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1 Introduction.

Based on the exponential dichotomy of a linear nonautonomous system

x′ = A(t)x, (1)

several qualitative properties of the solutions of ordinary and functional dif-
ferential equations have been well investigated (see e.g.[11-23,27-35,37-38]).
In particular, the existence of bounded and periodic solutions of several fam-
ilies of quasilinear systems has been advantageously studied with the help of
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the Green matrix G(t, s) of system (1) and concluding that for any bounded
function f

x(t) =

∫ ∞

−∞

G(t, s)f(s)ds (2)

is a bounded solution of the non-homogeneous linear system

x′ = A(t)x+ f(t). (3)

Nevertheless, notice that similar results can be obtained by the more
general condition:

sup
t∈R

∫ ∞

−∞

|G(t, s)|ds <∞, (4)

that is, if system (1) has an integrable dichotomy. For example, condition (4)
holds for any integrable (h, k)-dichotomy without need of being exponential
[7,8,14].

Under the assumptions thatA and f are periodic and (1) has an integrable
dichotomy, we will study the periodicity of the solution x given by (2). The
existence of periodic solutions of functional differential equations has been
discussed extensively in theory and in practice (for example, see [1-3,7-10,14-
19] and the references cited therein), but there are few papers considering
integrable dichotomies.

In this paper, under condition (4) we consider systems of the type (see
e.g.[2,3])

y′(t) = A(t)y(t) +

t
∫

−∞

C(t, s, y(s))ds+ g(t, y(t), y(t− τ(t))). (5)

The investigation of integro-differential equations with delay had a big
impulse when the Volterra integral equations with linear convolutions ap-
peared, see for example, Burton [2-5], Corduneanu [9,10], Hale [17], Hale-
Lunel [19], Gopalsamy [20], Lakshmikantham et al [23], Yoshizawa [37,38],
etc. The existence of bounded and periodic solutions of nonlinear Volterra
equations with infinite delay has been extensively discussed by Burton and
others under boundedness conditions (see [2-5]). Several papers treat on this
subject, see for example [28-35]. After introducing the space of BC(−∞,ρ] by
combining Lyapunov function (functional) and fixed point theory, sufficient
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conditions which guarantee the existence of periodic solutions of a variety of
infinite delay systems

y′(t) = f(t, yt) (6)

have been obtained. Very soon, in several works linear integro-differential
equations,

y′(t) = A(t)y(t) +

t
∫

−∞

C(t, s)y(s)ds+ f(t) (7)

were studied under some sufficient conditions which guarantee the existence
of periodic solutions of system (7) . Recently, Chen [6] considered a kind of
integro-differential equations more general than (7),

y′(t) = A(t)y(t) +

t
∫

−∞

C(t, s)y(s)ds+ g(t, y(t)) + f(t). (8)

By using exponential dichotomy and fixed point theorem, he discusses the
existence, uniqueness and stability of periodic solutions of (8). Beside its
theoretical interest, the study of integro-differential equations with delay has
great importance in applications. For these reasons the theory of integro-
differential equations with infinite delay has drawn the attention of several
authors (see [2,3,9-13,16-23,29,31,37,38]).

This paper is organized as follows. In next section, some definitions and
preliminary results are introduced. Important properties of integrable di-
chotomies are obtained. In particular, any integrable (h, k)-dichotomy sat-
isfies our requirements. Section 3 is devoted to establish some criteria for
the existence and uniqueness of bounded and periodic solutions of system
(5), which include systems as (6) and (8). Integrable dichotomies and Ba-
nach and Schauder fixed point theorems will be fundamental to obtain the
results. Finally, in section 4 we show some examples, where our results can
be applied.

2 Bounded and periodic solutions of nonho-

mogeneous systems.

