f 0 H
f(t,2) < (max fo + &)y (2). (3.3)
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Let Q) ={z € E: ||z|| < H1}, then for z € K NI, we have

A+ /Osq<s>f<s,w<s>>ds < / 4(3) (5. 2(s))ds + A /Osq<s>f<s,x<s>>ds

IN

)\(k+1)/0 q(s)f(s,x(s))ds

IN

Ak + 1) (max fo + E)/O q(8)dp(z(s))ds

IN

Ak D(ana fo + )0y lel) [ a(s)as.

So,

o (Am ] Sq(s)f(asc(s))ds) < Pk + D) (max fo + )] 6! < / 1 q(s)ds) Jall.
Therefore,

Tl = (Da)0) = — 12 » ZB /g_ -~ (—Am =y S q(T)f(T,w(T))dT) ds

1 . (_A s )
_|_/0 s Z+)\/O q(7)f(r,x(r))dr | ds
1- 2?2712 Bi
= Mk + 1)(max fo + €))7 ||z|

IN

e+ ) ma fo+ )" 7 ([ ao)as) o

IN

[]]-

Thus ||Thz|| < ||z

(ii). Next, since min fo, > 0, there exists an Hy > 0 such that for x > Ho,

f(t,z) > (min foo — €)dp(x). (3.4)

Take Hy = max{Hy,2H,} and Qs = {z € F : ||z|| < Ha}. Then for x € K N 99y, we have

Y

A / CdMf(sa(r)dr > A / a(n) f(r ()

Y

Afmin foo — ) / d(M)bp(a(r))dr

Y

Adp(7) (it foo — )yl / g(r)dr.

So,

5! (Am [ q(s)f(s,z<s>>ds) > (\(min foo — €))7 65 < | qmdf) yall.
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Therefore,

|Taz| = (Thz)(0) = 1_%22&22&/; o, (—Amm/osq(f)f(ﬂx(f))df) ds

i=1

+/01 ¢! (—Az + A/Os q(T)f(T,x(T))dT) ds

> [Amin foo - €)' ””w”lf =, ZB / ([ atrar) as
+ [A(min foo — €)]? vll:cH/ (/ )dr) ds

= N [Amin foo — o))" ]

>l

So || Txz| = |-

Therefore, by the first part of Theorem A, T\ has a fixed point z* € K N (Qg \ ;) such that
H; < |jz*|] < Hs. It is easily checked that z*(¢) is a positive solution of problems (1.1) and (1.2).
The proof is complete.

Theorem 3.2. Let (H1) — (Hs) hold and min fy > 0, max fo, < co. If

1 1
A . 3.5
P~ min fo - NP1 A (k+ 1) max fo - MP~1 (3.5)

then the problem (1.1)(1.2) has at least one positive solution.

Proof. Under the condition (3.5), there exists an € > 0 such that

1 1
<AL . 3.6
AP~ (min fy —e) - NP1 =7 = (k4 1)(max foo + &) - MP~1 (3.6)

(i). Since min fo > 0, there exists an Hy > 0 such that for 2 : 0 < z < Hy,

[(t,2) = (min fy — ), (). (3.7)

Let Oy = {x € E: ||z|| < H1}, then for z € K N 94, we have

Y

A, / M f(s.a(r)dr > A / o) f(ra(r))dr

Y

Afmin fo — ) / (M) bp(a(r))dr
Adp(7)(min fo — )6, (lz]) / g(r)dr.

Y
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So,
o <Az 2 f S q(s)f(s,:c<s>>ds> > [A(min fo — &))" g1 ( / S qmdf) Aall.

Therefore,

[Tz = (Txz)(0)

>y ;ﬂz/i < As H/ q(t )f(v,:c(T))dT> ds

=1

+/01 ¢! (Am + A/OS Q(T)f(T,:L'(T))dT) ds

> [Amin fo - )] ﬂxlll—Zﬁ;ﬁz/i ([ atrar) as
+ i fo =)ol [ ot ([ atrrar) as

— N min fo — 1 4l

>z

So || Txz]| = ||=].

(ii). Since max fo, < 00, there exists an Hy > 0 such that for z > Ho,

f(t,z) < (max foo +€)dp(x). (3.8)

There are two cases : Case 1, f is bounded, and Case 2, f is unbounded.
Case 1. Suppose that f is bounded, i.e., there exists N > 0 such that f(¢,z) < ¢,(INV) for

t €10,1] and 0 < z < co. Define

_yon2 1
Hy = max{QHl, % [ (k+ 1)]‘1_1 d);l (/0 q(s)d8> N} s

and Qo = {x € E: ||z|| < Hz}. Then for z € K N9y, we have
S 1 S
—Ay 4\ Ja(s))ds < Mk ,2(s))ds + A L2(s))d
T / 4(s)f(s,2(s)ds < / a(s)f (5, 2(s))ds + / 4(s)f (5, 2(s))ds

< AG+1) / 4(5)/ (5, 2(s))ds

IN

)\(kJrl)gbp(N)/O q(s)ds.

So,

o, <Az +,\/Osq(s)f(s,x(s))ds> <A+t </01q(s)ds) N
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Therefore,

[Tre|| = (Taz)(0) = Zﬁz/i ( A, +>\/s ()f(r,:c(f))df) ds

155

+/01 & (—Am + A/OS q(T)f(T,x(T))dT) ds

< 11‘22—5;[ G tort ([ 1 o(s)ds ) N

< Hy = |zl

Case 2. We choose Hy > max{2H;, Ho} such that f(t,z) < f(t,Hs) for t € [0,1] and

0<ax< Hy. Let Qs ={z € E: |z|| < Hz}. Then for x € K N 0y, we have

IN

At [a@(aleNds < M [ alo)f el £ [ ato)fs.as)is

IN

Ak + 1)/0 q(s)f(s,x(s))ds

IN

Ak +1) / a(s)f (s, Ha)ds

IN

Al + 1)(max foo + ) (Ha) / L a(s)ds.
So,

¢y (—Am + )\/OS q(s)f(s,x(s))d8> < Ak + 1) (max foo + )] ¢! (/01 q(s)ds) ,
Therefore,

[Txz|| = (Thx)(0)

1—2@ ;ﬁz/i ( Az +)\/0 ()f(T,:c(T))dr) ds

+/01 ¢! (—Am + )\/OSQ(T)f(T,.T(T))dT) ds

1- ? 26151 _ _ 1
< Zz::—nlm[ (k + 1)(max foo +€)]%" d)pl </0 q(s)ds) H,
= MMk +1)(max foo + €))7 Hy
< Hy =z

Therefore, by the second part of Theorem A, Ty has a fixed point z* € K N (Q2\ Q1) such that

H, < ||=*|| < Hs. Tt is easily checked that z*(t) is a positive solution of problems (1.1) and (1.2).
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