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ABSTRACT. In this paper, a new approach to the existence of time optimal controls of system governed by

nonlinear equations on Banach spaces is provided. A sequence of Meyer problems is constructed to approach

a class of time optimal control problems. A deep relationship between time optimal control problems and

Meyer problems is presented. The method is much different from standard methods.
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1. Introduction

The research on time optimal control problems dates back to the 1960’s. Issues such as existence,

necessary conditions for optimality and controllability have been discussed. We refer the reader to [6] for

the finite dimensional case, and to [1, 4, 7, 9] for the infinite dimensional case. The cost functional for a

time optimal control problem is the infimum of a number set. On the other hand, the cost functional for a

Lagrange, Meyer or Bolza problem contains an integral term. This difference leads investigators to consider

a time optimal control problem as another class of optimal control problems and use different studying

framework.

Recently, computation of optimal control for Meyer problems has been extensively developed. Meyer

problems can be solved numerically using methods such as dynamic programming (see [10]) and control

parameterization(see [11]). However, the computation of time optimal controls is very difficult. For finite

dimensional problems, one can solve a two point boundary value problems using a shooting method. However,

this method is far from ideal since solving such two point boundary value problems numerically is a nontrivial

task.

In this paper, we provide a new constructive approach to the existence of time optimal controls. The

method is called Meyer approximation. Essentially, a sequence of Meyer problems is constructed to approx-

imate the time optimal control problem. That is, time optimal control problem can be approximated by

a sequence of optimal controls from an associated Meyer problem. Although the existence of time optimal

control can be proved using other methods, the method presented here is constructive. Hence the algorithm
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based on Meyer approximation can be used to actually compute the time optimal control. This is in contrast

to previously desired results.

We consider the time optimal control problem (P) of a system governed by

(1.1)

{

.
z (t) = Az(t) + f(t, z(t), B(t)v(t)), t ∈ (0, τ ),

z(0) = z0 ∈ X, v ∈ Vad,

where A is the infinitesimal generator of a C0-semigroup {T (t) , t ≥ 0} on Banach space X and Vad is the

admissible control set.

Then, we construct the Meyer approximation (Pεn
) to Problem (P). Our new control system is

(2.1)

{

ẋ(s) = kAx(s) + kf
(

ks, x(s),B(ks)u(s)
)

, s ∈ (0, 1],

x(0) = z(0) = z0 ∈ X, w = (u, k) ∈ W,

whose controls are taken from a product space. A chosen subsequence {Pεn
} is the Meyer approximation to

Problem (P).

By applying the family of C0-semigroups with parameters, the existence of optimal controls for Meyer

problem (Pε) is proved. Then, we show that there exists a subsequence of Meyer Problems (Pεn
) whose

corresponding sequence of optimal controls {wεn
} ∈ W converges to a time optimal control of Problem (P)

in some sense. In other words, in a limiting process, the sequence {wεn
} ∈ W can be used to find the solution

of time optimal control problem (P). The existence of time optimal controls for problem (P) is proved by

this constructive approach which offers a new way to compute the time optimal control.

The rest of the paper is organized as follows. In Section 2, we formulate the time optimal control Problem

(P) and Meyer problem (Pε). In Section 3, existence of optimal controls for Meyer problems (Pε) is proved.

The last section contributes to the main result of this paper. Time optimal control can be approximated by

a sequence of Meyer problems.

2. Time Optimal Control Problem (P) and Meyer problem (Pε)

For each τ < +∞, let Iτ ≡ [0, τ ] and let C(Iτ , X) be the Banach space of continuous functions from Iτ

to X with the usual supremum norm.

Consider the following nonlinear control system

(1.1)

{

.
z (t) = Az(t) + f

(

t, z(t), B(t)v(t)
)

, t ∈ (0, τ ),

z(0) = z0 ∈ X, v ∈ Vad.

We make the following assumptions:

[A] A is the infinitesimal generator of a C0-semigroup {T (t) , t ≥ 0} on X with domain D(A).

[F] f : Iτ × X × X → X is measurable in t on Iτ and for each ρ > 0, there exists a constant L (ρ) > 0

such that for almost all t ∈ Iτ and all z1, z2, y1, y2 ∈ X, satisfying ‖z1‖ , ‖z2‖ , ‖y1‖, ‖y2‖ ≤ ρ, we have

‖f (t, z1, y1) − f (t, z2, y2)‖ ≤ L (ρ) (‖z1 − z2‖ + ‖y1 − y2‖) .