Let Cn and Rn denote the sets of complex and real vectors, and |x| any
convenient norm for x ∈ Cn, also let C = C1, R = R1 and R+ = (0,∞).
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Now, we recall some of the definitions (see[1,14,15,24-26]), concerning
integrable dichotomy and the notion of (h, k)−dichotomy for linear nonau-
tonomous ordinary differential equations . A solution-matrix Φ(t) of system
(1) is said to be a fundamental-matrix, if Φ(0) = I. For a projection matrix
P, we define G = GP a Green matrix as:

G(t, s) =







Φ(t)PΦ−1(s), for t ≥ s,

−Φ(t)(I − P )Φ−1(s), for s > t.

Definition 1 . System (1) is said to have an integrable dichotomy , if there
exist a projection P and µ ∈ R+ such that its Green matrix G satisfies:

sup
t∈R

∞
∫

−∞

|G(t, s)|ds = µ. (9)

Definition 2 Let h, k : R → R+ be two positive continuous functions.
The linear system (1) is said to possess an (h, k)−dichotomy, if there are a
projection matrix P and a positive constant K such that for all t, s ∈ R the
following inequality holds:

|G(t, s)| ≤ Kgh,k(t, s),

where

gh,k(t, s) =







h(t)h(s)−1, t ≥ s

k(s)k(t)−1, s > t

and h(t)−1 denotes 1/h(t).

Definition 3 We say that system (1) has an integrable (h, k)-dichotomy if
system (1) has an (h, k)-dichotomy for which there exists µh,k > 0 such that

sup
t∈R

∞
∫

−∞

gh,k(t, s)ds = µh,k.
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Let us state our main hypothesis on the linear system (1).
(I) System (1) has an integrable dichotomy .

(D) System (1) satisfies (I) with a projection P such that Φ(t)PΦ−1(t) is
bounded.

If the system (1) has an (h, k)-dichotomy integrable then necessarily the
dichotomy satisfies condition (D).

Remark 4 Obviously, the case h(t) = e−βt, k(t) = e−αt, β, α > 0, yields an
exponential dichotomy, but (h, k)− dichotomy systems are more general than
these ones(see, section 4 and for example [7,p.73, 14]).

However, h and k have an exponential domination:

Lemma 1 . Let ϕ : R → (0,∞) and ψ : R → (0,∞) be two locally integrable
functions, satisfying for µ > 0 constant

ϕ(t)

∫ t

−∞

ϕ(s)−1ds ≤ µ , (10)

ψ(t)

∫ ∞

t

ψ(s)−1ds ≤ µ . (11)

Then for any t0 ∈ R, ϕ(t) ≤ ce−µ−1t, t ≥ t0, and ψ(t) ≤ ceµ−1t for t ≤
t0,where c > 0.

Proof. If u(t) =
∫ t

−∞
ϕ(s)−1ds then u

′

= ϕ−1 ≥ µ−1u by (10). So, u(t) ≥

u(t0)e
µ−1(t−t0) for t ≥ t0. Therefore ϕ(t) ≤ µu(t)−1 ≤ µu(t0)e

−µ−1(t−t0). To
solve (10), let v(t) =

∫ ∞

t
ψ(s)−1ds. We have v ≤ −µv

′

, i.e. (veµ−1t)
′

≥ 0 or

v(t0) − v(t)eµ−1(t−t0) ≤ 0. By (11), ψ(t) ≤ µv(t0)
−1eµ−1(t−t0) for t ≤ t0.

Corollary 1. For every integrable (h, k)- dichotomy, there exist constants
α,M > 0 such that

h(t) ≤Me−αt for all t ≥ 0; k(t)−1 ≤Meαt for all t ≤ 0.

Proposition 1. If system (1) has an integrable dichotomy, then x(t) = 0
is the unique bounded solution of system (1).
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Proof. Define B0 ⊂ Cn to be the set of initial conditions ξ ∈ Cn per-
taining to bounded solutions of Eq (1). Take any vector ξ ∈ Cn and assume
first that (I − P )ξ 6= 0. Define φ(t)−1 = |Φ(t)(I − P )ξ|, we may write

∞
∫

t

Φ(t)(I − P )ξφ(s)ds =

∞
∫

t

Φ(t)(I − P )Φ−1(s)Φ(s)(I − P )ξφ(s)ds.

So using the integrability of the dichotomy, we have

∞
∫

t

φ(s)ds ≤ µφ(t), uniformly in t.

For this, lim inf
s∈[t,∞)

φ(s) = 0, and then |Φ(t)(I − P )ξ| must be unbounded.

If we assume now that Pξ 6= 0, then defining φ(t)−1 = |Φ(t)Pξ|, we
perform the same procedure, with the integral over the interval (−∞, t] we
conclude that lim inf

s∈(−∞,t]
φ(s) = 0, which means |Φ(t)Pξ| must be unbounded.

Thus B0 = {0} and the only bounded solution of system (1) is x(t) = 0.

Proposition 2. If system (1) satisfies condition (I) then the system (3)
has exactly one bounded solution x, which can be represented by (2).

Proof. It is not difficult to check that x(t), given by (2), is a bounded
solution of (3).If there exists another bounded solution z(t), then x(t)− z(t)
is a bounded solution of the homogeneous linear system (1). By Proposition
1, x(t) ≡ z(t). The uniqueness of the bounded solution of (3) is proved.

From now on, the boundedness of Φ(t)PΦ−1(t) is fundamental.

Proposition 3. If the linear system (1) satisfies hypothesis (D), then the
projector P is unique, i.e., P is decided uniquely by the integrable dichotomy.

Proof. Firstly, prove that for an integrable dichotomy we have that
|Φ(t)P | is bounded for t ≥ t0(t0 ∈ R) and |Φ(t)(I − P )| is bounded for
t ≤ t0. Let ϕ(t) = |Φ(t)P | and ψ(t) = |Φ(t)(I − P )|. We have

∫ t

−∞

Φ(t)Pϕ(s)−1ds =

∫ t

−∞

Φ(t)PΦ−1(s)Φ(s)Pϕ(s)−1ds.
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If follows from (9) and the last inequality that ϕ satisfies (10):

t
∫

−∞

ϕ(t)ϕ(s)−1ds ≤ µ.

By (9), ψ(t) = |Φ(t)(I − P )| similarly satisfies (11):

∞
∫

t

ψ(t)ψ(s)−1ds ≤ µ.

So, Lemma 1 implies that for every t0 ∈ R, there exists M > 0 constant
such that

|Φ(t)P | ≤ M for t ≥ t0 and |Φ(t)(I − P )| ≤M for t ≤ t0. (12)

Assume now that there exists another projector P̃ satisfying the integra-
bility condition (9) , i.e.,

∫ t

−∞

|Φ(t)P̃Φ−1(s)|ds+

∫ ∞

t

|Φ(t)(I − P̃ )Φ−1(s)|ds ≤ µ̃.

Similar to the above discussion , there exists M̃ > 0 such that

|Φ(t)P̃ | ≤ M̃ for all t ≥ 0, |Φ(t)(I − P̃ )| ≤ M̃ for all t ≤ 0. (13)

Take any ξ ∈ Cn, for t ≥ 0, it follows from (12) and (13) that

|Φ(t)P (I − P̃ )ξ| =|Φ(t)PΦ−1(0)Φ(0)(I − P̃ )ξ|

≤|Φ(t)PΦ−1(0)||Φ(0)(I − P̃ )ξ| ≤M |(I − P̃ )ξ|, (t ≥ 0),

where M is constant. On the other hand, for t ≤ 0, it follows from (12),
(13), and the boundedness of Φ(t)PΦ−1(t) that