For arbitrary (t, y) ∈ Iτ × X, there exists a positive constant M > 0 such that

‖f (t, z, y)‖ ≤ M(1 + ‖z‖).

[B] Let E be a reflexive Banach space. Operator B ∈ L∞(Iτ , L(E, X)), ‖B‖∞ stands for the norm

of operator B on Banach space L∞

(

Iτ , L(E, X)
)

. B : Lp(Iτ , E) → Lp(Iτ , X)(1 < p < +∞) is strongly

continuous.
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[U] Multivalued maps Γ (·) : Iτ → 2E\{Ø} has closed, convex and bounded values. Γ (·) is graph

measurable and Γ (·) ⊆ Ω where Ω is a bounded set of E.

Set

Vad = {v (·) | Iτ → E measurable, v(t) ∈ Γ(t) a.e.} .

Obviously, Vad 6= Ø (see Theorem 2.1 of [12]) and Vad ⊂ Lp(Iτ , E)(1 < p < +∞) is bounded, closed and

convex.

By standard process (see Theorem 5.3.3 of [2]), one can easily prove the following existence of mild

solutions for system (1.1).

Theorem 2.1: Under the assumptions [A], [B], [F] and [U], for every v ∈ Vad, system (1.1) has a

unique mild solution z ∈ C(Iτ , X) which satisfies the following integral equation

z(t) = T (t)z0 +

∫ t

0

T (t − θ) f
(

θ, z (θ) , B(θ)v(θ)
)

dθ.

Definition 2.1: (Admissible trajectory) Take two points z0, z1 in the state space X. Let z0

be the initial state and let z1 be the desired terminal state with z0 6= z1. Denote z (v) ≡
{z (t, v) ∈ X | t ≥ 0} be the state trajectory corresponding to the control v ∈ Vad. A trajectory

z (v) is said to be admissible if z (0, v) = z0 and z (t, v) = z1 for some finite t > 0.

Set

V0 =
{

v ∈ Vad | z(v) is an admissible trajectory
}

⊂ Vad.

For given z0, z1 ∈ X and z0 6= z1, if V0 6= Ø (i.e., There exists at least one control from the admissible

class that takes the system from the given initial state z0 to the desired target state z1 in the finite time.),

we say the system (1.1) can be controlled. Let

τ (v) ≡ inf {t ≥ 0 | z (t, v) = z1}

denote the transition time corresponding to the control v ∈ V0 6= Ø and define

τ∗ = inf {τ (v) ≥ 0 | v ∈ V0} .

Then, the time optimal control problem can be stated as follows:

Problem (P): Take two points z0, z1 in the state space X. Let z0 be the initial state and let z1 be

the desired terminal state with z0 6= z1. Suppose that there exists at least one control from the

admissible class that takes the system from the given initial state z0 to the desired target state z1

in the finite time. The time optimal control problem is to find a control v∗ ∈ V0 such that

τ (v∗) = τ∗ = inf {τ (v) ≥ 0 | v ∈ V0} .

For fixed v̂ ∈ Vad, T̂ = τ (v̂) > 0. Now we introduce the following linear transformation

t = ks, 0 ≤ s ≤ 1 and k ∈ [0, T̂ ].

Through this transformation system (1.1) can be replaced by

(2.1)

{

ẋ(s) = kAx(s) + kf
(

ks, x(s),B(ks)u(s)
)

, s ∈ (0, 1]

x(0) = z(0) = z0 ∈ X, w = (u, k) ∈ W,

where x(·) = z(k·), u(·) = v(k·) and define

W =
{

(u, k) | u(s) = v (ks) , 0 ≤ s ≤ 1, v ∈ Vad, k ∈ [0, T̂ ]
}

.

By Theorem 2.1, one can verify that
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Theorem 2.2: Under the assumptions [A], [B], [F] and [U], for every w ∈ W , system (2.1) has a

unique mild solution x ∈ C([0, 1], X) which satisfies the following integral equation

x(s) = Tk(s)z0 +

∫ s

0

Tk (s − θ) kf
(

kθ, x (θ) , B(kθ)u(θ)
)

dθ,

where kA is the generator of a C0-semigroup {Tk(t), t ≥ 0} (see Lemma 3.1).