|Φ(t)P (I − P̃ )ξ| =|Φ(t)PΦ−1(t)Φ(t)(I − P̃ )Φ−1(0)Φ(0)(I − P̃ )ξ|

≤|Φ(t)PΦ−1(t)||Φ(t)(I − P̃ )Φ−1(0)||Φ(0)(I − P̃ )ξ|

≤M |(I − P̃ )ξ|, (t ≤ 0),

(14)

where M is constant.
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It follows from (14) that for any ξ ∈ Cn, x(t) = Φ(t)P (I − P̃ )ξ is the
bounded solution of system (1). By Proposition 1, we have P (I − P̃ )ξ = 0,
which implies P = PP̃ . Since Φ(t)(I − P )Φ−1(t) is also bounded, similar to
the above discussion, we also have (I − P )P̃ = 0, i.e., P̃ = PP̃ .Therefore,
P = PP̃ = P̃ . This shows that the projection P is unique.

The bounded matrix Φ(t)PΦ−1(t) is periodic if A is so.

Proposition 4. Let the linear system (1) satisfy condition (D), where A
is a T periodic matrix , then Φ(t)PΦ−1(t) is also a T−periodic function.
Proof. By the periodicity, we note that Φ(t + T ) is also a solution matrix
of (1). Obviously, we have Φ(t + T ) = Φ(t)C = Φ(t)Φ(T ), using Φ(0) = I.
Note that P̃ = Φ(T )PΦ−1(T ) is also a projection.Since Φ(t)P̃Φ−1(s) = Φ(t+
T )PΦ−1(s + T ), the dichotomy is also integrable with P̃ . By Proposition 3,
the projection P is unique. Thus, Φ(T )PΦ−1(T ) = P. Therefore, Φ(t +
T )PΦ−1(t+ T ) = Φ(t)PΦ−1(t), i.e., Φ(t)PΦ−1(t) is T−periodic function.

Finally, we obtain two important consequences to the non homogeneous
linear system (3).

Proposition 5. Let all conditions in Proposition 4 hold and f(t) is a
T -periodic function. Then system (3) has exactly one T−periodic solution,
which can be represented as (2).
Proof. By Proposition 4, it is not difficult to check that x(t), given by (2), is
a T− periodic solution and so it is a bounded solution. Then, by Proposition
2, the result follows.

3 Existence of bounded and periodic solu-

tions

In this section, we will prove some results about the existence and uniqueness
of bounded and periodic solutions of system (5). Let the corresponding space
of the initial conditions ϕ:

BC(−∞, t0] = {ϕ : (−∞, t0] → Rn/ϕ(t) is a bounded continuous function}

and for any ϕ ∈ BC(−∞, t0], define the norm |ϕ| = sup {|ϕ(t)|/t ∈ (−∞, t0]} .
Let x(t, t0, ϕ) (or x(t, ϕ), x(t) for convenience) denote the solution of the sys-
tem (5) with bounded continuous initial function ϕ ∈ BC(−∞, t0].
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Consider the following nonlinear integro-differential equation with both
continuous delay and discrete delay of the form

y′(t) = A(t)y(t) + F1(t, y(t), y(t− τ(t))) + F2(t, yt), (15)

where F1 involves bounded delay and F2 unbounded delay. Typically system
(15) has the form:

y′(t) = A(t)y(t) + g(t, y(t), y(t− τ(t)))+

t
∫

−∞

C(t, s, y(s))ds (16)

and its linear system (1) has an integrable dichotomy , where y ∈ Cn, A(t) =
(aij(t))n×n, A(t) is continuous on R, g : R×Cn×Cn → Cn is continuous, C :
R×R×Cn → Cn is continuous. Now we introduce the following conditions:

Dichotomy conditions:

• (I) The linear system (1) possesses an integrable dichotomy with pro-
jection P and constant µ.

• (D) The linear system (1) satisfies condition (I) and Φ(t)PΦ−1(t) is
bounded.
Periodic conditions:

• (P) A(t + T ) = A(t), g(t+ T, y, z) = g(t, y, z), τ(t + T ) = τ(t), C(t +
T, s+ T, y) = C(t, s, y).

Lipschitz conditions:

• (L1) There exists a nonnegative constant L1 such that 2L1 < µ−1 and

|g(t, x1, y1) − g(t, x2, y)| ≤ L1(|x1 − x2| + |y1 − y2|), xi, yi ∈ Cn, t ∈ R.

• (L2) There exists a continuous function λ : R2 → [0,∞) such that: for
t, s ∈ R and any y1, y2 ∈ Cn we have

|C(t, s, y1) − C(t, s, y2)| ≤ λ(t, s)|y1 − y2|

and
∫ t

−∞

λ(t, s)ds ≤ L2, L2 < µ−1,

∫ t

−∞

|C(t, s, 0)|ds ≤ ρ2.

Estimation conditions :
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• (E1) For every real r > 0 there exist c1, ρ1 nonnegative constants with
2c1 < µ−1 such that

|g(t, x, y)| ≤ c1(|x| + |y|) + ρ1 for|x|, |y| ≤ r uniformly for t ∈ R.

• (E2) For every real r > 0 there exist two continuous function λ, γ :
R2 → [0,∞) such that

|C(t, s, y)| ≤ λ(t, s)|y|+ γ(t, s); t, s ∈ R, |y| ≤ r

and nonnegative constants c2, ρ2 such that:

∫ t

−∞

λ(t, s)ds ≤ c2 , c2 < µ−1;

∫ t

−∞

γ(t, s)ds ≤ ρ2.

Continuity conditions.

• (C1) The function g: R× Cn × Cn → Cn is continuous .

• (C2) F2 is a continuous functional in the following sense. Let r >
0; t, s ∈ R and y1, y2 ∈ Cn, |yi| ≤ r, i = 1, 2. For any ε > 0 there exist
δ > 0 and γ : R2 → [0,∞) a function such that |y1 − y2| ≤ δ implies

|C(t, s, y1) − C(t, s, y2)| ≤ εγ(t, s), t, s ∈ R,

where ρ = sup
t∈R

t
∫

−∞

γ(t, s)ds <∞.

Now we are ready to state our main results.
For bounded solutions, we obtain the following results.
Theorem 1: The conditions (I), (L1), (L2) and 2L1 + L2 < µ−1 imply

that the system (16) has a unique bounded solution.
Theorem 2: The conditions (I), (E1), (E2), (C1), (C2) and 2c1+c2 < µ−1

imply that system (16) has at least one bounded solution.
Analogously, for periodic solutions we have.
Theorem 3: If 2L1 + L2 < µ−1 and the asumptions (D), (P) , (L1)

and (L2) hold, then system (16) has exactly one T- periodic solution.
Theorem 4: If 2c1+c2 < µ−1 and the asumptions (D), (P ), (E1), (E2),

(C1) and (C2) hold, then system (16) has at least one T-periodic solution.
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Remark 5 Several known results to integro-differential equations using ex-
ponential dichotomy theory are special cases of our Theorems. In particular,
they have been extended to integrable (h, k)- dichotomy. Obviously, the gen-
eralization requires only a dichotomy satisfying condition (D).

Remark 6 Considering system (5)

x′ = A(t)x+ g(t, x(t), x(t− τ(t))) (17)

Krasnoselskii (see[36]) proved that if A is a stable constant matrix, without

delay and lim
|x|+|y|→+∞

|g(t,x,y)|
|x|+|y|

= 0, then system (17) has at least one periodic

solution. In our case, applying Theorem 4, this result is also valid for the re-
tarded system (17), requiring the hypothesis: (D), (P), (C1) and |g(t, x, y)| ≤
c1(|x| + |y|) + ρ1, with 2c1 < µ−1 and ρ1 constants for |x| + |y| ≤ r, r > 0 .