For the controlled system (2.1), we consider

Meyer problem (Pε): Minimize the cost functional given by

Jε (w) =
1

2ε
‖x (w) (1) − z1‖2 + k

over W , where x (w) is the mild solution of (2.1) corresponding to control w.

i.e., Find a control wε = (uε, kε) such that the cost functional Jε (w) attains its minimum on W at

wε.

3. Existence of optimal controls for Meyer Problem (Pε)

In this section, we discuss the existence of optimal controls for Meyer Problem (Pε). First, in order to

study system (2.1), we have to deal with family of C0-semigroups with parameters which are widely used in

this paper.

Lemma 3.1: If the assumption [A] holds, then

(1) For given k ∈ [0, T̂ ], kA is the infinitesimal generator of C0-semigroup {Tk(t), t ≥ 0} on X.

(2) There exist constants C ≥ 1 and ω ∈ (−∞,+∞) such that

‖Tk(t)‖ ≤ Ceωkt for all t ≥ 0.

(3) If kn → kε in [0, T̂ ] as n → ∞, then for arbitrary x ∈ X and t ≥ 0,

Tkn
(t)

τs−→ Tkε
(t) as n → ∞ (τs denotes strong operator topology)

uniformly in t on some closed interval of [0, T̂ ] in the strong operator topology sense.

Proof. (1) By the famous Hille-Yosida theorem (see Theorem 2.2.8 of [2]),
{

(i) A is closed and D(A) = X;

(ii) ρ(A) ⊃ (ω,+∞) and ‖R(λ,A)‖ ≤ (λ − ω)−1, for λ > ω.

It is obvious that for fixed k ∈ [0, T̂ ],
{

(i̇) kA is also closed and D(kA) = X;

(i̇i) ρ(kA) ⊃ (kω,+∞) and ‖R(λ, kA)‖ = k−1‖R(k−1λ, A)‖ ≤ (λ − kω)−1, for λ > kω.

Using Hille-Yosida theorem again, one can complete it.

(2) By virtue of (1) and Theorem 1.3.1 of [2], one can verify it easily.

(3) Since {kn} is a bounded sequence of [0, T̂ ] and kn > 0, due to continuity theorem of real number,

there exists a subsequence of {kn}, denoted by {kn} again such that kn → kε in [0, T̂ ] as n → ∞. For

arbitrary x ∈ X and λ > knω, we have

R(λ, knA)x = (λI − knA)−1x → (λI − kεA)−1x = R(λ, kεA)x, as n → ∞.

Using Theorem 4.5.4 of [2], then

Tkn
(t)x → Tkε

(t)x as n → ∞.

Further,

Tkn
(t)

τs−→ Tkε
(t) as n → ∞
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uniformly in t on some closed interval in the strong operator topology sense. �

Lemma 3.2: For each g ∈ Lp([0, T0], X) with 1 ≤ p < +∞,

lim
h→0

∫ T0

0

‖g(t + h) − g(t)‖pdt = 0

where g(s) = 0 for s does not belong to [0, T0].

Proof. See details on problem 23.9 of [12]. �

We show that Meyer problem (Pε) has a solution wε = (uε, kε) for fixed ε > 0.

Theorem 3.A: Assumptions [A], [B], [F] and [U] hold. Meyer problem (Pε) has a solution.

Proof. Let ε > 0 be fixed. Since Jε(w) ≥ 0, there exists inf{Jε(w), w ∈ W}. Denote mε ≡ inf{Jε(w), w ∈
W} and choose {wn} ⊆ W such that

Jε(wn) → mε

where

wn = (un, kn) ∈ W = Vad × [0, T̂ ].

By assumption [U], there exists a subsequence {un} ⊆ Vad such that

un
w−→ uε in Vad as n → ∞,

and Vad is closed and convex, thanks to Mazur Lemma, uε ∈ Vad.

By assumption [B], we have

Bun
s−→ Buε in Lp([0, 1], X) as n → ∞.

Since kn is bounded and kn > 0, there also exists a subsequence {kn} denoted by {kn} ⊆ [0, T̂ ] again, such

that

kn → kε in [0, T̂ ] as n → ∞.

Let xn and xε be the mild solutions of system (2.1) corresponding to wn = (un, kn) ∈ W and wε =

(uε, kε) ∈ W respectively. Then we have

xn(s) = Tn(s)z0 +

∫ s

0

Tn(s − θ)knFn(θ)dθ,

xε(s) = Tε(s)z0 +

∫ s

0

Tε(s − θ)kεFε(θ)dθ,

where

Tn(·) ≡ Tkn
(·); Fn(·) ≡ f

(

kn·, xn(·), B(kn·)un(·)
)

;

Tε(·) ≡ Tkε
(·); Fε(·) ≡ f

(

kε·, xε(·), B(kε·)uε(·)
)

.