Remark 7 As a special case, when λ(t, s) = λ1(t−s), the smallness condition
in (L2) can be reduced to

∫ t

−∞
λ(t, s)ds =

∫ t

−∞
λ1(t − s)ds =

∫ +∞

0
λ1(s)ds <

µ−1.

We will prove only Theorems 3 and 4 about periodic solutions because, with
the obvious differences, the proofs of Theorems 1 and 2 are respectively
similar. In Theorems 1 and 2, we will use Proposition 2, while in Theorems
3 and 4, we will use Proposition 5. In all of them, we need the same operator
defined on the Banach space

B = {u : R → Cn|u is continuous and bounded}

provided with the supremum-norm.
Proof of Theorem 3. Consider the Banach space

P = { u : R → Cn|u(t) is continuous T − periodic function}

provided with the norm ‖u‖ = sup {|u(t)| : 0 ≤ t ≤ T} . For any u ∈ P,
consider the integro-differential correspondence:

y′(t) = A(t)y(t)+g(t, u(t), u(t−τ(t)))+

t
∫

−∞

C(t, s, u(s))ds = A(t)y(t)+F (t, u),

(18)
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where F is the functional:

F (r, u) =

r
∫

−∞

C(r, s, u(s))ds+ g(r, u(r), u(r− τ(r))). (19)

By the conditions (D) and (P) and Proposition 5, F (t, u) is T-periodic in
t and system (18) has exactly one T−periodic solution which can be written
as

yu(t) =

∫ ∞

−∞

G(t, r)F (r, u)dr. (20)

So, the operator Γ : P → P given by

Γu(t) = yu(t), u ∈ P (21)

is well defined and any fixed point of Γ is a T-periodic solution of system
(18). By (L1) and (L2), we shall prove that Γ is a contraction mapping in
P . In fact, for any u1, u2 ∈ P, it follows from (19), (20) and the conditions
in Theorem 3 that

|F (r, u1) − F (r, u2)| ≤
r
∫

−∞

λ(r, s)|u1(s) − u2(s)|ds+ 2L1‖u1 − u2‖

≤ (2L1 + L2)‖u1 − u2‖, and

|Γu1(t) − Γu2(t)| ≤
∞
∫

−∞

|G(t, r)||F (r, u1) − F (r, u2)|dr.

≤ µ(2L1 + L2)‖u1 − u2‖.

It follows from µ(2L1 +L2) < 1, that Γ is a contraction mapping. There-
fore Γ has exactly one fixed point u in P. It is easy to check that u is the
unique T -periodic solution of (18).

Proof of Theorem 4. Take the Banach space P and the operator Γ
defined in the proof of Theorem 3. Now by using Schauder’s fixed point the-
orem, we shall prove that Γ has at least one fixed point under the assumption
of Theorem 4.

In order to prove this,we set Br = {u ∈ P/‖u‖ ≤ r} and Cr = {(x, y) ∈
C2n/|x|, |y| ≤ r}.
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Lemma 1: There exists N ∈ N such that Γ : BN → BN .
Proof. If not, for any n ∈ N, there exists un ∈ Bn such that ‖Γun‖ > n.

For any sufficiently small ε, it follows from (E1) and (E2) that there exists
sufficiently large N ∈ N such that if n > N then

|F (r, un)|

n
≤ 2c1 +

ρ1

n
+

r
∫

−∞

λ(r, s)
|un(s)|ds

n
+

r
∫

−∞

γ(r, s)ds

n
(22)

≤ 2c1 + c2 + ε.

Therefore, it follows from the assumption in Theorem 4 and (22) that

|Γun(t)|

n
≤

1

n

{
∫ ∞

−∞

|G(t, r)‖F (r, un)|dr

}

≤ µ(2c1 + c2 + ε).

As µ(2c1+c2) < 1, taking sufficiently small ε, we have µ(2c1+c2)+µε < 1.

Therefore, it follows that lim
n→∞

sup ‖Γun‖
n

< 1, which implies that for suffi-

ciently large n, ‖Γun‖
n

< 1. This is a contradiction to ‖Γun‖ > n. Thus there
exists N ∈ N such that Γ : BN → BN .

Lemma 2: ΓBN is a relatively compact set of P .

Proof. In fact,since ΓBN ⊂ BN , {Γu(t)/u ∈ BN} is uniformly bounded.
Moreover, by (E1) and (E2), proceeding as in (22), we have for (t, u) ∈

[0, T ] × BN : |F (t, u)| ≤ (2c1 + c2)N + ρ1 + ρ2. For any u ∈ BN ,
∣

∣

∣

dΓu(t)
dt

∣

∣

∣
is

bounded for (t, u) ∈ [0, T ] ×BN because

dΓu(t)

dt
=
dyu(t)

dt
= A(t)yu(t) + F (t, u).

Therefore, {Γu(t)/u ∈ BN} is equicontinuous. It follows from Ascoli-
Arzela theorem that ΓBN is a relatively compact subset of B.

Lemma 3: Γ is continuous on BN .

Proof. Since g(t, x, y) is uniformly continuous on [0, T ] × CN and g(t +
T, x, y) = g(t, x, y), g(t, x, y) is uniformly continuous on R×CN . Therefore,
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for any ε > 0, there exists δ = δ(ε) > 0 such that if |x1 − x2| + |y1 − y2| < δ
((xi, yi) ∈ CN , i = 1, 2), then

|g(t, x1, y2) − g(t, x2, y1)| ≤
ε

2µ
(t ∈ R).

Moreover for |y1 − y2| < δ we have, by (C2), |C(t, s, y1) − C(t, s, y2)| ≤

ε1γ(t, s) and then |F2(t, y1) − F2(t, y2)| ≤ ε1
∫ t

−∞
γ(t, s)ds ≤ εµ−1

2
. So

|F2(t, y1) − F2(t1, y2)| ≤
ε

2µ
(t ∈ R).

Therefore for any u1, u2 ∈ BN , r ∈ R, there exists δ = δ(ε) such that if ‖u1−
u2‖ < δ, then we have

|F (r, u1 − F (r, u2)| ≤ εµ−1 and

|Γu1(t) − Γu2(t)| ≤
∞
∫

−∞

|G(t, s)|εµ−1ds ≤ ε.

Therefore, Γ is continuous on BN .

From the above three Lemmas, Γ : BN → BN is completely continuous.
Therefore by Schauder’s fixed point theorem, there exists at least one fixed
point in ΓBN . It follows from (18), (20) and (21) that the fixed point is just
the T−periodic solution of system (18). The proof of Theorem 4 is complete.

4 Examples

4.1) First, we show a large class of integrable dichotomy (see, for example,
Coppel[8,p.73], [1,14]). Let {ak}k∈Z be a positive sequence such that

∑

k∈Z
ak

converges and inf
k∈Z

a−1
k = c > 0. Define for k ∈ Z, Ik = [k − a2

k, k + a2
k].

Let ξ : R → (0,∞) be a continuously differentiable function given by
ξ(t) ≡ c except on Ik, where ξ(k) = a−1

k and ξ on Ik lies between c and a−1
k .

We have
∑

k∈Z

∫

Ik

ξ(s)ds 6 v <∞.

Consider the scalar differential equation

x′ = a(t)x, a(t) = −α + ξ′(t)ξ(t)−1, α > 0 (23)
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with solutions
x(t) = x0e

−αtξ(t) := x0φ(t).

We have

φ(k + a2
k)φ(k)−1

6 ca−1
k e−αa2

k → ∞ as k → ∞

and equation (23) is not exponentially stable. However, equation (23) has
an integrable dichotomy

∫ t

−∞

φ(t)φ(s)−1ds 6

∫ t

−∞

e−α(t−s)ds+
∑[t+1]

k=−∞

∫

Ik

ξ(s)ds 6 α−1 + v <∞

i.e. there exists µ such that for t ∈ R, we have:
∫ t

−∞

φ(t)φ(s)−1ds 6 µ. (24)

So, in this way a big class of linear differential equations of type (23), satis-
fying (24), can be built.