By assumptions [F], [B], [U] and Gronwall Lemma, it is easy to verify that there exists a constant ρ > 0

such that

‖xε‖C([0,1],X) ≤ ρ and ‖xn‖C([0,1],X) ≤ ρ.

Further, there exists a constant Mε > 0 such that

‖Fε‖C([0,1],X) ≤ Mε(1 + ρ).
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Denote

R1 = ‖Tn(s)z0 − Tε(s)z0‖,

R2 =

∥

∥

∥

∥

∫ s

0

Tn(s − θ)knFn(θ)dθ −
∫ s

0

Tn(s − θ)knF ε
n(θ)dθ

∥

∥

∥

∥

,

R3 =

∥

∥

∥

∥

∫ s

0

Tn(s − θ)knF ε
n(θ)dθ −

∫ s

0

Tε(s − θ)kεFε(θ)dθ

∥

∥

∥

∥

,

where

F ε
n(θ) ≡ f

(

knθ, xε(θ), B(kεθ)uε(θ)
)

.

By assumption [F],

R2 ≤ Ckn
kn

∫ s

0

‖Fn(θ) − F ε
n(θ)‖dθ

≤ Ckn
knL(ρ)

∫ s

0

‖xn(θ) − xε(θ)‖dθ

+ Ckn
knL(ρ)

∫ s

0

‖B(knθ)un(θ) − B(kεθ)uε(θ)‖dθ

≤ R21 + R22 + R23

where

Ckn
≡ Ceωkn ,

R21 ≡ Ckn
knL(ρ)

∫ s

0

‖xn(θ) − xε(θ)‖dθ,

R22 ≡ Ckn
knL(ρ)

∫ s

0

‖B(knθ)uε(θ) − B(kεθ)uε(θ)‖dθ,

R23 ≡ Ckn
knL(ρ)

∫ s

0

‖B(knθ)un(θ) − B(knθ)uε(θ)‖dθ.

and

R3 ≤
∫ s

0

‖knTn(s − θ)F ε
n(θ) − kεTn(s − θ)Fε(θ)‖dθ

+ kε

∫ s

0

‖Tn(s − θ)Fε(θ) − Tε(s − θ)Fε(θ)‖ dθ

≤ R31 + R32 + R33

where

R31 ≡ Ckn

∫ s

0

‖knF ε
n(θ) − knFε(θ)‖dθ,

R32 ≡ Ckn

∫ s

0

‖knFε(θ) − kεFε(θ)‖dθ,

R33 ≡ kεMε(1 + ρ)

∫ s

0

‖Tn(s − θ) − Tε(s − θ)‖dθ.

By Lemma 3.1, one can obtain R1 → 0 and R33 → 0 as n → ∞ immediately.

It follows from

R22 ≤ Ckn
knL(ρ)

(
∫ 1

0

‖B(knθ) − B(kεθ)‖pdθ

) 1

p

(
∫ 1

0

‖uε(θ)‖qdθ

) 1

q

,

R23 ≤ Ckn
knL(ρ)

∫ s

0

‖B(kεθ)un(θ) − B(kεθ)uε(θ)‖dθ

+ Ckn
knL(ρ)

(
∫ 1

0

‖B(knθ) − B(kεθ)‖pdθ

) 1

p

(
∫ 1

0

‖un(θ) − uε(θ)‖qdθ

) 1

q

,

R31 ≤ Ckn
kn

∫ s

0

‖F ε
n(θ) − Fε(θ)‖dθ,
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Lemma 3.2 and assumption [B] that R22 → 0, R23 → 0 and R31 → 0, as n → ∞.

Since kn → kε as n → ∞,

R32 → 0 as n → ∞.

Then, we obtain that

‖xn(s) − xε(s)‖ ≤ R1 + R2 + R3

≤ σε + Ckn
knL(ρ)

∫ s

0

‖xn(θ) − xε(θ)‖dθ

where

σε = R1 + R22 + R23 + R31 + R32 → 0 as n → ∞.

By Gronwall Lemma, we obtain

xn
s−→ xε in C ([0, 1] , X) as n → ∞.

Thus, there exists a unique control wε = (uε, kε) ∈ W such that

mε = lim
n→∞

Jε(wn) = Jε(wε) ≥ mε.

This shows that Jε(w) attains its minimum at wε ∈ W , and hence xε is the solution of system (2.1)

corresponding to control wε. �

4. Meyer Approximation

In this section, we will show the main result of Meyer approximation of the time optimal control problem

(P). In order to make the process clear we divide it into three steps.

Step 1: By Theorem 3.A, there exists wε = (uε, kε) ∈ W such that Jε(w) attains its minimum at

wε ∈ W , i.e.,

Jε(wε) =
1

2ε
‖x (wε) (1) − z1‖2 + kε = inf

w∈W
Jε(w).

By controllability of problem (P), V0 6= Ø. Take ṽ ∈ V0 and let τ (ṽ) = τ̃ < +∞ then z (ṽ) (τ̃) = z1.

Define ũ(s) = ṽ (τ̃ s), 0 ≤ s ≤ 1 and w̃ = (ũ, τ̃ ) ∈ W . Then x̃(·) = z (ṽ) (τ̃ ·) is the mild solution of system

(2.1) corresponding to control w̃ = (ũ, τ̃) ∈ W . Of course we have x̃(1) = z1.

For any ε > 0 submitting w̃ to Jε, we have

Jε (w̃) = τ̃ ≥ Jε(wε) =
1

2ε
‖x (wε) (1) − z1‖2 + kε.

This inequality implies that
{

0 ≤ kε ≤ τ̃ ,

‖x (wε) (1) − z1‖2 ≤ 2ετ̃ hold for all ε > 0.

We can choose a subsequence {εn} such that εn → 0 as n → ∞ and














kεn
→ k0 in [0, T̂ ],

x (wεn
) (1) ≡ xεn

(1) → z1 in X, as n → ∞,

uεn

w−→ u0 in Vad, wεn
= (uεn

, kεn
) ∈ W.

Since Vad is closed and convex, thanks to Mazur Lemma again, u0 ∈ Vad.

Further, by assumption [B], we obtain














kεn
→ k0 in [0, T̂ ],

x (wεn
) (1) ≡ xεn

(1) → z1 in X, as n → ∞,

Buεn

s−→ Bu0 in Lp([0, 1], X).
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Step 2: Let xεn
and x0 be the mild solutions of system (2.1) corresponding to wεn

=(uεn
, kεn

) ∈ W and

w0 = (u0, k0) ∈ W respectively. Then we have

xεn
(s) = Tεn

(s)z0 +

∫ s

0

Tεn
(s − θ)kεn

Fεn
(θ)dθ,

x0(s) = T0(s)z0 +

∫ s

0

T0(s − θ)k0F 0(θ)dθ,

where

Tεn
(s) ≡ Tkεn

(s) ; Fεn
(θ) ≡ f

(

kεn
θ, xεn

(θ), B(kεn
θ)uεn

(θ)
)

;

T0(s) ≡ Tk0(s); F 0(θ) ≡ f
(

k0θ, x0(θ), B(k0θ)u0(θ)
)

.

By assumptions [F], [B], [U] and Gronwall Lemma, it is easy to verify that there exists a constant ρ > 0

such that

‖xεn
‖C([0,1],X) ≤ ρ and ‖x0‖C([0,1],X) ≤ ρ.

Further, there exists a constant M0 > 0 such that

‖F 0‖C([0,1],X) ≤ M0(1 + ρ).

Denote

L1 = ‖Tεn
(s)z0 − T0(s)z0‖,

L2 =

∥

∥

∥

∥

∫ s

0

Tεn
(s − θ)kεn

Fεn
(θ)dθ −

∫ s

0

Tεn
(s − θ)kεn

F 0
εn

(θ)dθ

∥

∥

∥

∥

,

L3 =

∥

∥

∥

∥

∫ s

0

Tεn
(s − θ)kεn

F 0
εn

(θ)dθ −
∫ s

0

T0(s − θ)k0F 0(θ)dθ

∥

∥

∥

∥

.

where

F 0
εn

(θ) ≡ f
(

kεn
θ, x0(θ), B(k0θ)u0(θ)

)

.