In a similar way the above construction may be modified to obtain equa-
tion (23) satisfying

∫ ∞

t

φ(t)φ(s)−1ds 6 µ <∞ (25)

but not “exponentially stable” at −∞.
Furthermore, if we construct the diagonal matrix A(t) = diag{a1(t), a2(t),

..., an(t)} with ai of different types satisfying (24) or (25), then the linear
system

x′ = A(t)x (26)

has an integrable dichotomy, which clearly satisfies also condition (D).

4.2) Let λ : R2 → [0,∞) and γ : R2 → [0,∞) be two functions satisfying

sup
t∈R

∫ t

−∞

λ(t, s)ds 6 ϑ, sup
t∈R

∫ t

−∞

γ(t, s)ds 6 ϑ.

Consider the integro-differential equation:

y′ = a(t)y + (sin t)y5(t) + (1 + cos2 t) y8(t− 2)

+

∫ t

−∞

ln
[

1 + |y(s)|3 λ(t, s) + γ(t, s)
]

ds,
(27)
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where the solutions of the linear equation (23) have an integrable dichotomy,
that is, satisfying (24) or (25).

The conditions of Theorem 2 are fulfilled. Indeed,
i) g(t, x, y) = (sin t)x5+(1+cos2 t) y8 satisfies (E1): |g(t, x, y)| 6 c1(r) (|x| + |y|)+
ϑ1 for every x, y such that |x| , |y| 6 r, uniformly in t ∈ R. Moreover, there
exists r∗ such that 2c1(r

∗) 6 µ−1, where µ satisfies (24) or (25).
ii) C(t, s, y) = ln [1 + |y3|λ(t, s) + γ(t, s)] satisfies (E2): |C(t, s, y)| 6 c2(r)λ(t, s) |y|+
γ(t, s) for |y| 6 r. Moreover, there exists r∗ such that c2(r

∗)ϑ 6 µ−1.
iii) g satisfies (C1) and C satisfies (C2).
Indeed, for any ε > 0, there exists δ > 0 such that |y1 − y2| 6 δ implies

|C(t, s, y1) − C(t, s, y2)| 6 εc2(r)λ(t, s) for t, s ∈ R.

Furthermore, there exists r∗ such that 2c1(r
∗) + c2(r

∗)ϑ 6 µ−1, where µ sat-
isfies (24) or (25).
Then, by Theorem 2, equation (27) has at least one bounded solution.

4.3) Thus many examples can be constructed where our results can be
applied.

Consider the integro-differential system

y′ = A(t)y +B(t)g(y(t), y(t− r(t))) +

∫ t

−∞

[Λ(t− s)f(y(s)) +R(t− s)] ds

(28)
where
i) x′ = A(t)x has an integrable dichotomy (e.g. as in (26)).
ii) B is a bounded matrix: |B(t)| 6 b; g : Cn × Cn → Cn is a continuous
function and |g(x, y)| 6 c1(r)(|x| + |y|) + ϑ1 for |x| , |y| 6 r.
iii)

∫ ∞

0
|Λ(s)|ds = ϑ <∞,

∫ ∞

0
|R(s)|ds = ϑ <∞, f : Cn → Cn is a continu-

ous function such that |f(y)| 6 c2(r)|y|+ ϑ2 for |y| 6 r.
The hypothesis of Theorem 2 are fulfilled. Then if there exists r∗ such that
2c1(r

∗)b+c2(r
∗)ϑ 6 µ−1 (µ given by (9)), Theorem 2 implies that there exists

at least a bounded solution of system (28).

4.4) Similar results can be obtained under global Lipschitz conditions
(L1) and (L2). On the other hand, the periodic situation can be treated in
the same way.
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