By assumption [F],

L2 ≤ Ckεn
kεn

∫ s

0

‖Fεn
(θ) − F 0

εn
(θ)‖dθ,

≤ Ckεn
kεn

L(ρ)

∫ s

0

‖xεn
(θ) − x0(θ)‖dθ

+ Ckεn
kεn

L(ρ)

∫ s

0

‖B(kεn
θ)uεn

(θ) − B(k0θ)u0(θ)‖dθ,

≤ L21 + L22 + L23,

where

Ckεn
≡ Ceωkεn ,

L21 ≡ Ckεn
kεn

L(ρ)

∫ s

0

‖xεn
(θ) − x0(θ)‖dθ,

L22 ≡ Ckεn
kεn

L(ρ)

∫ s

0

‖B(kεn
θ)u0(θ) − B(k0θ)u0(θ)‖dθ,

L23 ≡ Ckεn
kεn

L(ρ)

∫ s

0

‖B(kεn
θ)uεn

(θ) − B(kεn
θ)u0(θ)‖dθ.

and

L3 ≤
∫ s

0

‖Tεn
(s − θ)kεn

F 0
εn

(θ) − Tεn
(s − θ)k0F 0(θ)‖dθ

+

∫ s

0

∥

∥Tεn
(s − θ)k0F 0(θ) − T0(s − θ)k0F 0(θ)

∥

∥ dθ

≤ L31 + L32 + L33
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where

L31 ≡ Ckεn

∫ s

0

‖kεn
F 0

εn
(θ) − kεn

F 0(θ)‖dθ,

L32 ≡ Ckεn

∫ s

0

‖kεn
F 0(θ) − k0F 0(θ)‖dθ,

L33 ≡ k0M0(1 + ρ)

∫ s

0

‖Tεn
(s − θ) − T0(s − θ)‖dθ.

Similar to the proof in Theorem 3.A, one can obtain

‖xεn
(s) − x0(s)‖ ≤ L1 + L2 + L3

≤ σ0 + Ckεn
kεn

L(ρ)

∫ s

0

‖xεn
(θ) − x0(θ)‖dθ

where

σ0 = L1 + L22 + L23 + L31 + L32 → 0 as n → ∞.

Using Gronwall Lemma again, we obtain

xεn

s−→ x0 in C ([0, 1] , X) as n → ∞.

Step 3: It follows from Step 1 and Step 2,
{

‖xεn
(1) − z1‖ ≤

√
2εnτ̃ −→ 0, as n → ∞,

‖xεn
(1) − x0(1)‖ −→ 0, as n → ∞,

and

‖x0(1) − z1‖ ≤ ‖xεn
(1) − z1‖ + ‖xεn

(1) − x0(1)‖ −→ 0, as n → ∞,

that

x0(1) = z1.

It is very clear that k0 6= 0 unless z0 = z1. This implies that

k0 > 0.

Define v0(·) = u0
(

·/k0
)

. In fact, z0(·) = x0
(

·/k0
)

is the mild solution of system (1.1) corresponding to

control v0 ∈ V0, then

z0(k0) = x0(1) = z1 and τ (v0) = k0 > 0.

By the definition of τ∗ = inf {τ (v) ≥ 0 | v ∈ V0},

k0 ≥ τ∗.

For any v ∈ V0,

τ (v) ≥ Jε(wε) =
1

2ε
‖x (wε) (1) − z1‖2 + kε.

Thus,

τ (v) ≥ kε.

Further,

τ (v) ≥ kεn
for all εn > 0.

Since k0 is the limit of kεn
as n → ∞,

τ (v) ≥ τ (v0) = k0 for all v ∈ V0.

Hence,

k0 ≤ τ∗.

Thus,

0 < τ (v0) = k0 = τ∗.
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The equality implies that v0 is an optimal control of Problem (P) and k0 > 0 is just optimal time.

The following conclusion can be seen from the discussion above.

Conclusion: Under the above assumptions, there exists a sequence of Meyer problems (Pεn
) whose

corresponding sequence of optimal controls {wεn
} ∈ W can approximate the time optimal control

problem (P) in some sense. In other words, by limiting process, the sequence of the optimal controls

{wεn
} ∈ W can be used to find the solution of time optimal control problem (P).

Theorem 4.A: Assumptions [A], [B], [F] and [U] hold. Problem (P) has a solution.

Remark 1: If B(t) ≡ B, then Theorem 3.A and Theorem 4.A also hold.

Remark 2: If B(t) does not have strong continuity and semigroup is compact, we will carry out the

full details as well as some related problems in a forthcoming paper.

Acknowledgment: Special thanks go to Professor N.U. Ahmed and referees for their useful sugges-

tion.
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